首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary 1. Colostrinin (CLN) induces maturation and differentiation of murine thymocytes, promotes proliferation of peripheral blood leukocytes, induces immunomodulator cytokines, and ameliorates oxidative stress-mediated activation of c-Jun NH2-terminal kinases. 2. Here we report that upon treatment with CLN, medullary pheochromocytoma (PC12) cells ceased to proliferate and extend neurites. 3. The arrest of CLN-treated PC12 cells in the G1 phase of the cell cycle was due to an increase in the phosphorylation of p53 at serine15 (p53ser15) and expression of p21WAF1. PC12 cells treated with inhibitory oligonucleotides to p53 lacked p53ser15 and p21WAF1 expression, and did not show morphological changes after CLN exposure. Transfection with inhibitory oligonucleotides to p21WAF1 had no effect on p53 activation; however, cells failed to arrest or extend neurites. An oligonucleotide inhibiting luciferase expression had no effect on CLN-mediated p53 activation, p21WAF1 expression, growth arrest, or neurite outgrowth. 4. We conclude that CLN induces delicate cassettes of signaling pathways common to cell proliferation and differentiation, and mediates activities that are similar to those of hormones and neurotrophins, leading to neurite outgrowth.  相似文献   

2.
We have shown that protein kinase C (PKC) epsilon, independently of its kinase activity, via its regulatory domain (RD), induces neurites in neuroblastoma cells. This study was designed to evaluate whether the same effect is obtained in nonmalignant neural cells and to dissect mechanisms mediating the effect. Overexpression of PKCepsilon resulted in neurite induction in two immortalised neural cell lines (HiB5 and RN33B). Phorbol ester potentiated neurite outgrowth from PKCepsilon-overexpressing cells and led to neurite induction in cells overexpressing PKCdelta. The effects were potentiated by blocking the PKC catalytic activity with GF109203X. Furthermore, kinase-inactive PKCdelta induced more neurites than the wild-type isoform. The isolated regulatory domains of novel PKC isoforms also induced neurites. Experiments with PKCdelta-overexpressing HiB5 cells demonstrated that phorbol ester, even in the presence of a PKC inhibitor, led to a decrease in stress fibres, indicating an inactivation of RhoA. Active RhoA blocked PKC-induced neurite outgrowth, and inhibition of the RhoA effector ROCK led to neurite outgrowth. This demonstrates that neurite induction by the regulatory domain of PKCdelta can be counteracted by PKCdelta kinase activity, that PKC-induced neurite outgrowth is accompanied by stress fibre dismantling indicating an inactivation of RhoA, and that the RhoA pathway suppresses PKC-mediated neurite outgrowth.  相似文献   

3.
Scp160p is an RNA-binding protein containing 14 tandemly repeated heterogenous nuclear ribonucleoprotein K-homology domains, which are implicated in RNA binding. Scp160p interacts with free and membrane-bound polysomes that are dependent upon the presence of mRNA. Despite its presence on cytosolic polysomes, Scp160p is predominantly localized to the endoplasmic reticulum (ER). Accumulation of Scp160p-ribosome complexes at the ER requires the function of microtubules but is independent of the actin cytoskeleton. We propose that the multi-K-homology-domain protein Scp160p functions as an RNA binding platform, interacting with polysomes that are transported to the ER.  相似文献   

