首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of 11 experiments with Drosophila species show that fertility is not a reducible property: the fertility of a mating pair cannot be predicted from the average fertility of the two genotypes involved. We propose a model of fertility selection that does not assume additivity (or multiplicativity) but assumes random mating and that the genotypic frequencies are in Hardy-Weinberg equilibrium. Numerical simulations show that removal of the assumption of Hardy-Weinberg frequencies does not significantly change the equilibrium frequencies predicted by the model.  相似文献   

2.
For a biallelic model of differential self-fertilization and differential positive assortative mating based on genotype, it is shown that the genotypic frequencies converge for all sets of mating system parameters. Overdominance and underdominance with respect to the parameters are necessary but not sufficient conditions for global convergence to a polymorphic equilibrium and local attractiveness of both the fixation states, respectively. There are cases of overdominance and underdominance for which one fixation state is globally attractive. The relationship of the result to those known from the classical viability selection model are briefly discussed. For the multiallelic version, it is shown that after the first generation all of the homozygote frequencies are always in excess of the corresponding Hardy-Weinberg proportions if at least one homozygote rate of self-fertilization or assortment probability is positive.  相似文献   

3.
Selection due to variation in the fecundity among matings of genotypes with respect to many loci each with two alleles is studied. The fitness of a mating depends only on the genotypic distinction between homozygote and heterozygote at each locus in the two individuals, and differences among loci are allowed. This symmetric fertility model is therefore a generalization of the multiple-locus symmetric viability model. The phenomena seen in the two-locus symmetric fertility model generalize—e.g., the possibility of joint stability of equilibria with linkage equilibrium and with linkage disequilibrium, and the existence of different types of totally polymorphic equilibria with the gametic proportions in linkage equilibrium. The central equilibrium with genotypic frequencies in Hardy-Weinberg proportions and gametic frequencies in Robbins proportions exists for all symmetric fertility models. For some symmetric fertility regimes additional equilibria exist with gametic frequencies in linkage equilibrium and with genotypic frequencies in Hardy-Weinberg proportions at all except one locus. These equilibria may exist in the dioecious symmetric viability model, and then they will be locally stable. For free recombination the stable equilibria show linkage equilibrium, but several of these with different numbers of polymorphic loci may be stable simultaneously.  相似文献   

4.
A E Stark 《Heredity》1977,39(1):91-95
A model of assortative mating incorporating partial dominance is proposed for a single locus with two alleles. It is derived by starting from an arbitrary genotypic distribution and finding symmetric and non-selective mating frequencies which duplicate this distribution. Numerical values are imputed to genotypes, the homozygotes having numerically equal values, opposite in sign, and the heterozygote having a value determined by the gene and heterozygote frequencies. The model is specified in a canonical form which reveals the correlation between mates based on genotypic values, and relates the correlation to the fixation index. It permits negative as well as positive values of the fixation index. It is shown that this general model includes several particular cases, in equilibrium phase, occurring in the literature.  相似文献   

5.
This paper is concerned with the applications of nonlinear age-dependent dynamics to population genetics. Age-structured models are formulated for a single autosomal locus with an arbitrary number of alleles. The following cases are considered: a) haploid populations with selection and mutation; b) monoecious diploid populations with or without mutation reproducing by self-fertilization or by two types of random mating. The diploid models do not deal with selection. For these cases the genic and genotypic frequencies evolve towards time-persistent forms, whether the total population size tends towards exponential growth or not.  相似文献   

6.
Pollak E 《Genetics》1978,90(2):383-389
A population with two alleles at one locus is considered. It is assumed that there is random mating of adults and that matings in which a particular pair of genotypes is involved may have a different mean number of offspring, or fecundity, than other types of matings. There is assumed to be no other selection. It is shown that the genotypic frequencies that maximize the mean fecundity of the population are not necessarily the same as the stable equilibrium frequencies. Thus, examples can be found for which the mean fecundity decreases from one generation to the next, and one such example is presented. An example in which there is no stable equilibrium, and the mean fecundity oscillates, is also given.  相似文献   

