首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The gemmule coat of Spongilla lacustris is histologically single-layered in the gemmules studied in this work. This single layer is comparable to the classically described internal chitinous membrane of Leveaux (1939). It has been found to contain collagen with an axial period in electron micrographs of about 120 Å and is bounded internally by a thin dense layer which is separate from the internal gemmular cells, and which may be chitinous.Gemmules of this sponge studied during March to June of 1973 respond to 230 mOsmolar solutions of small molecules by: 1. undergoing no change, in which case the substances are freely permeable to the gemmule coat and cells; 2. displaying shrinkage of the cell mass, in which case the substances are permeable to the coat but relatively impermeable to the cells; 3. displaying folding of the coat and cell mass shrinkage because the substances are relatively impermeable to both the coat and the cells; and 4. displaying complete collapse of the gemmule due to impermeability to the coat. The lipid solubility of a substance is directly related to its ability to penetrate the coat. Further, molecular size and charge are also of apparent importance.Substances which penetrate the coat and remain osmotically active (are not metabolized) inhibit hatching. Low concentrations of sodium chloride (23 mOsmolar) have been demonstrated to reversibly inhibit hatching. Higher concentrations cause irreversible damage at 20° C but have little effect at 4° C, indicating that damage is related to the metabolic level of the cells. Once hatching is stimulated by increased temperature the cells become progressively less sensitive to an increase in osmotically active substances.Inhibition of gemmule hatching can theoretically occur by: 1. an addition of solutes to the gemmular fluid, or 2. through an increase in concentration of intragemmular solutes by water withdrawal.Our results raise the question of whether the inhibition of hatching by gemmulostasine, reported by Rasmont (1965) and Rozenfeld (1970, 1971), is due to an osmotic effect rather than to a specific physiological one.Based upon the results reported here and on the work of Zeuthen (1939) and Schmidt (1970) we propose a tight coupling between the intragemmular osmotic pressure and the triggering of hatching (cell division). Any substance which increases intragemmular osmotic pressure to a large enough extent will inhibit hatching. Furthermore, it can be hypothesized that hatching is normally triggered by a decrease in osmotic pressure due to water movement into the gemmule, the movement of solutes out of the gemmule, or to a combination of these.This work was supported by a grant from the National Science Foundation (GB-37775) to T. L. S.  相似文献   

2.
Summary Different antibodies against actin, tubulin and cytokeratin were utilized to demonstrate the spatial organization of the cytoskeleton in basal epithelial cells of the freshwater sponge Spongilla lacustris. Accordingly, actin is localized in a cortical layer beneath the plasma membrane and in distinct fibers within the cytoplasmic matrix. Microtubules exhibit a different distributional pattern by radiating from a perinuclear sheath and terminating at, the cell periphery; in contrast, intermediate filaments are lacking. Cytoplasmic streaming activity was studied by in-vivo staining of mitochondria and endoplasmic reticulum by means of fluorescent dyes. Single-frame analysis of such specimens revealed a regular shuttle movement of mitochondria and other small particles between the cell nucleus and the plasma membrane, which can be stopped in a reversible manner with the use of colcemid or colchicine but not with cytochalasin D. The results point to the microtubular system as a candidate for cell organelle transport, whereas the actomyosin system rather serves for changes in cellular shape and motility.  相似文献   

