首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In eukaryotic cells, phosphatidylinositol is subject to differential phosphorylation, resulting in the production of seven distinct phosphatidylinositol phosphates, often referred to as phosphoinositides (PIs). PIs have numerous distinct roles in cellular regulation and membrane trafficking. Recently, myotubularin family PI 3-phosphatases have emerged as key regulators of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, two PIs that regulate traffic within the endosomal-lysosomal pathway. Mutations in several myotubularin genes lead to myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy. Strikingly, nearly half of the members of the human myotubularin family appear to be catalytically inactive. Several inactive myotubularins have essential functions in mammals. Recent work in mammalian cells and model organisms is shedding light on the roles of myotubularins in membrane traffic.  相似文献   

3.
Inositol phospholipids have been implicated in almost all aspects of cellular physiology including spatiotemporal regulation of cellular signaling, acquisition of cellular polarity, specification of membrane identity, cytoskeletal dynamics, and regulation of cellular adhesion, motility, and cytokinesis. In this review, we examine the critical role phosphoinositides play in these processes to execute the establishment and maintenance of cellular architecture. Epithelial tissues perform essential barrier and transport functions in almost all major organs. Key to their development and function is the establishment of epithelial cell polarity. We place a special emphasis on highlighting recent studies demonstrating phosphoinositide regulation of epithelial cell polarity and how individual cells use phosphoinositides to further organize into epithelial tissues.  相似文献   

4.
Phosphoinositides are key regulators of vesicle-mediated protein trafficking. Their roles include recruiting vesicle coat and effector proteins to the site of budding and promoting vesicle fusion. The intracellular levels of phosphoinositides and their localization to intracellular membranes are critical to their functions. An analytical procedure was developed that optimizes the recovery of radiolabeled cellular phosphoinositides. Quantitative analyses of yeast cellular phosphoinositides indicated that this approach is useful for examining the intracellular membrane phosphoinositide compositions related to trafficking phenomena. The approach will also enable investigators to determine whole-plant phosphoinositide compositions that have been difficult to achieve in the past. These analytical advances should be generally applicable to studies of phosphoinositide dynamics related to membrane trafficking in yeast, plant, and animal cells.  相似文献   

5.
Nuclear phosphoinositide kinases and inositol phospholipids   总被引:5,自引:0,他引:5  
The presence of inositol phospholipids in the nuclei of mammalian cells has by now been well established, as has the presence of the enzymes responsible for their metabolism. However, our understanding of the role of these nuclear phosphoinositides in regulating cellular events has lagged far behind that for its cytosolic counterpart. It is clear, though, that the nuclear phosphoinositide pool is independent of the cytosolic pool and is, therefore, likely to be regulating a unique set of cellular events. As with its cytosolic phosphoinositides, many nuclear phosphoinositides and their metabolic enzymes are located at distinct sub-cellular structures. This arrangement spatially limits the production and activity of inositol phospholipids and is believed to be a major mechanism for regulating their function. Here, we will introduce the components of nuclear inositol phospholipid signal transduction and discuss how their spatial arrangement may dictate which nuclear functions they are modulating.  相似文献   

6.
In animal cells, phosphoinositides are key components of the inositol 1,4,5-trisphosphate/diacylglycerol-based signaling pathway, but also have many other cellular functions. These lipids are also believed to fulfill similar functions in plant cells, although many details concerning the components of a plant phosphoinositide system, and their regulation are still missing. Only recently have the different phosphoinositide isomers been unambiguously identified in plant cells. Another problem that hinders the study of the function of phosphoinositides and their derivatives, as well as the regulation of their metabolism, in plant cells is the need for a homogenous, easily obtainable material, from which the extraction and purification of phospholipids is relatively easy and quantitatively reproducible. We present here a thorough characterization of the phospholipids purified from [(32)P]orthophosphate- and myo-[2-(3)H]inositol-radiolabeled Arabidopsis thaliana suspension-cultured cells. We then show that NaCl treatment induces dramatic increases in the levels of phosphatidylinositol 4,5-bisphosphate and diacylglycerol pyrophosphate and also affects the turnover of phosphatidylcholine. The increase in phosphatidylinositol 4,5-bisphosphate was also observed with a non-ionic hyperosmotic shock. In contrast, the increase in diacylglycerol pyrophosphate and the turnover of phosphatidylcholine were relatively specific to salt treatments as only minor changes in the metabolism of these two phospholipids were detected when the cells were treated with sorbitol instead of NaCl.  相似文献   

