首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Intercellular adhesion molecule-1 (CD54), a cell adhesion molecule and the receptor for the major group of rhinoviruses, is a class 1 membrane protein with five Ig-like domains in its extracellular region, a transmembrane domain, and a short cytoplasmic domain. The amino-terminal domains (D1 and D2) are sufficient for virus binding and the first is most important (1). We have investigated whether other extracellular domains, transmembrane or cytoplasmic domains are required for virus entry as determined by postinfection virion protein biosynthesis. We demonstrate that cytoplasmic, transmembrane, and Ig-like domains 3, 4, and 5 are not essential for rhinovirus entry into transfected COS cells. The efficiency of rhinovirus infection directly correlates with the efficiency of rhinovirus binding and a form of intercellular adhesion molecule-1 that is glycophosphatidyl-inositol anchored, and thus does not extend into the inner leaflet of the membrane bilayer or the cytoplasm efficiently supports virus entry.  相似文献   

2.
3.
Coxsackievirus and adenovirus receptor (CAR) from which the cytoplasmic domain had been deleted and glycosylphosphatidylinositol (GPI)-anchored CAR lacking both transmembrane and cytoplasmic domains were both capable of facilitating adenovirus 5-mediated gene delivery and infection by coxsackievirus B3. These results indicate that the CAR extracellular domain is sufficient to permit virus attachment and entry and that the presence of a GPI anchor does not prevent infection.  相似文献   

4.
Solution structure of the coxsackievirus and adenovirus receptor domain 1   总被引:2,自引:0,他引:2  
Jiang S  Jacobs A  Laue TM  Caffrey M 《Biochemistry》2004,43(7):1847-1853
The coxsackievirus and adenovirus receptor (CAR) mediates entry of coxsackievirus B (CVB) and adenovirus (Ad). The normal cellular function of CAR, which is expressed in a wide variety of tissue types, is thought to involve homophilic cell adhesion in the developing brain. The extracellular domain of CAR consists of two immunoglobulin (Ig) domains termed CAR-D1 and CAR-D2. CAR-D1 is shown by sedimentation velocity to be monomeric at pH 3.0. The solution structure and the dynamic properties of monomeric CAR-D1 have been determined by NMR spectroscopy at pH 3.0. The determinants of the CAR-D1 monomer-dimer equilibrium, as well as the binding site of CVB and Ad on CAR, are discussed in light of the monomer structure.  相似文献   

5.
Amino acid exchanges in the virus capsid protein VP1 allow the coxsackievirus B3 variant PD (CVB3 PD) to replicate in decay accelerating factor (DAF)-negative and coxsackievirus-adenovirus receptor (CAR)-negative cells. This suggests that molecules other than DAF and CAR are involved in attachment of this CVB3 variant to cell surfaces. The observation that productive infection associated with cytopathic effect occurred in Chinese hamster ovary (CHO-K1) cells, whereas heparinase-treated CHO-K1 cells, glucosaminoglycan-negative pgsA-745, heparan sulfate (HS)-negative pgsD-677, and pgsE-606 cells with significantly reduced N-sulfate expression resist CVB3 PD infection, indicates a critical role of highly sulfated HS. 2-O-sulfate-lacking pgsF-17 cells represented the cell line with minimum HS modifications susceptible for CVB3 PD. Inhibition of virus replication in CHO-K1 cells by polycationic compounds, pentosan polysulfate, lung heparin, and several intestinal but not kidney HS supported the hypothesis that CVB3 PD uses specific modified HS for entry. In addition, recombinant human hepatocyte growth factor blocked CVB3 PD infection. However, CAR also mediates CVB3 PD infection, because this CVB3 variant replicates in HS-lacking but CAR-bearing Raji cells, infection could be prevented by pretreatment of cells with CAR antibody, and HS-negative pgsD-677 cells transfected with CAR became susceptible for CVB3 PD. These results demonstrate that the amino acid substitutions in the viral capsid protein VP1 enable CVB3 PD to use specific modified HS as an entry receptor in addition to CAR.  相似文献   