3.
4.
5.
6.
Both the Grp170 and Hsp110 families represent relatively conserved and distinct sets of stress proteins, within a more diverse category that also includes the Hsp70s. All of these families are found in a wide variety of organisms from yeasts to humans. Although Hsp110s or Grp170s are not Hsp70s any more than Hsp70s are Hsp110s or Grp170s, it is still reasonable to refer to this combination of related families as the Hsp70 superfamily based on arguments discussed above and since no obvious prokaryotic Hsp110 or Grp170 has yet been identified. These proteins are related to their counterparts in the Hsp70/Grp78 family of eukaryotic stress proteins but are characterized by significantly larger molecular weights. The members of the Grp170 family are characterized by C-terminal ER retention sequences and are ER localized in yeasts and mammals. As a Grp, Grp170 is recognized to be coregulated with other major Grps by a well-known set of stress conditions, sometimes referred to as the unfolded protein response (Kozutsumi et al 1988; Nakaki et al 1989). The Hsp110 family members are localized in the nucleus and cytoplasm and, with other major Hsps, are also coregulated by a specific set of stress conditions, most notably including hyperthermic exposures. Hsp110 is sometimes called Hsp105, although it would be preferable to have a uniform term. The large Hsp70-like proteins are structurally similar to the Hsp70s but differ from them in important ways. In both the Grp170 and Hspl10 families, there is a long loop structure that is interposed between the peptide-binding ,-domain and the alpha-helical lid. In the Hsp110 family and Grp170, there are differing degrees of expansion in the alpha-helical domain and the addition of a C-terminal loop. This gives the appearance of much larger lid domains for Hsp110 and Grp170 compared with Hsp70. Both Hsp110 and Grp170 families have relatively conserved short sequences in the alpha-helical domain in the lid, which are conserved motifs in numerous proteins (we termed these motifs Magic and TedWylee as discussed earlier). The structural differences detailed in this review result in functional differences between the large (Grp170 and Hspl10) members of the Hsp70 superfamily, the most distinctive being an increased ability of these proteins to bind (hold) denatured polypeptides compared with Hsc70, perhaps related to the enlarged C-terminal helical domain. However, there is also a major difference between these large stress proteins; Hsp110 does not bind ATP in vitro, whereas Grp170 binds ATP avidly. The role of the Grp170 and Hsp110 stress proteins in cellular physiology is not well understood. Overexpression of Hsp110 in cultured mammalian cells increases thermal tolerance. Grp170 binds to secreted proteins in the ER and may be cooperatively involved in folding these proteins appropriately. These roles are similar to those of the Hsp70 family members, and, therefore, the question arises as to the differential roles played by the larger members of the superfamily. We have discussed evidence that the large members of the superfamily cooperate with members of the Hsp70 family, and these chaperones probably interact with a large number of chaperones and cochaperones in their functional activities. The fundamental point is that Hsp110 is found in conjunction with Hsp70 in the cytoplasm (and nucleus) and Grp170 is found in conjunction with78 in tha ER in every eucaryotic cell examined from yeast to humans. This would strongly argue that Hsp110 Grp170 exhibit functions in eucaryotes not effectively performed by Hsp70s or Grp78, respectively. Of interest in this respect is the observation that all Hsp110s loss of function or deletion mutants listed in the Drosophila deletion project database are lethal. The important task for the future is to determine the roles these conserved molecular chaperones play in normal and physiologically stressed cells.  相似文献   

7.
Here we report on the study of the effects of different antineoplastic agents, including cytarabine, 4-hydroperoxyifosfamide, the activated form of ifosfamide, vincristine, and paclitaxel, with regard to their capacity to modulate the amount of cytoplasmic and membrane-bound heat shock protein 70 (Hsp70). Hsp70 levels were measured in the myelogenous leukemic cell line K562, in the human colon carcinoma cell line CX2, and in peripheral blood lymphocytes (PBL) under physiological conditions (37 degrees C), and following non-lethal heat shock at 41.8 degrees C. A concentration of 1 microM and an incubation period of 2 h were determined as non-lethal, since none of the different antineoplastic agents induced necrosis or apoptosis in untreated or heat-shocked cells under these conditions. Our results show that tubulin-interacting agents, including vincristine and paclitaxel, but not DNA-interacting agents, including cytarabine and ifosfamide, selectively increase the amount of cytoplasmic Hsp70 in tumor and normal cells, as measured by semi-quantitative Western blot analysis. Mechanistically, a vincristine- and paclitaxel-induced tubulin assembly, as demonstrated by immunofluorescence microscopy, might be responsible for the elevated cytoplasmic Hsp70 levels. Interestingly, an increased membrane expression of Hsp70 following treatment with vincristine or paclitaxel was selectively observed on tumor cells, but not on normal cells.  相似文献   