7.
Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment.  相似文献   

8.
Lipid phosphoinositides are master regulators of multiple cellular functions. Misregulation of the activity of the lipid kinases that generate phosphoinositides is causative of human diseases, including cancer, neurodegeneration, developmental disorders, immunodeficiencies, and inflammatory disease. This review will present a summary of recent discoveries on the roles of two phosphoinositide kinases (PI4KA and PIKfyve), which have emerged as targets for therapeutic intervention. Phosphatidylinositol 4-kinase alpha (PI4KA) generates PI4P at the plasma membrane and PIKfyve generates PI(3,5)P2 at endo-lysosomal membranes. Both of these enzymes exist as multi-protein mega complexes that are under myriad levels of regulation. Human disease can be caused by either loss or gain-of-function of these complexes, so understanding how they are regulated will be essential in the design of therapeutics. We will summarize insight into how these enzymes are regulated by their protein-binding partners, with a major focus on the unanswered questions of how their activity is controlled.  相似文献   

9.
Structure and function of phosphatidylinositol-3,4 kinase   总被引:3,自引:0,他引:3  
Activation of phosphatidylinositol (PI)-kinase is involved in the regulation of a wide array of cellular activities. The enzyme exists as a dimer, consisting of a catalytic and a regulatory subunit. Five isoforms of the regulatory subunit have been identified and classified into three groups comprising respectively 85-kDa, 55-kDa, and 50-kDa proteins. Structural differences in the N-terminal regions of the different group members contribute to defining their binding specificity, their subcellular distributions, and their capacity to activate the 110-kDa catalytic subunit. Two widely distributed isoforms of the catalytic subunit have been identified-p110alpha and p110beta. Despite the fact that they bind to the p85alpha regulatory subunit similarly, p110alpha and p110beta appear to have separate functions within cells and to be activated by different stimuli. Moreover, although p85/p110 PI-kinase almost exclusively phosphorylates the D-3 position of the inositol ring in phosphoinositides when purified PI is used as a substrate in vitro, it appears to phosphorylate the D-4 position with similar or higher efficiency in vivo. Thus, it is highly probable that p85/p110 PI-kinase transmits signals to downstream targets via both D-3- and D-4-phosphorylated phosphoinositides.  相似文献   

10.
Phosphoinositides are the phosphorylated derivatives of the structural membrane phospholipid phosphatidylinositol. Single or combined phosphorylation at the 3, 4 and 5 positions of the inositol ring gives rise to the seven different species of phosphoinositides. All are quantitatively minor components of cellular membranes but have been shown to have important functions in multiple cellular processes. Here we describe our current knowledge of phosphoinositide metabolism and functions in apicomplexan parasites, mainly focusing on Toxoplasma gondii and Plasmodium spp. Even though our understanding is still rudimentary, phosphoinositides have already shown their importance in parasite biology and revealed some very particular and parasite-specific functions. Not surprisingly, there is a strong potential for phosphoinositide synthesis to be exploited for future anti-parasitic drug development.  相似文献   

11.
Phosphatidylinositol-3 kinase (PI3K) is a family of enzymes that phosphorylates the D3 position of phosphoinositides in membranes which can then act as a second messenger and affect many essential cellular processes such as survival, proliferation and differentiation. Class IA PI3K is composed of two subunits: a regulatory subunit, p85, and a catalytic subunit, p110. The p85 subunit is composed of several adapter domains which, upon interaction with the appropriate molecules, transmit the signal to activate p110. We have used the spontaneously immortalized oligodendrocyte cell line, CG4, to examine the role of PI3K in maturation of the oligodendrocyte. We show that overexpression of the p85 subunit enhances expression of myelin basic protein (MBP) upon differentiation of CG4 cells and primary oligodendrocytes. In experiments in CG4 cells, neither cotransfection with the tumor suppressor PTEN, which dephosphorylates the D3 position of phosphoinositides, nor inhibition of PI3K activity with wortmannin mimics this effect. Further, we have shown that this effect is dependent on the coexpression of the two SH2 domains within p85. Thus, the p85-mediated enhancement of MBP promoter activity in oligodendrocytes appears to be independent of PI3K activity and dependent on the adapter functions of the p85 subunit's SH2 domains.  相似文献   