6.
The composition of the cellular receptor complex for coxsackievirus B3 (CVB3) has been an area of much contention for the last 30 years. Recently, two individual components of a putative CVB3 cellular receptor complex have been identified as (i) decay-accelerating factor (DAF) and (ii) the coxsackievirus-adenovirus receptor protein (CAR). The present study elucidates the individual roles of DAF and CAR in cell entry of CVB3 Nancy. First, we confirm that the DAF-binding phenotype of CVB3 correlates to the presence of key amino acids located in the viral capsid protein, VP2. Second, using antibody blockade, we show that complete protection of permissive cells from infection by high input multiplicities of CVB3 requires a combination of both anti-DAF and anti-CAR antibodies. Finally, it is shown that expression of the CAR protein on the surface of nonpermissive DAF-expressing RD cells renders them highly susceptible to CVB3-mediated lytic infection. Therefore, although the majority of CVB3 Nancy attaches to the cell via DAF, only virus directly interacting with the CAR protein mediates lytic infection. The role of DAF in CVB3 cell infection may be analogous to that recently described for coxsackievirus A21 (D. R. Shafren, D. J. Dorahy, R. A. Ingham, G. F. Burns, and R. D. Barry, J. Virol. 71:4736-4743, 1997), in that DAF may act as a CVB3 sequestration site, enhancing viral presentation to the functional CAR protein.  相似文献   

7.
E Katz  E J Wolffe    B Moss 《Journal of virology》1997,71(4):3178-3187
The outer envelope of the extracellular form of vaccinia virus (EEV) is derived from the Golgi membrane and contains at least six viral proteins. Transfection studies indicated that the EEV protein encoded by the B5R gene associates with Golgi membranes when synthesized in the absence of other viral products. A domain swapping strategy was then used to investigate the possibility that the B5R protein contains an EEV targeting signal. We constructed chimeric genes encoding the human immunodeficiency virus (HIV) type 1 glycoprotein with the cytoplasmic and transmembrane domains replaced by the corresponding 42-amino-acid C-terminal segment of the B5R protein. Recombinant vaccinia viruses that stably express a chimeric B5R-HIV protein or a control HIV envelope protein with the original cytoplasmic and transmembrane domains were isolated. Cells infected with recombinant vaccinia viruses that expressed either the unmodified or the chimeric HIV envelope protein formed syncytia with cells expressing the CD4 receptor for HIV. However, biochemical and microscopic studies demonstrated that the HIV envelope proteins with the B5R cytoplasmic and transmembrane domains were preferentially targeted to the EEV. These data are consistent with the presence of EEV localization signals in the cytoplasmic and transmembrane domains of the B5R protein.  相似文献   

8.
Kim M  Jung J  Park CS  Lee K 《Biochimie》2002,84(10):1021-1029
Na,K-ATPase, an alpha, beta heterodimer, is found in the plasma membrane of all animal cells. The alpha chain is believed to have 10 transmembrane regions and a large cytoplasmic domain between the 4th and 5th transmembrane regions (H4-H5). In our previous report, the large (3rd) cytoplasmic domains of the alpha1 and alpha2 isoform were found to interact with cofilin, an actin-modulating protein, by the yeast two-hybrid system. Here we show that cofilin interacts only with the 3rd cytoplasmic domain of the alpha2 subunit but not with the 2nd, 4th, and 5th cytoplasmic domains or the cytoplasmic region of the beta subunit of Na,K-ATPase. We also demonstrate that cofilin interacts with the large cytoplasmic domains of the alpha1, alpha2 and alpha3 isoforms of Na,K-ATPase, but not with those of glucose transporter 1, glucose transporter 4, cystic fibrosis transmembrane conductance regulator and plasma membrane Ca-ATPase. We introduced 10 mutations into the 3rd cytoplasmic domain of Na,K-ATPase to identify the binding sites with cofilin. Eight of these mutants were single amino acid substitutions (R417Q, K470Q, K654G, D672A, K691A, R700G, R700A and D710G) and two were double mutant (K654GR700G and K719AK720A). Analysis of the activity of the reporter gene of these mutants shows that residues D672 and R700 of the 3rd cytoplasmic domain of Na,K-ATPase are involved in the interaction with cofilin.  相似文献   