8.
Two freshwater sponge species, Ephvdatia fluviatilis and Spongilla alba, were maintained in a continuous-flow laboratory culture system at several different water temperatures. Experimental results suggest that sponge growth rate is affected by water temperature and that it is affected differently in the two species. The results correlate well with field observations on species abundance at different water temperatures and thereby support the view that water temperature is a factor determining seasonality in these species.  相似文献   

9.
Two indigenous fish species, brown trout (Salmo trutta f. fario) and stone loach(Barbatula barbatula) were exposed tocomplex stressors (mixtures of environmentalpollutants) in laboratory and semi-fieldexperiments (aquaria connected to stream water)and in field studies. As a biomarker of effect,the level of the 70 kD heat shock protein(hsp70) was quantified in the liver of troutand loach. Laboratory experiments withdifferent pollutant mixtures did not mimic thehsp70-inducing or inhibiting potential of fieldconditions, whereas effects of long-termexposure in the bypass systems showed asignificant correlation with effects recordedin feral fish. Laboratory as well as semi-fieldstudies revealed the stress response to followan optimum curve, resulting in a maximum hsp70level under stress but rather low hsp70 levelswhen stressors (chemicals, high temperature)become too severe. Consequently, the hsp70level in the liver of both species was highlyseason-dependent with two peaks in late springand fall, and rather low hsp70 levels insummer, particularly in fish exposed to waterand sediment of the complexly polluted stream.In winter, the low hsp70 level of lab controlswas elevated by exposure to natural streamwater only, but elevation did not occur undercontrol conditions independent of apre-exposure to polluted streamwater two months earlier. Despite the highvariability of the hsp70 level within one yearand among five subsequent years, patternanalysis indicated the prevailing importance ofwater temperature on stress protein response.Temperature alone, however, could not explainthe regularly observed low summer levels inhsp70. Non-linear regression analysis on labcontrols revealed an optimum temperature(Topt) for the highest hsp70 level forboth fish species. In both investigated streams, thechemical influence led to a decrease in thehsp70 level only when Topt was surpassedby the ambient temperature at the same time.Otherwise, the chemical impact resulted in anelevated hsp70 level relative to the control.The study demonstrated the suitability of hsp70stress protein levels to integrate the responsedynamics of several different stressors and,therefore, to effectively function as abiomarker for the integrated effect of allenvironmental stressors acting on an organism(not only of chemical pollution). Rathercomplex kinetics of hsp70 elevation anddecrease should be taken into consideration.  相似文献   

10.
CX+/CX- and Colo+/Colo- tumor sublines with stable heat shock protein 70 (Hsp70) high and low membrane expression were generated by fluorescence activated cell sorting of the parental human colon (CX2) and pancreas (Colo357) carcinoma cell lines, using an Hsp70-specific antibody. Two-parameter flow cytometry revealed that Hsp70 colocalizes with Bag-4, also termed silencer of death domain, not only in the cytosol but also on the plasma membrane. After nonlethal gamma-irradiation, the percentage of membrane-positive cells and the protein density of Hsp70 and Bag-4 were found to be strongly upregulated in carcinoma sublines with initially low expression levels (CX-, Colo-). Membrane expression of Hsp70 was also elevated in Bag-4 overexpressing HeLa cervix carcinoma cells when compared to neo-transfected cells. In response to gamma-irradiation, neo-transfected HeLa cells behaved like Hsp70/Bag-4 low-expressing CX- and Colo-, and Bag-4-transfected HeLa cells like Hsp70/Bag-4 high-expressing carcinoma sublines CX+ and Colo+. Immunoprecipitation studies further confirmed colocalization of Hsp70 and Bag-4 but also point to an association of Hsp70 and Hsp40 on the plasma membrane of CX+ and Colo+ cells; on CX- and Colo- tumor sublines, Hsp40 was detectable in the absence of Hsp70 and Bag-4. Other co-chaperones including Hsp60 and Hsp90 were neither found on the cell surface of CX+/CX-, Colo+/Colo- nor on HeLa neo-/HeLa Bag-4-transfected tumor cells. Functionally, Hsp70/Bag-4 and Hsp70/Hsp40 membrane-positive tumor cells appeared to be better protected against radiation-induced effects, including G2/M arrest and growth inhibition, on the one hand. On the other hand, membrane-bound Hsp70, but neither Bag-4 nor Hsp40, served as a recognition site for the cytolytic attack mediated by natural killer cells.  相似文献   