7.
Previous theories show that tension and ecological zones are indistinguishable in terms of gene frequency clines. Here I analytically show that these two types of zones can be distinguished in terms of genetic statistics other than gene frequency. A two-locus cline model is examined with the assumptions of random mating, weak selection, no drift, no mutation, and multiplicative viabilities. The genetic statistics for distinguishing the two types of zones are the deviations of one- or two-locus genotypic frequencies from Hardy-Weinberg equilibrium (HWE) or from random association of gametes (RAG), and the deviations of additive and dominance variances from the values at HWE. These deviations have a discontinuous distribution in space and different extents of interruptions in the ecological zone with a sharp boundary, but exhibit a continuous distribution in the tension zone. Linkage disequilibrium enhances the difference between the deviations from HWE and from RAG for any two-locus genotypic frequency.  相似文献   

8.
The theory of pleiotropic mutation and selection is investigated and developed for a large population of asexual organisms. Members of the population are subject to stabilising selection on Omega phenotypic characters, which each independently affect fitness. Pleiotropy is incorporated into the model by allowing each mutation to simultaneously affect all characters. To expose differences with continuous-allele models, the characters are taken to originate from discrete-effect alleles and thus have discrete genotypic effects. Each character can take the values nxDelta where n=0,+/-1,+/-2, em leader, and the splitting in character effects, Delta, is a parameter of the model. When the distribution of mutant effects is normally distributed around the parental value, and Delta is large, a "stepwise" model of mutation arises, where only adjacent trait effects are accessible from a single mutation. The present work is primarily concerned with the opposite limit, where Delta is small and many different trait effects are accessible from a single mutation.In contrast to what has been established for continuous-effect models, discrete-effect models do not yield a singular equilibrium distribution of genotypic effects for any value of Omega. Instead, for different values of Omega, the equilibrium frequencies of trait values have very different dependencies on Delta. For Omega=1 and 2, decreasing Delta broadens the width of the frequency distribution and hence increases the equilibrium level of polymorphism. For all sufficiently large values of Omega, however, decreasing Delta decreases the width of the frequency distribution and the equilibrium level of polymorphism. The connection with continuous trait models follows when the limit Delta-->0 is considered, and a singular probability density of trait values is obtained for all sufficiently large Omega.  相似文献   

9.
Stochastic fluctuations in a simple frequency-dependent selection model with one-locus, two-alleles and two-phenotypes are investigated. The steady-state statistics of allele frequencies for an interior stable phenotypic equilibrium are shown to be similar to the stochastic fluctuations in standard evolutionary game dynamics [Tao, Y., Cressman, R., 2007. Stochastic fluctuations through intrinsic noise in evolutionary game dynamics. Bull. Math. Biol. 69, 1377-1399]. On the other hand, for an interior stable phenotypic or genotypic equilibrium, our main results show that the deterministic model cannot be used to predict the expectation of phenotypic frequency. The variance of phenotypic frequency for an interior stable genotypic equilibrium is more sensitive to the expected population size than for an interior stable phenotypic equilibrium. Furthermore, the stochastic fluctuations of allele frequency and phenotypic frequency can be considered approximately independent of each other for these genotypic equilibria, but not for phenotypic.  相似文献   

10.
Towards a theory of the evolution of modifier genes   总被引:13,自引:2,他引:11  
The main findings of a study of the evolution of modifier gene frequencies in models of deterministic population genetics are presented. A wide variety of random mating systems are subject to selection with modifiers operating, in different cases, on mutation rates, migration between subpopulations, and linkage between other loci. In all these instances, the modifier frequencies evolve in such a way as to maximize the mean fitness of the population at equilibrium. This is remarkable since, the modifier genes are selectively neutral in the sense that they do not affect the fitness of their individual carriers. In nonrandom mating systems, the mean fitness concept is not well-defined, and there does not appear to be such a simple principle governing the evolution of modifier frequencies. In assortative mating systems, modifiers favoring reduced assortment propensities tend to increase. In contrast, for selfing-outcrossing systems, modifiers favoring increased selfing tend to increase.  相似文献   

