首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of angiotensin II (AII) on systemic and regional haemodynamics was studied in 18 control and 18 cirrhotic, non-ascitic conscious rats (CCl4/phenobarbital model). Cirrhotic rats were found to retain sodium and to have normal plasma renin and plasma aldosterone concentrations when compared with control animals. Cirrhotic rats showed an enhanced cardiac output (34.4 +/- 0.5 vs. 27.5 +/- 2.0 ml/min in controls) and decreased peripheral resistances (2.96 +/- 0.25 vs. 3.95 +/- 0.31 mm Hg/min/100 g/ml in controls) under basal conditions. When AII was administered cardiac output decreased by 10.7 +/- 1.2% in cirrhotic rats, whereas it increased in control animals (11.2 +/- 2%, p less than 0.005). The AII-induced increase in arterial pressure was lower in cirrhotic than in control rats. The renal blood supply was particularly impaired by AII in cirrhotics, with a maintained flow to other organs (muscle, testes). It is concluded that the response to AII is disturbed in rats with hepatic cirrhosis even in a stage without ascites and with plasma renin and aldosterone concentrations similar to those of control animals.  相似文献   

2.
Vascular reactivity to norepinephrine in rats with cirrhosis of the liver   总被引:2,自引:0,他引:2  
Vascular reactivity to norepinephrine was studied in rats with early cirrhosis of the liver and in control rats. Cirrhotic rats showed water and sodium retention but not ascites. Studies were performed in whole animals, isolated hindquarters, and isolated femoral arteries. Plasma catecholamine levels were measured by radioenzymoassay and their urinary metabolites by gas-liquid chromatography. Plasma norepinephrine was 331 +/- 49 pg/mL (mean +/- SEM) in control rats and 371 +/- 66 pg/mL in cirrhotic animals (p greater than 0.05). No differences in plasma epinephrine or dopamine were observed. Urinary excretion of catecholamine metabolites was increased in cirrhotic rats. These data suggest a moderate activation of the sympathetic nervous system. In basal conditions, cirrhotic rats showed lower mean arterial pressure than controls (101 +/- 4 vs. 116 +/- 4 mmHg (1 mmHg = 133.3 Pa); p less than 0.01). However, perfused hindlimb resistance was similar in cirrhotic and in control animals. In the whole animal and in the perfused hindquarter, the contractile response to norepinephrine was similar for control and for cirrhotic rats. The contractile response to norepinephrine exhibited by isolated femoral arteries was similar in those from cirrhotic and control rats. This indicates that the peripheral vascular bed has a well-maintained ability to constrict in response to norepinephrine, suggesting that circulatory abnormalities in early experimental cirrhosis are not caused by refractoriness of the vascular smooth muscle to norepinephrine.  相似文献   

3.
Effect of aldosterone on vascular angiotensin II receptors in the rat   总被引:3,自引:0,他引:3  
The effect of aldosterone on the density and affinity of binding sites for 125I-labelled angiotensin II was investigated in a particulate fraction prepared from the rat mesenteric arteriolar arcades. The infusion of aldosterone 6.6 micrograms/h intraperitoneally via Alzet osmotic minipumps for 6 d produced an increase in the density of binding sites for 125I-labelled angiotensin II without change in affinity. After sodium depletion, mesenteric artery angiotensin II receptors were down-regulated as expected. An increase in the number of binding sites could be found when aldosterone was infused into sodium-depleted rats with no change in the elevated plasma renin activity. The intraperitoneal infusion of angiotensin II (200 ng X kg-1 X min-1 for 6 d) simultaneously with aldosterone resulted in down-regulation of vascular angiotensin II receptors, whereas after intravenous angiotensin II infusion (at 60 ng X kg-1 X min-1) the density of angiotensin II binding sites rose with aldosterone infusion. Plasma renin activity (PRA) was reduced and plasma angiotensin II increased in a dose-dependent fashion after angiotensin II infusion. An aldosterone concentration of 3 ng/mL for 18 h produced an increase in the number of angiotensin II binding sites in rat mesenteric artery smooth muscle cells in culture. We conclude that increased plasma aldosterone may result in up-regulation of vascular angiotensin II receptors independently of changes in plasma renin activity, and may in certain physiological states effectively antagonize the down-regulating action of angiotensin II.  相似文献   