11.
Organisms cope physiologically with extreme temperature by producing heat shock proteins (HSPs). Expression of Hsp70 enhances thermal tolerance and represents a key strategy for ectotherms to tolerate elevated temperature in nature. Synthesis of these proteins, together with other physiological responses to elevated temperatures, increases energy demands. A positive association between multiple and single locus heterozygosity (MLH and SLH, respectively) and individual fitness has been widely demonstrated. In molluscs, MLH can decrease routine metabolic rates and improve energetic status. Juvenile Concholepas concholepas live in the intertidal zone and are constantly exposed to temperature fluctuations. Thus, these young individuals are exposed both to thermal risks and the large metabolic costs required to cope with thermal stress. We evaluated the effects of allozyme MLH and SLH on basal (control animals) and induced (stressed animals) levels of the Hsp70 in juveniles C. concholepas. Juveniles (n = 400) were acclimated at 16 °C for 2 weeks; then 100 animals were exposed to 24 °C (stress) and 100 were kept at 16 °C (control) for 2 and 7 days. The variability of 20 loci was analyzed by starch gel electrophoresis. For SLH effects we used 7 polymorphic loci. We quantified expression of Hsp70 by Western blot analyses. Hsp70 expression increased markedly (~ 90%) with temperature. We found a positive association between MLH and basal and induced levels of Hsp70 in the 2-day exposure experiment. Regardless of temperature, Hsp70 levels increased with MLH (r2 = 0.7 and 0.9, for basal and induced levels, respectively) reaching maximal levels in juveniles with intermediate and high MLH levels (2 and 3 loci), and decreasing slightly (but not significantly) in juveniles with highest MLH (≥ 4 heterozygous loci). However, after 7 days of exposure to thermal stress, less heterozygous juveniles attained the same levels of Hsp70 than more heterozygous juveniles. Given the faster increment of Hsp70 in C. concholepas juveniles with intermediate-high levels of MLH, these individuals could be less affected by thermal stress in the intertidal zone. We found an association between specific loci genotype and higher Hsp70 levels (basal or induced). In comparison to homozygous juveniles, heterozygous juveniles for several loci showed higher Hsp70. However, these associations were not for the same loci in juveniles exposed to high temperature for 2 and 7 days. This suggests genotypic variation at some allozyme loci could be more important in the period of initial response to high temperature and others can be more important in the response to the chronic temperature stress.  相似文献   

12.
The population biology of Camallanus lacustris (Zoega) and the status of the eel, Anguilla anguilla (Linnaeus), as its definitive host have been studied in a small Devon lake. No clear seasonal pattern in prevalence and abundance was observed, and recruitment of the new generation may occur in all seasons. However, reproduction exhibits some seasonality as adult nematodes were the commonest stage in the parasite population from early summer onwards and production of first-stage larvae appeared to occur primarily during this period. These larvae were viable, and shown experimentally to be infective to copepods. The occurrence of the nematode and its development to full maturity in eels, the absence of its typical definitive host ( Perca fluviatilis Linnaeus) from the lake and the absence of the nematode from other species of fish in the lake indicate that eels serve as the only, true definitive host of the nematode in this locality. It is suggested that account must be taken of this alternative host when the population of C. lacustris is investigated in the future.  相似文献   