4.
This study characterizes the outgrowth patterns of superior cervical ganglia (SCG) obtained from embryonic (E15), perinatal (E20–21), and adult (P35) rats when placed in culture on various substrata. Outgrowth morphology, degree of fasciculation, and outgrowth length were examined on collagen (COL), polyornithine (PO), polylysine (PL), fibronectin (FN), and nonneuronal cells (NNCs) from the ganglion. COL and FN supported extensive neuritic outgrowth; PO and PL provided poor support. Outgrowth pattern, degree of fasciculation, neurite growth rate, and the number of NNCs in the outgrowth varied considerably depending upon the COL configuration. When undiluted COL (~5 mg/ml) was air dried, a three-dimensional loose fibrillar network was formed. Upon COL dilution or gelling undiluted COL by ammoniation, an essentially two-dimensional layer was formed. On two-dimensional COL, NNCs were able to proliferate and migrate extensively from ganglia of all ages; their presence influenced the form and extent of neurite growth. E15, E20, and P35 neurites responded differently to their endogenous NNCs. E15 neurites extended in relation to NNC surfaces and were predominantly nonfasciculated. E20 neurites became more fasciculated in the presence of NNCs that exhibited morphological and behavioral differences from those migrating from E15 ganglia. E20 neurite bundles became defasciculated when they extended into E15 outgrowth. Far fewer neurites grew from P35 explants in the presence of their NNCs. Three-dimensional COL greatly slowed NNC migration and thus allowed investigation of neurite outgrowth from ganglia of differing age in the absence of NNCs. We conclude that neuritic outgrowth patterns on varying substrata reflect not only neurite differences depending upon ganglion age but also variation in the behavior of accompanying NNCs.  相似文献   

5.
Cell surface carbohydrates play an important role in the regulation of neurite outgrowth during neuronal development. We have investigated the actions of the plant lectin concanavalin A (Con A), a carbohydrate-binding protein, on neurite outgrowth from hippocampal pyramidal neurons in primary cell culture. Neurons plated in culture medium containing nanomolar concentrations of Con A have a larger number of primary neurites arising directly from the cell soma than do neurons plated in culture medium alone. Furthermore, Con A causes counterclockwise turning of neurites in over 70% of the cultured neurons. Both of these effects of Con A are blocked by the hapten sugar alpha-methyl-D-mannopyranoside, suggesting that they result from the interaction of Con A with a cell surface carbohydrate. Another lectin with a different sugar specificity, wheat germ agglutinin, does not modulate neurite outgrowth. Analysis of neurite outgrowth using video-enhanced microscopy reveals that the counterclockwise turning is accompanied by directionally biased extension of filopodia from the growth cones of growing neurites. Treatment of the neurons with cytochalasin, which disrupts actin polymerization, eliminates the neurite turning induced by Con A, suggesting that actin microfilaments are involved in directional control of neurite outgrowth.  相似文献   

6.
The rat pheochromocytoma cell line PC12 is extensively used as a model for studies of neuronal cell differentiation. These cells develop a sympathetic neuron-like phenotype when cultured in the presence of nerve growth factor. The present study was performed in order to assess the role of mouse GTK (previously named BSK/IYK), a cytoplasmic tyrosine kinase belonging to the Src family, for neurite outgrowth in PC12 cells. We report that PC12 cells stably overexpressing GTK exhibit a larger fraction of cells with neurites as compared with control cells, and this response is not accompanied by an increased ERK activity. Treatment of the cells with the MEK inhibitor PD98059 did not reduce the GTK-dependent increased in neurite outgrowth. GTK expression induces a nerve growth factor-independent Rap1 activation, probably through altered CrkII signaling. We observe increased CrkII complex formation with p130(Cas), focal adhesion kinase (FAK), and Shb in PC12-GTK cells. The expression of GTK also correlates with a markedly increased content of FAK, phosphorylation of the adaptor protein Shb, and an association between these two proteins. Transient transfection of GTK-overexpressing cells with RalGDS-RBD or Rap1GAP, inhibitors of the Rap1 pathway, reduces the GTK-dependent neurite outgrowth. These data suggest that GTK participates in a signaling pathway, perhaps involving Shb, FAK and Rap1, that induces neurite outgrowth in PC12 cells.  相似文献   