4.
The present studies were performed to quantify circulating components of the renin-angiotensin-aldosterone axis and to determine the functional importance of this system during alterations in sodium intake in conscious mice. Increasing sodium intake from approximately 200 to 1,000 microeq/day significantly decreased plasma renin concentration from 472 +/- 96 to 304 +/- 83 ng ANG I. ml(-1). h(-1) (n = 5) but did not alter plasma renin activity from the low-sodium level of 7.7 +/- 1.1 ng ANG I. ml(-1). h(-1). Despite the elevated plasma renin concentration, plasma ANG II in mice on low-sodium level averaged 14 +/- 3 pg/ml and was significantly suppressed to 6 +/- 1 pg/ml by high-sodium intake (n = 7). Consistent with the modulation of ANG II, plasma aldosterone significantly decreased from 41 +/- 8 to 8 +/- 3 ng/dl when sodium intake was elevated (n = 6). In a final set of experiments, the continuous infusion of ANG II (20 ng. kg(-1). min(-1)) led to a mild salt-sensitive increase in mean arterial pressure from 108 +/- 2 to 131 +/- 2 mmHg as sodium intake was varied from low to high (n = 7). In vehicle-infused mice, mean arterial pressure was unaltered from 109 +/- 2 mmHg when sodium intake was increased (n = 6). These studies indicate that the physiological suppression of circulating ANG II may be required to maintain a constancy of arterial pressure during alterations in sodium intake in normal mice.  相似文献   

5.
We investigated the contribution of tetrodotoxin (TTX)-resistant sodium channels to the augmented exercise pressor reflex observed in decerebrated rats with femoral artery ligation. The pressor responses to static contraction, to tendon stretch, and to electrical stimulation of the tibial nerve were compared before and after blocking TTX-sensitive sodium channels on the L3-L6 dorsal roots of rats whose hindlimbs were freely perfused and rats whose femoral arteries were ligated 72 h before the start of the experiment. In the freely perfused group (n=9), pressor (Δ22±4 mmHg) and cardioaccelerator (Δ32±6 beats/min) responses to contraction were attenuated by 1 μM TTX (Δ4±1 mmHg, P<0.05 and Δ17±4 beats/min, P<0.05, respectively). In the 72 h ligated group (n=9), the augmented pressor response to contraction (32±4 mmHg) was also attenuated by 1 μM TTX (Δ8±2 mmHg, P<0.05). The cardioaccelerator response to contraction was not significantly attenuated in these rats. In addition, TTX suppressed the pressor response to tendon stretch in both groups of rats. Electrical stimulation of the tibial nerve evoked similar pressor responses between the two groups (freely perfused: Δ74±9 mmHg and 72 h ligated: Δ78±5 mmHg). TTX attenuated the pressor response to the tibial nerve stimulation by about one-half in both groups. Application of the TTX-resistant sodium channel blocker A-803467 (1 μM) with TTX (1 μM) did not block the pressor response to tibial nerve stimulation to any greater extent than did application of TTX (1 μM) alone. Although the contribution of TTX-resistant sodium channels to the augmented exercise pressor reflex may be slightly increased in rats with chronic femoral artery ligation, TTX-resistant sodium channels on dorsal roots do not play a major role in the augmented exercise pressor reflex.  相似文献   