13.
The properties of molecular chaperones in protein-assisted refolding were examined in vitro using recombinant human cytosolic chaperones hsp90, hsc70, hsp70 and hdj-1, and unfolded beta-galactosidase as the substrate. In the presence of hsp70 (hsc70), hdj-1 and either ATP or ADP, denatured beta-galactosidase refolds and forms enzymatically active tetramers. Interactions between hsp90 and non-native beta-galactosidase neither lead to refolding nor stimulate hsp70- and hdj-1-dependent refolding. However, hsp90 in the absence of nucleotide can maintain the non-native substrate in a 'folding-competent' state which, upon addition of hsp70, hdj-1 and nucleotide, leads to refolding. The refolding activity of hsp70 and hdj-1 is effective across a broad range of temperatures from 22 degrees C to 41 degrees C, yet at extremely low (4 degrees C) or high (>41 degrees C) temperatures refolding activity is reversibly inhibited. These results reveal two distinct features of chaperone activity in which a non-native substrate can be either maintained in a stable folding-competent state or refolded directly to the native state; first, that the refolding activity itself is temperature sensitive and second, that hsp90, hsp70 (hsc70) and hdj-1 each have distinct roles in these processes.  相似文献   

14.
15.
Using mRNA isolated from Neurospora crassa mycelium, grown for 14 h at normal growth temperature of 28 degrees C, and heat shocked for 1 h at 48 degrees C, a cDNA library was prepared in the expression vector lambda gt11. Following immunoscreening of this library with a polyclonal antiserum raised against a 80-kilodalton heat-shock protein (HSP80), cDNA clones containing 1.1- and 1.4-kilobase inserts were selected. Analysis of the partial nucleotide sequence and the deduced amino acid sequence of the cDNA clones revealed a remarkable extent of homology with other eukaryotic stress-90 family proteins; 85% identity of the amino acid sequence with that of yeast HSP90(82) was seen. The C-terminal end of the sequence contained the MEEVD motif, characteristic of eukaryotic stress proteins with a predominantly cytosolic localization. The gene for N. crassa HSP80 was mapped to the right arm of linkage group V, using restriction fragment length polymorphism mapping. Its expression during heat shock and recovery was monitored by probing Northern blots of RNA isolated from mycelium grown under various stress conditions.  相似文献   

16.
The Mediterranean bath sponge Spongia officinalis is an iconic species with high socio‐economic value and precarious future owing to unregulated harvesting, mortality incidents and lack of established knowledge regarding its ecology. This study aims to assess genetic diversity and population structure of the species at different geographical scales throughout its distribution. For this purpose, 11 locations in the Eastern Mediterranean (Aegean Sea), Western Mediterranean (Provence coast) and the Strait of Gibraltar were sampled; specimens were analysed using partial mitochondrial cytochrome oxidase subunit I (COI) sequences, along with a set of eight microsatellite loci. According to our results (i) no genetic differentiation exists among the acknowledged Mediterranean morphotypes, and hence, S. officinalis can be viewed as a single, morphologically variable species; (ii) a notable divergence was recorded in the Gibraltar region, indicating the possible existence of a cryptic species; (iii) restriction to gene flow was evidenced between the Aegean Sea and Provence giving two well‐defined regional clusters, thus suggesting the existence of a phylogeographic break between the two systems; (iv) low levels of genetic structure, not correlated to geographical distance, were observed inside geographical sectors, implying mechanisms (natural or anthropogenic) that enhance dispersal and gene flow have promoted population connectivity; (v) the genetic diversity of S. officinalis is maintained high in most studied locations despite pressure from harvesting and the influence of devastating epidemics. These findings provide a basis towards the effective conservation and management of the species.  相似文献   

17.
Rats exposed to high +Gz forces in a small animal centrifuge (SAC) exhibit loss of neuronal function (isoelectric EEG), termed G-induced loss of consciousness (G-LOC). This phenomenon is presumably due to a reduction in cerebral blood flow (CBF) or ischemia. Ischemia induces various metabolic and physiologic changes including expression of immediate early genes (IEGs) in the brain. Expression of IEGs have been suggested to be reliable markers for neuronal response to external stimuli or stress. In the present study expression of IEGs c-fos, c-jun and stress response gene HSP70 were measured in the brains of rats subjected to six 30 s exposures of +22.5Gz in a small animal centrifuge. The level of c-fos, HSP70 and beta-actin mRNA were measured by both Northern blot and RT-PCR. Expression of c-jun was measured only by RT-PCR. Expression of c-fos and c-jun was significantly stimulated at 0.5, 15, 30 and 60 min post-centrifugation. The level of HSP70 mRNA was significantly higher only at 60 and 180 min post-centrifugation. Measurement of metabolities showed a significant increase in lactate and a decrease in Cr-P level at 30 s and 15 min post-centrifugation, respectively. Lactate, but not Cr-P and ATP levels were restored to control levels by 60 min post-centrifugation. It is concluded that the transient expression of c-fos, c-jun and HSP70 mRNA is stimulated by repeated ischemic/reperfusion episodes induced by high acceleration stress.  相似文献   