9.
BACKGROUND: The coxsackievirus and adenovirus receptor (CAR) comprises two extracellular immunoglobulin domains, a transmembrane helix and a C-terminal intracellular domain. The amino-terminal immunoglobulin domain (D1) of CAR is necessary and sufficient for adenovirus binding, whereas the site of coxsackievirus attachment has not yet been localized. The normal cellular role of CAR is currently unknown, although CAR was recently proposed to function as a homophilic cell adhesion molecule. RESULTS: The human CAR D1 domain was bacterially expressed and crystallized. The structure was solved by molecular replacement using the structure of CAR D1 bound to the adenovirus type 12 fiber head and refined to 1.7 A resolution, including individual anisotropic temperature factors. The two CAR D1 structures are virtually identical, apart from the BC, C"D, and FG loops that are involved both in fiber head binding and homodimerization in the crystal. Analytical equilibrium ultracentrifugation shows that a dimer also exists in solution, with a dissociation constant of 16 microM. CONCLUSIONS: The CAR D1 domain forms homodimers in the crystal using the same GFCC'C" surface that interacts with the adenovirus fiber head. The homodimer is very similar to the CD2 D1-CD58 D1 heterodimer. CAR D1 also forms dimers in solution with a dissociation constant typical of other cell adhesion complexes. These results are consistent with reports that CAR may function physiologically as a homophilic cell adhesion molecule in the developing mouse brain. Adenovirus may thus have recruited an existing and conserved interaction surface of CAR to use for its own cell attachment.  相似文献   

10.
Oligonucleotide-directed mutagenesis was used to construct chimeric cDNAs that encode the extracellular and transmembrane domains of the vesicular stomatitis virus glycoprotein (G) linked to the cytoplasmic domain of either the immunoglobulin mu membrane heavy chain, the hemagglutinin glycoprotein of influenza virus, or the small glycoprotein (p23) of infectious bronchitis virus. Biochemical analyses and immunofluorescence microscopy demonstrated that these hybrid genes were correctly expressed in eukaryotic cells and that the hybrid proteins were transported to the plasma membrane. The rate of transport to the Golgi complex of G protein with an immunoglobulin mu membrane cytoplasmic domain was approximately sixfold slower than G protein with its normal cytoplasmic domain. However, this rate was virtually identical to the rate of transport of micron heavy chain molecules measured in the B cell line WEHI 231. The rate of transport of G protein with a hemagglutinin cytoplasmic domain was threefold slower than wild type G protein and G protein with a p23 cytoplasmic domain, which were transported at similar rates. The combined results underscore the importance of the amino acid sequence in the cytoplasmic domain for efficient transport of G protein to the cell surface. Also, normal cytoplasmic domains from other transmembrane glycoproteins can substitute for the G protein cytoplasmic domain in transport of G protein to the plasma membrane. The method of constructing precise hybrid proteins described here will be useful in defining functions of specific domains of viral and cellular integral membrane proteins.  相似文献   

11.
Folding of the human coxsackie and adenovirus receptor immunoglobulin (Ig) variable-type domain (CAR D1) during overexpression in the Escherichia coli cytoplasm was shown previously to be partially rescued by fusion to a 22-residue C-terminal peptide. Here, peptide sequence features required for solubilization and folding of CAR D1 and similar Ig variable-type domains from two other human membrane proteins were investigated. Peptide extensions with net negative charge > -6 fully solubilized CAR D1, and approximately half of the peptide-solubilized protein was correctly folded. The Ig variable-type domains from human A33 antigen and myelin P-zero proteins were only partially solubilized by peptide extensions with net charge of -12, however, and only the solubilized P-zero domain appeared to fold correctly whereas the A33 domain formed soluble microaggregates of misfolded protein. Our results suggest a model where the large net charge of peptide extensions increases electrostatic repulsion between nascent polypeptides. The resulting decrease in aggregation rate can enable some polypeptides to fold spontaneously into their native protein conformations. Analysis of the solubility and folding status of sets of structurally homologous proteins, such as the Ig variable-type domains described here, during overexpression could provide insights into how amino acid and gene sequences influence the efficiency of spontaneous protein folding.  相似文献   