6.
T Kono  A Taniguchi  H Imura  F Oseko  M C Khosla 《Life sciences》1986,38(16):1515-1519
Biological activities of angiotensin II-(1-6)-hexapeptide [ANG-(1-6)] and angiotensin II-(1-7)-heptapeptide [ANG-(1-7)] were studied in 5 normal men and 3 patients with Bartter's syndrome. The angiotensins were infused iv in each subject from 0900 h to 0915 h at a rate of 21 nmol(16.8 micrograms)/kg X min and 18 nmol(16.2 micrograms)/kg X min for ANG-(1-6) and ANG-(1-7), respectively. In the normal men a significant rise in blood pressure was observed by the infusions of both peptides. Average increments of blood pressure for ANG-(1-6) were 17/14, 23/18, 22/15 and 17/14 mmHg at 2, 5, 10 and 15 min, respectively, and those for ANG-(1-7) were 19/15, 20/17, 13/13 and 15/13 mmHg at 2, 5, 10 and 15 min, respectively. The duration of pressor actions after the cessation of the infusions (T) was 10 min for ANG-(1-6) and 20 (for systolic) and 30 (for diastolic) min for ANG-(1-7). T for ANG-(1-6) was shorter than and T for ANG-(1-7) was similar to T for Ile5-angiotensin II (Ile5-ANG II) reported previously in 7 normal men 5 of whom were the same as examined in the present study. On the other hand, both peptides did not cause a rise in blood pressure in the 3 patients with Bartter's syndrome. Both angiotensins did not cause an increase in plasma aldosterone but did cause a significant decrease in plasma renin activity both in the normal men and in the patients. From these results and our previous observations of inactivity of angiotensin II-(5-8)-tetrapeptide, a pressor action of angiotensin II-(4-8)-pentapeptide, and pressor, renin-suppressing and steroidogenic actions of angiotensin II-(3-8)-hexapeptide in normal men, it is thought that ANG-(1-6) and ANG-(1-7) are bound to angiotensin II (ANG II) receptor in the peripheral arterioles and show pressor actions (less than 0.024% and less than 0.028% of Ile5-ANG II, respectively) and suppress renin mainly via short loop feedback and that the shortest biologically active ANG II molecules for pressor, renin-suppressing and steroidogenic actions are Tyr-Ile-His, Val-Tyr-Ile-His and Val-Tyr-Ile-His-Pro-Phe, respectively, in man. It is also evident that ANG-(1-6) is more rapidly metabolized than ANG-(1-7) or Ile5-ANG II in man.  相似文献   

7.
Plasma volume expansion was performed in 16 cirrhotic patients with ascites, 8 with avid sodium retention (sodium retainers) and 8 with normal sodium balance (sodium excretors). No natriuretic response was observed in sodium retainers (daily UNa = 7.1 +/- 1.5 mEq before expansion and 20.8 +/- 7.8 after expansion; p = not significant). After expansion plasma renin activity and plasma aldosterone showed a fall in both groups, whereas urinary kallikrein excretion decreased significantly in sodium retainers (27.1 +/- 9.7 before expansion and 7.8 +/- 6.4 after expansion; p less than 0.05). Baseline PGE were higher than normal in sodium retainers (997.0 +/- 134.3; p less than 0.02 vs. controls) and increased after expansion. Plasma octopamine was always within normal range. These results suggest that: a) reduction of effective plasma volume is not the main factor involved in sodium retention; b) the renin-angiotensin-aldosterone system has only a permissive role; c) prostaglandin system is activated and could have a protective role in maintaining renal function in cirrhotic patients.  相似文献   