18.
Exercise increases the 70-kDa heat shock protein (Hsp70) in the myocardium, and this exercise-induced increase is associated with significantly improved cardiac recovery following insult. However, while heat shock has been shown to elevate Hsp70 primarily in the cardiac vasculature of the myocardium, the localization following exercise is unknown. Male Sprague-Dawley rats performed continuous treadmill running at 30 m/min for 60 min (2% incline) on either 1 or 5 consecutive days. At 30 min and 24 h following exercise, hearts were extirpated, and the left ventricle was isolated, OCT-cork mounted, and sectioned for immunofluorescent analysis. Whereas immunofluorescent analysis revealed little to no Hsp70 in control hearts and 30 min postexercise, the accumulation of Hsp70 24 h after a single exercise bout or 5 days of training was predominantly located in large blood vessels and, in particular, colocalized with a marker of smooth muscle. Furthermore, higher core temperatures attained during exercise led to more abundant accumulation in smaller vessels and the endothelium. It is concluded that the accumulation of myocardial Hsp70 following acute exercise predominantly occurs in a cell type-specific manner, such that changes in the cardiac vasculature account for much of the increase. This accumulation appears first in the smooth muscle of larger vessels and then increases in smaller vessels and the endothelium, as core temperature attained during exercise increases. This finding supports the observations after heat shock and further suggests that the vasculature is a primary target in exercise-induced cardioprotection.  相似文献   

19.
Theory predicts that geographic variation in traits and genes associated with climatic adaptation may be initially driven by the correlated evolution of thermal preference and thermal sensitivity. This assumes that an organism's preferred body temperature corresponds with the thermal optimum in which performance is maximized; hence, shifts in thermal preferences affect the subsequent evolution of thermal-related traits. Drosophila subobscura evolved worldwide latitudinal clines in several traits including chromosome inversion frequencies, with some polymorphic inversions being apparently associated with thermal preference and thermal tolerance. Here we show that flies carrying the warm-climate chromosome arrangement O(3+4) have higher basal protein levels of Hsp70 than their cold-climate O(st) counterparts, but this difference disappears after heat hardening. O(3+4) carriers are also more heat tolerant, although it is difficult to conclude from our results that this is causally linked to their higher basal levels of Hsp70. The observed patterns are consistent with the thermal co-adaptation hypothesis and suggest that the interplay between behaviour and physiology underlies latitudinal and seasonal shifts in inversion frequencies.  相似文献   

20.
Cell volume, growth and production rates of two common planktonicfreshwater ciliates, the prostomatid Coleps spetai and the oligotrichRimostrombidium lacustris, were investigated in clonal laboratorycultures. The clones were isolated from oligo-mesotrophic alpineLake Mondsee, Austria, during summer and kept in culture withthe small cryptophyte Cryptomonas sp. as food. All parametersinvestigated revealed significant clonal differences among bothspecies. The extent of the clonal differences was comparableto differences observed earlier between similar planktonic ciliatespecies. The ecological relevance of varying clonal growth rateswas evaluated using a simple numerical model. The model outcomesuggests that differences in growth rates by 10% may significantlyalter the clonal composition in the course of a ciliate peakin temperate lakes. The experimental results and the model outcomeare discussed in the context of the functional diversity offreshwater ciliates. It is concluded that the morphospeciesconcept, which is the most widely used concept by both ciliatetaxonomists and ecologists, may severely underestimate the ecologicalplasticity and the functional diversity of aquatic ciliates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号