12.
Contraction of striated muscle results from a rise in cytoplasmic calcium concentration in a process termed excitation/contraction coupling. Most of this calcium moves back and forth across the sarcoplasmic-reticulum membrane in cycles of contraction and relaxation. The channel responsible for release from the sarcoplasmic reticulum is the ryanodine receptor, whereas Ca2+-ATPase effects reuptake in an ATP-dependent manner. The structures of these two molecules have been studied by cryoelectron microscopy, with helical crystals in the case of Ca2+-ATPase and as isolated tetramers in the case of ryanodine receptor. Structures of Ca2+-ATPase at 8-A resolution reveal the packing of transmembrane helices and have allowed fitting of a putative ATP-binding domain among the cytoplasmic densities. Comparison of ATPases in different conformations gives hints about the conformational changes that accompany the reaction cycle. Structures of ryanodine receptor at 30-A resolution reveal a multitude of isolated domains in the cytoplasmic portion, as well as a distinct transmembrane assembly. Binding sites for various protein ligands have been determined and conformational changes induced by ATP, calcium and ryanodine have been characterized. Both molecules appear to use large conformational changes to couple interactions in their cytoplasmic domains with calcium transport through their membrane domains, and future studies at higher resolution will focus on the mechanisms for this coupling.  相似文献   

13.
K M Izumi  K M Kaye    E D Kieff 《Journal of virology》1994,68(7):4369-4376
Previous recombinant Epstein-Barr virus molecular genetic experiments with specifically mutated LMP1 genes indicate that LMP1 is essential for primary B-lymphocyte growth transformation and that the amino-terminal cytoplasmic and first transmembrane domains are together an important mediator of transformation. EBV recombinants with specific deletions in the amino-terminal cytoplasmic domain have now been constructed and tested for the ability to growth transform primary B lymphocytes into lymphoblastoid cell lines. Surprisingly, deletion of DNA encoding EHDLER or GPPLSSS from the full LMP1 amino-terminal cytoplasmic domain (MEHDLERGPPGPRRPPRGPPLSSS) had no discernible effect on primary B-lymphocyte transformation. These two motifs distinguish the LMP1 amino-terminal cytoplasmic domain from other arginine-rich membrane proximal sequences that anchor hydrophobic transmembrane domains. Two deletions which included the ERGPPGPRRPPR motif adversely affected but did not prevent transformation. This arginine- and proline-rich sequence is probably important in anchoring the first transmembrane domain in the plasma membrane, since these mutated LMP1s had altered stability and cell membrane localization. The finding that overlapping deletions of the entire amino-terminal cytoplasmic domain do not ablate transformation is most consistent with a model postulating that the transmembrane and carboxyl-terminal cytoplasmic domains are the likely biochemical effectors of transformation.  相似文献   

14.
The coxsackie B virus and adenovirus receptor (CAR) is a member of the immunoglobulin superfamily. In addition to activity as a viral receptor, it may play a role in cellular adhesion. We asked what determines the cell membrane microdomain of CAR. We found that CAR is localized to a novel lipid-rich microdomain similar to that of the low-density lipoprotein receptor (LDLR) but distinct from that of a CAR variant that exhibited traditional lipid raft localization via fusion to a glycosylphosphatidylinositol (GPI) tail. The cytoplasmic tail determines its membrane localization, since deletion of this domain resulted in mislocalization. Results indicate that CAR, CAR-LDLR, and LDLR reside in a novel lipid raft that is distinct from caveolin-1-containing caveolae and GPI-linked proteins. Residence in a lipid-rich domain provides a mechanism that allows CAR to interact with other cell adhesion proteins and yet function as an adenovirus receptor.  相似文献   