8.
O Mohara  Y Masuyama 《Life sciences》1991,49(13):939-945
We examined the possible involvement of angiotensin II in the modulation of circulating norepinephrine produced by acute sodium restriction in essential hypertensive patients (n = 18). Sodium restriction potentiated plasma level of norepinephrine in parallel with an increased plasma renin activity (r = 0.81, F = 31.2, p less than 0.05 given by the percent changes). An intravenous infusion of sarcosine-1, isoleucine-8 angiotensin II produced a significant fall in mean arterial pressure (-6 +/- 2 mmHg, p less than 0.05) in patients on sodium restriction but not before sodium restriction, while the infusion of the antagonist produced a greater decrease (p less than 0.05) in plasma norepinephrine with sodium restriction (-158 +/- 23 pg/ml, p less than 0.05) when compared to that obtained before sodium restriction (-91 +/- 11 pg/ml, p less than 0.05). A single oral administration of an angiotensin I converting enzyme inhibitor, captopril caused a greater fall (p less than 0.01) in mean arterial pressure after sodium restriction (-32 +/- 3 mmHg, p less than 0.05) compared to that given before (-21 +/- 3 mmHg, p less than 0.05). However, sodium restriction did not affect the magnitude of reflex increase in plasma norepinephrine to hypotension evoked by captopril (from +88 +/- 16 pg/ml to +87 +/- 17 pg/ml; p greater than 0.05). It can be interpreted that acute sodium depletion results in a substantial contribution of angiotensin II to the expression of hyperadrenergic activity.  相似文献   

9.
We studied the effect of a converting enzyme inhibitor (CEI), Captopril SQ 14,225 50 mg p.o. in eight supine normal subjects under a high sodium (150 mEq/d) and low sodium (25 mEq/d) diet. On high sodium, plasma renin (PRA) and aldosterone were basal and Saralasin did not lower mean blood pressure. However, CEI induced an 11.4 +/- 3.2 mm fall in blood pressure (p less than 0.02) and either indomethacin 50 mg or ibuprofen 800 mg (PI), when given simultaneously on another day abolished the blood pressure response (2.5 +/- 0.9 mm Hg, p greater than 0.5). In contrast, on a low salt diet where renin was increased, CEI induced a drop in blood pressure which was not significantly altered by PI (12.8 +/- 1.1 vs. 10.0 +/- 3.1 mm Hg, p greater than 0.5). CEI increased plasma renin on both diets (1.7 +/- 0.5 to 3.5 +/- 0.8 and 2.8 +/- 0.6 to 12.5 +/- 3.1 ng/ml/hr respectively both p less than 0.05). Aldosterone did not change (high Na+) or fell (low Na+). Inhibition of Prostaglandin synthesis did not significantly block the renin rise from CEI suggesting that the direct angiotensin II negative feedback is relatively independent of acute prostaglandin release. Our studies suggest that CEI has a dual hypotensive action. In a low renin state, the hypotensive action appears to be mediated through vascular prostaglandins.  相似文献   

10.
The effect on renal function of replacing maternal drinking water with a solution containing 0.17 M NaCl was studied in 9 ewes and their chronically catheterised fetuses over a period of 9 days. Maternal sodium intake increased from control values of 2.19 +/- 0.09 mmol/h to 44.3 +/- 7.4 (P less than 0.001) and 46.3 +/- 6.5 mmol/h (P less than 0.001) on the 3rd and 6th days of salt ingestion. Maternal plasma sodium levels were not affected, but the urinary sodium/potassium ratio increased from 0.15 +/- 0.07 to 2.26 +/- 0.34 (P less than 0.001) after 6 days and plasma renin activity fell from 2.87 +/- 0.76 to 1.00 +/- 0.25 ng/ml per h (P less than 0.05). The changes in maternal sodium intake had no effect on fetal plasma sodium levels nor on fetal plasma renin activity. Sodium excretion and fetal urinary sodium/potassium ratio did not change. However, 3 days after the ewes returned to drinking water fetal plasma renin activity was significantly higher than it was prior to maternal ingestion of 0.17 M NaCl. Fetal plasma renin activity was inversely related to fetal plasma sodium levels (P less than 0.01). The results show that changes in maternal sodium intake had no long term effect on fetal plasma sodium levels nor on fetal renal sodium excretion. The fall in maternal plasma renin activity in the absence of any change in the fetal renin activity, indicates that the fetal renin angiotensin system is controlled by factors other than those influencing the maternal renin angiotensin system. Since fetal urinary sodium/potassium ratios remained unchanged it would suggest that fetal sodium excretion is not influenced by maternal levels of aldosterone.  相似文献   