7.
8.
9.
Scp160p associates with specific mRNAs in yeast   总被引:9,自引:5,他引:4       下载免费PDF全文
Scp160p is a multiple KH-domain RNA-binding protein in yeast that has been demonstrated previously to associate with both soluble and membrane-bound polyribosomes as an mRNP component. One key question that has remained unanswered, however, is whether the mRNAs in these mRNP complexes are random or specific. We have addressed this question using microarray analyses of RNAs released from affinity isolated Scp160p-containing complexes, compared with total RNA controls from the same lysates. Our results, confirmed by quantitative RT–PCR analysis, clearly demonstrate that Scp160p associates with specific rather than with random messages, and that among the enriched targets are DHH1, YOR338W, BIK1, YOL155C and NAM8. Furthermore, loss of Scp160p resulted in a significant change in both the abundance and distribution between soluble and membrane-associated fractions for at least one of these messages (YOR338W), and in a subtle yet significant shift from soluble polyribosomes to soluble mRNPs for at least two of these target messages (DHH1 and YOR338W). Together, these data not only identify specific mRNA targets associated with Scp160p in vivo, they demonstrate that the association of Scp160p with these messages is biologically relevant.  相似文献   

10.
Cell surface carbohydrates play an important role in the regulation of neurite outgrowth during neuronal development. We have investigated the actions of the plant lectin concanavalin A (Con A), a carbohydrate-binding protein, on neurite outgrowth from hippocampal pyramidal neurons in primary cell culture. Neurons plated in culture medium containing nanomolar concentrations of Con A have a larger number of primary neurites arising directly from the cell soma than do neurons plated in culture medium alone. Furthermore, Con A causes counterclock-wise turning of neurites in over 70% of the cultured neurons. Both of these effects of Con A are blocked by the hapten sugar α-methyl-d-mannopyranoside, suggesting that they result from the interaction of Con A with a cell surface carbohydrate. Another lectin with a different sugar specificity, wheat germ agglutinin, does not modulate neurite outgrowth. Analysis of neurite outgrowth using video-enhanced microscopy reveals that the counter-clockwise turning is accompanied by directionally biased extension of filopodia from the growth cones of growing neurites. Treatment of the neurons with cytochalasin, which disrupts actin polymerization, eliminates the neurite turning induced by Con A, suggesting that actin microfilaments are involved in directional control of neurite outgrowth. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
The RNA-binding protein HuD binds to a regulatory element in the 3' untranslated region (3' UTR) of the GAP-43 mRNA. To investigate the functional significance of this interaction, we generated PC12 cell lines in which HuD levels were controlled by transfection with either antisense (pDuH) or sense (pcHuD) constructs. pDuH-transfected cells contained reduced amounts of GAP-43 protein and mRNA, and these levels remained low even after nerve growth factor (NGF) stimulation, a treatment that is normally associated with protein kinase C (PKC)-dependent stabilization of the GAP-43 mRNA and neuronal differentiation. Analysis of GAP-43 mRNA stability demonstrated that the mRNA had a shorter half-life in these cells. In agreement with their deficient GAP-43 expression, pDuH cells failed to grow neurites in the presence of NGF or phorbol esters. These cells, however, exhibited normal neurite outgrowth when exposed to dibutyryl-cAMP, an agent that induces outgrowth independently from GAP-43. We observed opposite effects in pcHuD-transfected cells. The GAP-43 mRNA was stabilized in these cells, leading to an increase in the levels of the GAP-43 mRNA and protein. pcHuD cells were also found to grow short spontaneous neurites, a process that required the presence of GAP-43. In conclusion, our results suggest that HuD plays a critical role in PKC-mediated neurite outgrowth in PC12 cells and that this protein does so primarily by promoting the stabilization of the GAP-43 mRNA.  相似文献   

12.
13.
Scp160p is a 160 kDa RNA-binding protein in yeast previously demonstrated to associate with specific messages as an mRNP component of both soluble and membrane-bound polyribosomes. Although the vast majority of Scp160p sequence consists of 14 closely spaced KH domains, comparative sequence analyses also demonstrate the presence of a potential nuclear localization sequence located between KH domains 3 and 4, as well as a 110 amino acid non-KH N-terminal region that includes a potential nuclear export sequence (NES). As a step toward investigating the structure/function relationships of Scp160p, we generated two truncated alleles, FLAG.SCP160ΔN1, encoding a protein product that lacks the first 74 amino acids, including the potential NES, and FLAG.SCP160ΔC1, encoding a protein product that lacks the final KH domain (KH14). We report here that the N-truncated protein, expressed as a green fluorescent protein fusion in yeast, remains cytoplasmic, with no apparent nuclear accumulation. Biochemical studies further demonstrate that although the N-truncated protein remains competent to form RNPs, the C-truncated protein does not. Furthermore, polyribosome association is severely compromised for both truncated proteins. Perhaps most important, both truncated alleles appear only marginally functional in vivo, as demonstrated by the inability of each to complement scp160/eap1 synthetic lethality in a tester strain. Together, these data challenge the notion that Scp160p normally shuttles between the nucleus and cytoplasm, and further implicate polyribosome association as an essential component of Scp160p function in vivo. Finally, these data underscore the vital roles of both KH and non-KH domain sequences in Scp160p.  相似文献   