11.
A selection model which comprises models of additive fecundities as well as models of viability, fecundity, or differential mating selection acting only in one sex, is investigated for an autosomal gene locus in a population reproducing in nonoverlapping generations. The recurrence equations and basic properties of the genotypic population trajectories and equilibrium points are formulated for the multiallelic case. For the diallelic case, the trajectory development is discussed in more detail, and it is proven that every population trajectory converges to a Hardy-Weinberg equilibrium point.  相似文献   

12.
nessi is a computer program generating predictions about allelic and genotypic frequencies at the S-locus in sporophytic self-incompatibility systems under finite and infinite populations. For any pattern of dominance relationships among self-incompatibility alleles, nessi computes deterministic equilibrium frequencies and estimates distributions in samples from finite populations of the number of alleles at equilibrium, allelic and genotypic frequencies at equilibrium and allelic and genotypic frequency changes in a single generation. These predictions can be used to rigorously test the impact of negative frequency-dependent selection on diversity patterns in natural populations.  相似文献   

13.
Summary Considerations proceed from a model of positive assortative mating based on genotype at one locus, with an arbitrary number of alleles, assuming no selection, mutation, or migration, hypothetically infinite population size, and discrete non-overlapping generations. From these conditions, inferences are made about the genotypic structure at a linked locus, as well as about the corresponding 2-locus gametic structure.The following main results are presented: in the course of the generations, the genotypic structure at the second locus and the 2-locus gametic structure always tend to a limit responsive to the initial conditions concerning the joint genotypic structure at the two loci and the degree of assortativity and linkage. A complete, analytical representation of the limits is given. In particular, if assortative mating is only partial and at the same time linkage is not complete, a population is not able to maintain a permanent deviation of the gametic structure from linkage equilibrium, and thus the genotypic structure at the second locus tends to Hardy-Weinberg proportions. On the other hand, if initial linkage disequilibrium is combined with partial assortative mating and complete linkage (or with complete assortative mating and unlinked loci) the population maintains this disequilibrium and thus the genotypic structure at the second locus need not tend to Hardy-Weinberg proportions. It turns out that the conditions not only of complete linkage, but also of unlinked loci together with complete assortativity, imply no change in gametic structure from the initial structure.In order to demonstrate the influence of several parameters on the speed of convergence to and the magnitude of the respective limits, several graphs are included.  相似文献   

14.
A new approach for describing the evolution of polygenic traits subject to selection and mutation is presented. Differential equations for the change of cumulants of the allelic frequency distribution at a particular locus and for the cumulants of the distributions of genotypic and phenotypic values are derived. The derivation is based on the assumptions of random mating, no sex differences, absence of random drift, additive gene action, linkage equilibrium, and Hardy-Weinberg proportions. Cumulants are a set of parameters that, like moments, describe the shape of a probability density. Compared with moments, however, they have properties that make them a much more convenient tool for investigating polygenic traits. Applications to directional and stabilizing selection are given.  相似文献   

15.
We consider a large population of asexual organisms characterised by a number of quantitative traits that are subject to stabilising selection. Mutation is taken to act pleiotropically, with every mutation generally changing all of the traits under selection. We focus on the equilibrium distribution of the population, where mutation and selection are in balance. It has been previously established that the equilibrium distribution of genotypic effects may be anomalous, as it may contain a singular spike--a Dirac delta function--corresponding to a non-zero proportion of the population having exactly optimal genotypic values. In the present work, we present exact results for the case where three traits are under selection. These results give the equilibrium genetic variance of the population, and the proportion of the population that have the optimal genotype. This is achieved for two different spherically symmetric distributions of mutant effects. Additionally, a simple and robust numerical approach is also presented that allows the treatment of some other mutation distributions, where there are an arbitrary number of selected traits.  相似文献   