11.
To evaluate the effect of isotonic exercise on the response to angiotensin II, angiotensin II in saline solution was infused intravenously (7.5 ng X kg-1 X min-1) in seven normal sodium replete male volunteers before, during and after a graded uninterrupted exercise test on the bicycle ergometer until exhaustion. The subjects performed a similar exercise test on another day under randomized conditions when saline solution only was infused. At rest in recumbency angiotensin II infusion increased plasma angiotensin II from 17 to 162 pg X ml-1 (P less than 0.001). When the tests with and without angiotensin II are compared, the difference in plasma angiotensin II throughout the experiment ranged from 86 to 145 pg X ml-1. The difference in mean intra-arterial pressure averaged 17 mmHg at recumbent rest, 12 mmHg in the sitting position, 9 mmHg at 10% of peak work rate and declined progressively throughout the exercise test to become non-significant at the higher levels of activity. Plasma renin activity rose with increasing levels of activity but angiotensin II significantly reduced the increase. Plasma aldosterone, only measured at rest and at peak exercise, was higher during angiotensin II infusion; the difference in plasma aldosterone was significant at rest, but not at peak exercise. In conclusion, the exercise-induced elevation of angiotensin II does not appear to be an important factor in the increase of blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The effects of angiotensin II and angiotensin III on mean arterial pressure, serum aldosterone, and serum corticosterone were studied in normal and sodium depleted, conscious rats. In normal rats, angiotensin III was 76% (p > 0.10) as potent as angiotensin II on aldosterone release but only 31% (p < 0.001) as potent on blood pressure. Following sodium depletion, the pressor responses to both angiotensin II and III were reduced (p < 0.001) (65% and 86% respectively). In addition, the release of aldosterone by both peptides was potentiated by sodium depletion as indicated by an increase in the slope of the dose-response curves. However, in the sodium depleted rats, angiotensin III was only 20% (p < 0.001) as potent as angiotensin II in stimulating aldosterone release. Small changes in serum corticosterone were noted following infusions of both peptides, but unlike the case with aldosterone, sodium depletion did not alter the serum corticosterone responses to the peptides. These invivo experiments taken with invitro studies support the interpretation that angiotensin III could function to control aldosterone release in altered sodium states either as a circulating hormone if present in concentrations far in excess of those of angiotensin II or as a local hormone formed in the adrenal from angiotensin II.  相似文献   

14.
Experiments were performed to determine if glucocorticoids potentiate central hypertensive actions of ANG II. Male Sprague-Dawley rats were treated for 3 days to 3 wk with corticosterone (Cort). Experiments were performed in conscious rats that had previously been instrumented with arterial and venous catheters and an intracerebroventricular guide cannula in a lateral ventricle. Baseline arterial pressure (AP) was greater in Cort-treated rats than in control rats (119 +/- 2 vs. 107 +/- 1 mmHg, P < 0.01). Microinjection of ANG II intracerebroventricularly produced a significantly larger increase in AP in Cort-treated rats than in control rats. For example, at 30 ng ANG II, AP increased by 23 +/- 1 and 16 +/- 2 mmHg in Cort-treated and control rats, respectively (P < 0.01). Microinjection of an angiotensin type 1 receptor antagonist significantly decreased AP (-6 +/- 2 mmHg) and heart rate (-26 +/- 7 beats/min) in Cort-treated but not control rats. Increases in AP produced by intravenous administration of ANG II were not different between control and Cort-treated rats. Intravenous injections of ANG II antagonist had no significant effects on mean AP or heart rate in control or Cort-treated rats. Therefore, a sustained increase in plasma Cort augments the central pressor effects of ANG II without altering the pressor response to peripheral administration of the hormone.  相似文献   