15.
In well-differentiated human airway epithelia, the coxsackie B and adenovirus type 2 and 5 receptor (CAR) resides primarily on the basolateral membrane. This location may explain the observation that gene transfer is inefficient when adenovirus vectors are applied to the apical surface. To further test this hypothesis and to investigate requirements and barriers to apical gene transfer to differentiated human airway epithelia, we expressed CAR in which the transmembrane and cytoplasmic tail were replaced by a glycosyl-phosphatidylinositol (GPI) anchor (GPI-CAR). As controls, we expressed wild-type CAR and CAR lacking the cytoplasmic domain (Tailless-CAR). All three constructs enhanced gene transfer with similar efficiencies in fibroblasts. In airway epithelia, GPI-CAR localized specifically to the apical membrane, where it bound adenovirus and enhanced gene transfer to levels obtained when vector was applied to the basolateral membrane. Moreover, GPI-CAR facilitated gene transfer of the cystic fibrosis transmembrane conductance regulator to cystic fibrosis airway epithelia, correcting the Cl(-) transport defect. In contrast, when we expressed wild-type CAR it localized to the basolateral membrane and failed to increase apical gene transfer. Only a small amount of Tailless-CAR resided in the apical membrane, and the effects on apical virus binding and gene transfer were minimal. These data indicate that binding of adenovirus to an apical membrane receptor is sufficient to mediate effective gene transfer to human airway epithelia and that the cytoplasmic domain of CAR is not required for this process. The results suggest that targeting apical receptors in differentiated airway epithelia may be sufficient for gene transfer in the genetic disease cystic fibrosis.  相似文献   

16.
Integrin beta1C is an alternatively spliced cytoplasmic variant of the beta1 subunit that potently inhibits cell cycle progression. In this study, we analyzed the requirements for growth suppression by beta1C. A chimera containing the extracellular/transmembrane domain of the Tac subunit of the human interleukin 2 receptor (gp55) fused to the cytoplasmic domain of beta1C (residues 732-805) strongly inhibited growth in mouse 10T1/2 cells even at low expression levels, whereas chimeras containing the beta1A, beta1B, beta1D, beta3, and beta5 cytoplasmic domains had weak and variable effects. The beta1C cytoplasmic domain is composed of a membrane proximal region (732-757) common to all beta1 variants and a COOH-terminal 48-amino acid domain (758-805) unique to beta1C. The beta1C-specific domain (758-805) was sufficient to block cell growth even when expressed as a soluble cytoplasmic green fluorescent protein fusion protein. These results indicate that growth inhibition by beta1C does not require the intact receptor and can function in the absence of membrane targeting. Analysis of deletions within the beta1C-specific domain showed that the 18-amino acid sequence 775-792 is both necessary and sufficient for maximal growth inhibition, although the 13 COOH-terminal residues (793-805) also had weak activity. Finally, beta1C is known to be induced in endothelial cells in response to tumor necrosis factor and is down-regulated in prostate epithelial cells after transformation. The green fluorescent protein/beta1C (758-805) chimera blocked growth in the human endothelial cell line EV304 and in the transformed prostate epithelial cell line DU145, consistent with a role for beta1C as a growth inhibitor in vivo.  相似文献   