14.
Genetic and biochemical interactions between SCP160 and EAP1 in yeast   总被引:3,自引:3,他引:0  
Scp160p is a multiple KH-domain RNA-binding protein in yeast known to associate with polyribosomes as an mRNP component, although its biological role remains unclear. As a genetic approach to examine Scp160p function, we applied an ethyl methanesulfonate (EMS) screen for loci synthetically lethal with scp160 loss, and identified a single candidate gene, EAP1, whose protein product functions in translation as an eIF4E-binding protein, with additional uncharacterized spindle pole body functions. To reconfirm scp160/eap1 synthetic lethality, we constructed a strain null for both genes, supported by an SCP160 maintenance plasmid. We used this strain to establish a quantitative assay for both Scp160p and Eap1p functions in vivo, and applied this assay to demonstrate that Y109A EAP1, a previously described allele of EAP1 that cannot bind eIF4E, is markedly impaired with regard to its SCP160-related activity. In addition, we explored the possibility of physical interaction between Eap1p and Scp160p, and discovered that Eap1p associates with Scp160p-containing complexes in an RNA-dependent manner. Finally, we probed the impact of EAP1 loss on Scp160p, and vice versa, and found that loss of each gene resulted in a significant change in either the complex associations or subcellular distribution of the other protein. These results clearly support the hypothesis that Scp160p plays a role in translation, demonstrate that the interaction of SCP160 and EAP1 is biologically significant, and provide important tools for future studies of the in vivo functions of both genes.  相似文献   

15.
The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to >1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p''s molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.  相似文献   

16.
We previously reported that a fungal protein, p15, induces neurite outgrowth and differentiation of rat pheochromocytoma PC12 cells through the activation of the Ca2+ signaling pathway. We report here the secretory production of p15 in Aspergillus oryzae. Analysis of culture supernatant of A. oryzae transformed with the gene encoding the p15 precursor tagged with a hemagglutinin (HA) epitope demonstrated that the transformant secreted a protein with an apparent molecular mass of 17.5 kDa, which is a little larger than the expected size of mature p15-HA. By heat denaturation and ion exchange chromatography, p15-HA was easily purified from the culture supernatant with sufficient abundance. Although purified p15-HA was less active than the native p15 obtained from the culture broth of a producing fungal strain, it had neurite-inducing activity in PC12 cells in a dose-dependent manner, providing a system to study the action mechanism of p15.  相似文献   

17.
Scp160p is a 160 kDa protein in the yeast Saccharomyces cerevisiae that contains 14 repeats of the hnRNP K-homology (KH) domain, and demonstrates significant sequence homology to a family of proteins collectively known as vigilins. As a first step towards defining the function of Scp160p, we have characterized the subcellular distribution and in vivo interactions of this protein. Using sucrose gradient fractionation studies we have demonstrated that Scp160p in cytoplasmic lysates is predominantly associated with polyribosomes. Furthermore, we have found that Scp160p is released from polyribosomes by EDTA in the form of a large complex of 1300 kDa that is sensitive both to RNase and NaCl. Using affinity-chromatography to isolate these complexes, we have identified two protein components other than Scp160p: poly(A) binding protein, Pab1p, and Bfr1p. The presence of Pab1p confirms these complexes to be mRNPs. The presence of Bfr1p is intriguing because the null phenotype for this gene is essentially the same as that reported for scp160-null cells: increased cell size and aberrant DNA content. These results demonstrate that Scp160p associates with polyribosome-bound mRNP complexes in vivo, implicating a role for this protein in one or more levels of mRNA metabolism in yeast.  相似文献   