15.
The effects of synthetic atrial natriuretic factor (ANF) on the renin-aldosterone axis were studied in fifteen 4-7 day-old male milk-fed calves divided into 3 groups of 5 animals each. Synthetic ANF intravenous (i.v.) administration (1.6 micrograms/kg body wt over 30 min) induced a transient significant fall in plasma renin activity (from 2.5 +/- 0.3 to 1.7 +/- 0.3 ng angiotensin l/ml/h; P less than 0.05) but failed to reduce basal plasma aldosterone levels in the first group of animals. Administration (i.v.) of angiotensin II (AII) (0.8 micrograms/kg body wt for 75 min) was accompanied by a progressive fall in plasma renin activity (from 2.2 +/- 0.3 to 0.8 +/- 0.1 ng angiotensin l/ml/h; P less than 0.01) and by an increase in plasma aldosterone levels (from 55 +/- 3 to 86 +/- 5 pg/ml; P less than 0.01) both in the second and the third groups; addition of ANF to AII infusion (AII: 0.5 mu/kg body wt for 45 min; AII: 0.3 micrograms/kg body wt and ANF 1.6 micrograms/kg body wt during 30 min) in the third group did not modify plasma renin activity or AII-stimulated plasma aldosterone levels when compared to the AII-treated group. These findings show that in the newborn calf ANF is able to reduce plasma renin activity but fails to affect basal and AII-stimulated plasma aldosterone levels, suggesting that the zona glomerulosa of the newborn adrenal cortex is insensitive to a diuretic, natriuretic and hypotensive dose of the atrial peptide.  相似文献   

16.
Adrenomedullin and the renin-angiotensin-aldosterone system   总被引:1,自引:0,他引:1  
Despite its positive inotropic effects and its propensity to stimulate the renin system, adrenomedullin (AM) is hypotensive as a result of dramatic reductions in peripheral resistance. Furthermore, it does not appear to increase aldosterone secretion in spite of often vigorous activation of circulating renin. Hence, we postulate that AM may act as a functional antagonist to angiotensin II both in the vasculature and the adrenal glomerulosa. In the series of studies performed in sheep and human (normal and circulatory disorders) reviewed here, we report significant hemodynamic and hormonal actions of AM. These actions include consistent reduction of arterial pressure associated with rises in cardiac output and hence a dramatic reduction in calculated total peripheral resistance (CTPR). AM also consistently attenuates the pressor effects of angiotensin II (but not norepinephrine). Furthermore, AM consistently increases plasma renin activity (PRA) and induces either a reduction in plasma aldosterone, dissociation between aldosterone/PRA ratio, or attenuation of angiotensin II-induced aldosterone secretion. Thus, these results clearly point to a role for AM in pressure and volume homeostasis acting, at least in part, by interaction with the renin-angiotensin-aldosterone system (RAAS).  相似文献   

17.
Angiotensins different from ANG II exhibit biological activities, possibly mediated via receptors other than ANG II receptors. We studied the effects of 3-h infusions of ANG III, ANG-(1-7), and ANG IV in doses equimolar to physiological amounts of ANG II (3 pmol. kg-1. min-1), in six men on low-sodium diet (30 mmol/day). The subjects were acutely pretreated with canrenoate and captopril to inhibit aldosterone actions and ANG II synthesis, respectively. ANG II infusion increased plasma angiotensin immunoreactivity to 53 +/- 6 pg/ml (+490%), plasma aldosterone to 342 +/- 38 pg/ml (+109%), and blood pressure by 27%. Glomerular filtration rate decreased by 16%. Concomitantly, clearance of endogenous lithium fell by 66%, and fractional proximal reabsorption of sodium increased from 77 to 92%; absolute proximal reabsorption rate of sodium remained constant. ANG II decreased sodium excretion by 70%, potassium excretion by 50%, and urine flow by 80%, whereas urine osmolality increased. ANG III also increased plasma aldosterone markedly (+45%), however, without measurable changes in angiotensin immunoreactivity, glomerular filtration rate, or renal excretion rates. During vehicle infusion, plasma renin activity decreased markedly ( approximately 700 to approximately 200 mIU/l); only ANG II enhanced this decrease. ANG-(1-7) and ANG IV did not change any of the measured variables persistently. It is concluded that 1) ANG III and ANG IV are cleared much faster from plasma than ANG II, 2) ANG II causes hypofiltration, urinary concentration, and sodium and potassium retention at constant plasma concentrations of vasopressin and atrial natriuretic peptide, and 3) a very small increase in the concentration of ANG III, undetectable by usual techniques, may increase aldosterone secretion substantially.  相似文献   