16.
Trotter MV  Spencer HG 《Genetics》2008,180(3):1547-1557
Frequency-dependent selection remains the most commonly invoked heuristic explanation for the maintenance of genetic variation. For polymorphism to exist, new alleles must be both generated and maintained in the population. Here we use a construction approach to model frequency-dependent selection with mutation under the pairwise interaction model. The pairwise interaction model is a general model of frequency-dependent selection at the genotypic level. We find that frequency-dependent selection is able to generate a large number of alleles at a single locus. The construction process generates multiallelic polymorphisms with a wide range of allele-frequency distributions and genotypic fitness relationships. Levels of polymorphism and mean fitness are uncoupled, so constructed polymorphisms remain permanently invasible to new mutants; thus the model never settles down to an equilibrium state. Analysis of constructed fitness sets reveals signatures of heterozygote advantage and positive frequency dependence.  相似文献   

17.
Summary A model for positive assortative mating based on genotype for one locus is employed to investigate the effect of this mating system on the genotypic structure of a second linked locus as well as on the joint genotypic structure of these two loci. It is shown that the second locus does not attain a precise positive assortative mating structure, but yet it shares a property that is characteristic of positive assortative mating, namely an increase in the frequency of homozygotes over that typically found in panmictic structures. Given any arbitrary genotypic structure for the parental population, the resulting offspring generation possesses a structure at the second locus that does not depend on the recombination frequency, while the joint structure of course does. In case assortative mating as well as linkage are not complete, there exists a unique joint equilibrium state for the two loci, which is characterized by complete stochastic independence between the two loci as well as by Hardy-Weinberg proportions at the second locus. For the second locus alone, Hardy-Weinberg equilibrium is realized if and only if gametic linkage equilibrium and an additionally specified condition are realized.  相似文献   

18.
Equilibria and convergence of gene frequencies are studied in the case of a diallelic X-linked locus under the influence of selection and mutation. The model used is that of an infinite diploid population with nonoverlapping discrete generations and random mating. It is proved that if the mutation rates and fitnesses are constant and the mutation rates are less than one-third, then global convergence of gene frequencies to equilibria occurs. The phase portraits of the dynamical system describing the change of allelic frequencies from one generation to the next are determined. Convergence of gene frequencies is monotone from a certain generation on if every other generation is skipped. In the case without mutation, our proof of this monotone convergence simplifies G. Palm's original proof [37].  相似文献   

19.
Yang RC 《Genetics》2004,167(3):1493-1505
Modeling and detecting nonallelic (epistatic) effects at multiple quantitative trait loci (QTL) often assume that the study population is in zygotic equilibrium (i.e., genotypic frequencies at different loci are products of corresponding single-locus genotypic frequencies). However, zygotic associations can arise from physical linkages between different loci or from many evolutionary and demographic processes even for unlinked loci. We describe a new model that partitions the two-locus genotypic values in a zygotic disequilibrium population into equilibrium and residual portions. The residual portion is of course due to the presence of zygotic associations. The equilibrium portion has eight components including epistatic effects that can be defined under three commonly used equilibrium models, Cockerham's model, F2-metric, and F(infinity)-metric models. We evaluate our model along with these equilibrium models theoretically and empirically. While all the equilibrium models require zygotic equilibrium, Cockerham's model is the most general, allowing for Hardy-Weinberg disequilibrium and arbitrary gene frequencies at individual loci whereas F2-metric and F(infinity)-metric models require gene frequencies of one-half in a Hardy-Weinberg equilibrium population. In an F2 population with two unlinked loci, Cockerham's model is reduced to the F2-metric model and thus both have a desirable property of orthogonality among the genic effects; the genic effects under the F(infinity)-metric model are not orthogonal but they can be easily translated into those under the F2-metric model through a simple relation. Our model is reduced to these equilibrium models in the absence of zygotic associations. The results from our empirical analysis suggest that the residual genetic variance arising from zygotic associations can be substantial and may be an important source of bias in QTL mapping studies.  相似文献   

20.
J C Renaud  J R Morton 《Biometrics》1991,47(3):1127-1133
Examination of the equilibria of the standard two-locus two-allele selection model leads to the construction of a polynomial with coefficients derived from selective values in the genotypic fitness matrix. This polynomial can be partially factored algebraically and numerical techniques are available to extract the roots of the remainder. Each root provides a possible value of the disequilibrium coefficient and the gametic frequencies at equilibrium, and these can be readily checked for stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号