12.
Takenawa T  Itoh T 《IUBMB life》2006,58(5-6):296-303
In mammals, there are seven inositolphospholipids, collectively called phosphoinositides that serve as versatile molecules not only in receptor-mediated signal transduction but also in a variety of cellular events such as cytoskeletal reorganization, membrane trafficking, cell proliferation and cell death. Recent studies have revealed that the latter functions are mediated by direct interactions between phosphoinositides and proteins. Such proteins contain two types of phosphoinositide-binding regions; basic amino acid stretch and globular structural domain. Furthermore, spatially restricted compartment of phosphoinositides and their concentration are finely regulated by a large number of phosphoinositide kinases and -phosphatases, controlling localization-specific metabolism of this simple lipid whose aberrations cause various diseases such as cancer and diabetes.  相似文献   

13.
Phosphoinositide kinases comprise a unique family of enzymes that catalyze the phosphorylation of phosphatidylinositol and its phosphorylated metabolites to produce seven phosphoinositides. Recent advances have revealed that these phosphoinositides have specific physiological functions, such as in actin cytoskeletal reorganization, membrane transport, cell proliferation and survival, in eukaryotic cells and that each phosphoinositide kinase is differently and precisely regulated. Here we describe the diverse regulation and physiological functions of phosphoinositide kinases involving their products.  相似文献   

14.
Since the late 1980s, a growing body of evidence has documented that phosphoinositides and their metabolizing enzymes, which regulate a large variety of cellular functions both in the cytoplasm and at the plasma membrane, are present also within the nucleus, where they are involved in processes such as cell proliferation, differentiation, and survival. Remarkably, nuclear phosphoinositide metabolism operates independently from that present elsewhere in the cell. Although nuclear phosphoinositides generate second messengers such as diacylglycerol and inositol 1,4,5 trisphosphate, it is becoming increasingly clear that they may act by themselves to influence chromatin structure, gene expression, DNA repair, and mRNA export. The understanding of the biological roles played by phosphoinositides is supported by the recent acquisitions demonstrating the presence in the nuclear compartment of several proteins harboring phosphoinositide-binding domains. Some of these proteins have functional roles in RNA splicing/processing and chromatin assembly. Moreover, recent evidence shows that nuclear phospholipase Cβ1 (a key phosphoinositide metabolizing enzyme) could somehow be involved in the myelodysplastic syndrome, i.e. a hematopoietic disorder that frequently evolves into an acute leukemia. This review aims to highlight the most significant and updated findings about phosphoinositide metabolism in the nucleus under both physiological and pathological conditions.  相似文献   

15.
Since the late 1980s, a growing body of evidence has documented that phosphoinositides and their metabolizing enzymes, which regulate a large variety of cellular functions both in the cytoplasm and at the plasma membrane, are present also within the nucleus, where they are involved in processes such as cell proliferation, differentiation, and survival. Remarkably, nuclear phosphoinositide metabolism operates independently from that present elsewhere in the cell. Although nuclear phosphoinositides generate second messengers such as diacylglycerol and inositol 1,4,5 trisphosphate, it is becoming increasingly clear that they may act by themselves to influence chromatin structure, gene expression, DNA repair, and mRNA export. The understanding of the biological roles played by phosphoinositides is supported by the recent acquisitions demonstrating the presence in the nuclear compartment of several proteins harboring phosphoinositide-binding domains. Some of these proteins have functional roles in RNA splicing/processing and chromatin assembly. Moreover, recent evidence shows that nuclear phospholipase Cβ1 (a key phosphoinositide metabolizing enzyme) could somehow be involved in the myelodysplastic syndrome, i.e. a hematopoietic disorder that frequently evolves into an acute leukemia. This review aims to highlight the most significant and updated findings about phosphoinositide metabolism in the nucleus under both physiological and pathological conditions.  相似文献   

16.
Strong evidence has been obtained during the last 16 years suggesting that phosphoinositides, which are involved in the regulation of a large variety of cellular processes in the cytoplasm and in the plasma membrane, are present within the nucleus. A number of advances has resulted in the discovery that nuclear phosphoinositides and their metabolizing enzymes are deeply involved in cell growth and differentiation. Remarkably, the nuclear inositide metabolism is regulated independently from that present elsewhere in the cell. Even though nuclear inositol lipids generate second messengers such as diacyglycerol and inositol 1,4,5-trisphosphate, it is becoming increasingly clear that in the nucleus polyphosphoinositides may act by themselves to influence functions such as pre-mRNA splicing and chromatin structure. This review aims at highlighting the most significant and up-dated findings about inositol lipid metabolism in the nucleus.  相似文献   