18.
Infusion of angiotensin II (ANG II) causes salt-sensitive hypertension. It is unclear whether this is due to the body's inability to suppress ANG II during increased salt intake or, rather, an elevated basal level of plasma ANG II itself. To distinguish between these mechanisms, Sprague-Dawley rats were instrumented with arterial and venous catheters for measurement of arterial pressure and infusion of drugs, respectively. The sensitivity of arterial pressure to salt was measured in four groups with the following treatments: 1) saline control (Con, n = 12); 2) administration of the angiotensin-converting enzyme inhibitor enalapril to block endogenous ANG II (ANG-Lo, n = 10); 3) administration of enalapril and 5 ng.kg(-1).min(-1) ANG II to clamp plasma ANG II at normal levels (ANG-Norm, n = 10); and 4) administration of enalapril and 20 ng.kg(-1).min(-1) ANG II to clamp ANG II at high levels (ANG-Hi, n = 10). Rats ingested a 0.4% NaCl diet for 3 days and then a 4.0% NaCl diet for 11 days. Arterial pressure of rats fed the 0.4% NaCl diet was lower in ANG-Lo (84 +/- 2 mmHg) compared with Con (101 +/- 3 mmHg) and ANG-Norm (98 +/- 4 mmHg) groups, whereas ANG-Hi rats were hypertensive (145 +/- 4 mmHg). Salt sensitivity was expressed as the change in arterial pressure divided by the change in sodium intake on the last day of the 4.0% NaCl diet. Salt sensitivity (in mmHg/meq Na) was lowest in Con rats (0.0 +/- 0.1) and progressed from ANG-Lo (0.8 +/- 0.2) to ANG-Norm (1.5 +/- 0.5) to ANG-Hi (3.5 +/- 0.5) rats. We conclude that the major determinant of salt sensitivity of arterial pressure is the basal level of plasma ANG II rather than the responsiveness of the renin-angiotensin system.  相似文献   

19.
A patient with recurrent weakness and blurring of consciousness associated with hyperkalaemia due to aldosterone deficiency is reported. The plasma concentrations of renin, angiotensin II, and aldosterone were low and did not increase during sodium deprivation. Blood angiotensin I was also low while renin-substrate concentration was normal. Infusion of angiotensin produced a distinct rise in plasma aldosterone. The patient was treated successfully with fludrocortisol.The results support the concept that the renin-angiotensin system is an important regulator of aldosterone secretion and that in the syndrome of acquired selective hypoaldosteronism the primary abnormality may be a deficiency of renin. It is suggested that a selective lack of aldosterone should be considered in all cases of otherwise unexplained hyperkalaemia.  相似文献   

20.
Data obtained from 65 hypertensive patients showed a clear-cut positive correlation between peripheral plasma renin activity and the pressor response to exogenous angiotensin II (r =+0.75). For the various causes of hypertension, the mean values of plasma renin concentration were found to correspond closely to the mean values of the angiotensin pressor dose. In individual cases, however, the pressor dose of angiotensin was not found to be a reliable gauge of peripheral venous renin activity.It was impossible to establish a causal diagnosis from the results of the angiotensin infusion test or the renin level in peripheral blood under normal conditions. If, however, determinations are carried out on the renal venous effluent with sodium restriction and with the patient in the upright position the renin level is very valuable both in the diagnosis of renovascular hypertension and in predicting the probable outcome of surgical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号