17.
Ward BM  Moss B 《Journal of virology》2000,74(8):3771-3780
The vaccinia virus B5R type I integral membrane protein accumulates in the Golgi network, from where it becomes incorporated into the envelope of extracellular virions. Our objective was to determine the domains of B5R responsible for Golgi membrane targeting in the absence of other viral components. Fusion of an enhanced green fluorescent protein to the C terminus of B5R allowed imaging of the chimeric protein without altering intracellular trafficking and Golgi network localization in transfected cells. Deletion or swapping of B5R domains with corresponding regions of the vesicular stomatitis virus G protein, which is targeted to the plasma membrane, indicated that (i) the N-terminal extracellular domain of B5R had no specific role in Golgi apparatus localization, (ii) the transmembrane domain of B5R was sufficient for exiting the endoplasmic reticulum, and (iii) removal of the cytoplasmic tail impaired Golgi network localization and increased the accumulation of B5R in the plasma membrane. Further experiments demonstrated that the cytoplasmic tail mediated internalization of B5R from the plasma membrane, suggesting a retrieval mechanism. Mutagenesis revealed residues required for Golgi membrane localization and efficient plasma membrane retrieval of the B5R protein: a tyrosine at residue 310 and two adjacent leucines at residues 315 and 316.  相似文献   

18.
Lymphocyte activation gene-3 (LAG-3; CD223) is a CD4-related transmembrane protein that binds to MHC class II molecules. We have recently shown that LAG-3 is required for maximal regulatory T cell function, and that ectopic expression of LAG-3 is sufficient to confer regulatory activity. In this study we show that LAG-3 is cleaved within the D4 transmembrane domain connecting peptide into two fragments that remain membrane associated: a 54-kDa fragment that contains all the extracellular domains and oligomerizes with full-length LAG-3 (70 kDa) on the cell surface via the D1 domain, and a 16-kDa peptide that contains the transmembrane and cytoplasmic domains. This NH(2)-terminal fragment is subsequently released as soluble LAG-3 (sLAG-3), a process that is increased after T cell activation in vitro and in vivo, and is found in the sera of C57BL/6 and RAG-1(-/-) mice. Modulation of LAG-3 cleavage may contribute to the function of this key regulatory T cell protein.  相似文献   

19.
The Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1) has previously been shown to cause EBV-negative B-lymphoma cells to grow in large clumps and to alter expression of surface activation and adhesion molecules (D. Wang, D. Liebowitz, F. Wang, C. Gregory, A. Rickinson, R. Larson, T. Springer, and E. Kieff, J. Virol. 62:1473-4184, 1988; F. Wang, C. Gregory, C. Sample, M. Rowe, D. Liebowitz, R. Murray, A. Rickinson, and E. Kieff, J. Virol. 64:2309-2318, 1990). In order to identify functional elements in the amino-terminal cytoplasmic domain and the first four transmembrane domains which were previously shown to be essential for LMP1 activity, three smaller deletion mutants were constructed and tested for their activity in B-lymphoma cells. The results of the present study indicate that the amino-terminal cytoplasmic domain, the first transmembrane domain, and the third and fourth transmembrane domains each contribute to LMP1's effects on B lymphocytes.  相似文献   

20.
The spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for receptor binding and membrane fusion. It contains a highly conserved transmembrane domain that consists of three parts: an N-terminal tryptophan-rich domain, a central domain, and a cysteine-rich C-terminal domain. The cytoplasmic tail of S has previously been shown to be required for assembly. Here, the roles of the transmembrane and cytoplasmic domains of S in the infectivity and membrane fusion activity of SARS-CoV have been studied. SARS-CoV S-pseudotyped retrovirus (SARSpp) was used to measure S-mediated infectivity. In addition, the cell-cell fusion activity of S was monitored by a Renilla luciferase-based cell-cell fusion assay. S(VSV-Cyt), an S chimera with a cytoplasmic tail derived from vesicular stomatitis virus G protein (VSV-G), and S(MHV-TMDCyt), an S chimera with the cytoplasmic and transmembrane domains of mouse hepatitis virus, displayed wild-type-like activity in both assays. S(VSV-TMDCyt), a chimera with the cytoplasmic and transmembrane domains of VSV-G, was impaired in the SARSpp and cell-cell fusion assays, showing 3 to 25% activity compared to the wild type, depending on the assay and the cells used. Examination of the oligomeric state of the chimeric S proteins in SARSpp revealed that S(VSV-TMDCyt) trimers were less stable than wild-type S trimers, possibly explaining the lowered fusogenicity and infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号