17.
Cell-to-cell communication is essential for the development and maintenance of multicellular organisms. The tunneling nanotube (TNT) is a recently recognized distinct type of intercellular communication device. TNTs are thin protrusions of the plasma membrane and allow direct physical connections of the plasma membranes between remote cells. The proposed functions for TNTs include the cell-to-cell transfer of large cellular structures such as membrane vesicles and organelles, as well as signal transduction molecules in a wide variety of cell types. Moreover TNT and TNT-related structures are thought to facilitate the intercellular spreading of virus and/or pathogenic proteins. Despite their contribution to normal cellular functions and importance in pathological conditions, virtually nothing is known about the molecular basis for their formation. We have recently shown that M-Sec (also called TNFaip2) is a key molecule for TNT formation. In cooperation with the RalA small GTPase and the exocyst complex, M-Sec can induce the formation of functional TNTs, indicating that the remodeling of the actin cytoskeleton and vesicle trafficking are involved in M-Sec-mediated TNT formation. Discovery of the role of M-Sec will accelerate our understanding of TNTs, both at the molecular and physiological levels.  相似文献   

18.
It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast.  相似文献   

19.
Phosphoinositides are both substrates for second messenger-generating enzymes and spatially localized membrane signals that mediate vital steps in signal transduction, cytoskeletal regulation and membrane trafficking. Phosphatidylcholine-specific phospholipase D (PLD) activity is stimulated by phosphoinositides, but the mechanism and physiological requirement for such stimulation to promote PLD-dependent cellular processes is not known. To address these issues, we have identified a site at which phosphoinositides interact with PLD and have assessed the role of this region in PLD function. This interacting motif contains critical basic amino acid residues that are required for stimulation of PLD activity by phosphoinositides. Although PLD alleles mutated at this site fail to bind to phosphoinositides in vitro, they are membrane-associated and properly localized within the cell but are inactive against cellular lipid substrates. Analogous mutations of this site in yeast PLD, Spo14p, result in enzymes that localize normally, but with catalytic activity that has dramatically reduced responsiveness to phosphoinositides. The level of responsiveness to phosphoinositides in vitro correlated with the ability of PLD to function in vivo. Taken together, these results provide the first evidence that phosphoinositide regulation of PLD activity observed in vitro is physiologically important in cellular processes in vivo including membrane trafficking and secretion.  相似文献   

20.
SAC (for suppressor of actin) domain proteins in yeast and animals have been shown to modulate the levels of phosphoinositides, thereby regulating several cellular activities such as signal transduction, actin cytoskeleton organization, and vesicle trafficking. Nine genes encoding SAC domain-containing proteins are present in the Arabidopsis thaliana genome, but their roles in plant cellular functions and plant growth and development have not been characterized. In this report, we demonstrate the essential roles of one of the Arabidopsis SAC domain proteins, AtSAC1, in plant cellular functions. Mutation of the AtSAC1 gene in the fragile fiber7 (fra7) mutant caused a dramatic decrease in the wall thickness of fiber cells and vessel elements, thus resulting in a weak stem phenotype. The fra7 mutation also led to reduced length and aberrant shapes in fiber cells, pith cells, and trichomes and to an alteration in overall plant architecture. The AtSAC1 gene was found to be expressed in all tissues in elongating organs; however, it showed predominant expression in vascular tissues and fibers in nonelongating parts of stems. In vitro activity assay demonstrated that AtSAC1 exhibited phosphatase activity toward phosphatidylinositol 3,5-biphosphate. Subcellular localization studies showed that AtSAC1 was colocalized with a Golgi marker. Truncation of the C terminus by the fra7 mutation resulted in its localization in the cytoplasm but had no effect on phosphatase activity. Furthermore, examination of the cytoskeleton organization revealed that the fra7 mutation caused the formation of aberrant actin cables in elongating cells but had no effect on the organization of cortical microtubules. Together, these results provide genetic evidence that AtSAC1, a SAC domain phosphoinositide phosphatase, is required for normal cell morphogenesis, cell wall synthesis, and actin organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号