18.
Addition of the bioactive phospholipid lysophosphatidic acid (LPA) or a thrombin receptor-activating peptide (TRP) to serum-starved N1E-115 or NG108-15 neuronal cells causes rapid growth cone collapse, neurite retraction, and transient rounding of the cell body. These shape changes appear to be driven by receptor-mediated contraction of the cortical actomyosin system independent of classic second messengers. Treatment of the cells with Clostridium botulinum C3 exoenzyme, which ADP-ribosylates and thereby inactivates the Rho small GTP-binding protein, inhibits LPA- and TRP-induced force generation and subsequent shape changes. C3 also inhibits LPA-induced neurite retraction in PC12 cells. Biochemical analysis reveals that the ADP-ribosylated substrate is RhoA. Prolonged C3 treatment of cells maintained in 10% serum induces the phenotype of serum-starved cells, with initial cell flattening being followed by neurite outgrowth; such C3-differentiated cells fail to retract their neurites in response to agonists. We conclude that RhoA is essential for receptor-mediated force generation and ensuing neurite retraction in N1E-115 and PC12 cells, and that inactivation of RhoA by ADP-ribosylation abolishes actomyosin contractility and promotes neurite outgrowth.  相似文献   

19.
Neuronal differentiation implies morphological and biochemical changes to generate a specialized neuron. N2A neuroblastoma cells can be promoted to undergo differentiation associated to neurites outgrowth, a process linked to the arrest of cell division. Using N2A cells as a model, we investigated the detailed molecular aspects on the involvement of p27 in dibutyryl cAMP-induced neuronal differentiation. In the undifferentiated N2A phenotype, an unusually high level of accumulated p27 protein mass was evidenced. Data suggest that in proliferating cells, p27 could be sequestered by direct interaction with cyclin D1, thus preventing its inhibitory action on cell cycle Cdks. Studies also indicate that p27 is functionally active and that its loss of action on Cdks in proliferating cells is due to its strong association with cyclin D1. Therefore, when cell differentiation is triggered, the action of p27 on Cdks seems to depend on both p27 and cyclin D1 degradation during the early steps of differentiation followed by late events of re-synthesis of active p27. In this context, an overexpression of p27 after N2A transfection with a mouse p27 clone induces the outgrowth of neurites associated with a decrease in cyclin D1 expression. On the other hand, treatment of N2A undifferentiated cells with c-myc antisense oligonucleotides led to a decrease in p27 and cyclin D1 levels, similar events as those in early stages of cell differentiation. Studies suggest that blockage in c-myc expression triggers early events in neuronal differentiation. These studies are of the utmost importance to elucidate regulatory mechanisms of molecules that play a critical role in the transition from a proliferating phenotype to differentiated cells.  相似文献   

20.
Zhang Y  Ding J  Duan W  Fan W 《Bioelectromagnetics》2005,26(5):406-411
The influence of low frequency (50 Hz repetition rate) pulsed electromagnetic field (EMF) on PC12 cell neurite outgrowth in vitro was investigated in this study. We studied the percentage of neurite bearing cells, average length of neurites, and directivity of neurite outgrowth in PC12 cells cultured for 96 h in the presence of nerve growth factor (NGF). PC12 cells were exposed in one incubator to pulsed EMF at 1.36 mT (peak value) generated by a pair of Helmholtz coils, and the control samples were placed in another identical incubator. We found that the pulse duty cycle had significant effect on neurite outgrowth. Low (10%) pulse on-time significantly inhibited the percentage of neurite bearing cells, but at the same time increased the average length of neurites, while 100% on-time (DC) had exactly the opposite effects. Furthermore, we found that neurites were prone to extend along the direction of pulsed EMF with 10% pulse on-time. Our studies show that neurite outgrowth in PC12 cells is sensitive to the pulse duty and this sensitivity was associated with NGF concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号