共查询到20条相似文献,搜索用时 44 毫秒
1.
Microtubules are dynamic cytoskeletal polymers that assemble from alpha/beta-tubulin and are vital for the establishment of cell polarity, vesicle trafficking and formation of the mitotic/meiotic spindle. gamma-Tubulin, a protein related to alpha/beta-tubulin, is required for initiating the polymerization of microtubules in vivo. gamma-Tubulin has been found in two main protein complexes: the gamma-tubulin ring complex and its subunit, the gamma-tubulin small complex. The latter is analogous to the yeast Tub4 complex. In the past year, important advances have been made in understanding the structure and function of the gamma-tubulin ring complex and how it interacts with microtubules. 相似文献
2.
Wonjung Shin Nam-Kyung Yu Bong-Kiun Kaang Kunsoo Rhee 《Cell cycle (Georgetown, Tex.)》2015,14(12):1925-1931
Centrobin resides in daughter centriole and play a critical role in centriole duplication. Nucleation and stabilization of microtubules are known biological activities of centrobin. Here, we report a specific localization of centrobin outside the centrosome. Centrobin was associated with the stable microtubules. In hippocampal cells, centrobin formed cytoplasmic dots in addition to the localization at both centrosomes with the mother and daughter centrioles. Such specific localization pattern suggests that cytoplasmic centrobin is not just a reserved pool for centrosomal localization but also has a specific role in the cytoplasm. In fact, centrobin enhanced microtubule formation outside as well as inside the centrosome. These results propose specific roles of the cytoplasmic centrobin for noncentrosomal microtubule formation in specific cell types and during the cell cycle. 相似文献
3.
Cellular homeostasis relies on a tight control of protein synthesis, folding and degradation, in which the endoplasmic reticulum (ER) quality control and the ubiquitin proteasome system (UPS) have an instrumental function. ER stress and aberrant accumulation of misfolded proteins represent a pathological signature of amyotrophic lateral sclerosis (ALS), a fatal paralytic disorder caused by the selective degeneration of motoneurons in the brain and spinal cord. Mutations in the ER-resident protein VAPB have been associated with familial forms of the disease. ALS-linked mutations cause VAPB to form cytoplasmic aggregates. We previously demonstrated that viral-mediated expression of both wildtype and mutant human VAPB (hVAPB) leads to an ER stress response that contributes to the selective death of motoneurons. However, the mechanisms behind ER stress, defective UPS and hVAPB-associated motoneuron degeneration remain elusive. Here, we show that the overexpression of wildtype and mutated hVAPB, which is found to be less stable than the wildtype protein, leads to the abnormal accumulation of ubiquitin and ubiquitin-like protein conjugates in non-human primate cells. We observed that overexpression of both forms of hVAPB elicited an ER stress response. Treatment of wildtype and mutated hVAPB expressing cells with the ER stress inhibitor salubrinal diminished the burden of ubiquitinated proteins, suggesting that ER stress contributes to the impairment of proteasome function. We also found that both wildtype and mutated hVAPB can associate with the 20S proteasome, which was found to accumulate at the ER with wildtype hVAPB or in mutant hVAPB aggregates. Our results suggest that ER stress and corruption of the proteasome function might contribute to the aberrant protein homeostasis associated with hVAPB. 相似文献
4.
M Lichtenberg A Mansilla V R Zecchini A Fleming D C Rubinsztein 《Cell death & disease》2011,2(8):e196
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common known cause of Parkinson''s disease (PD). The clinical features of LRRK2 PD are indistinguishable from idiopathic PD, with accumulation of α-synuclein and/or tau and/or ubiquitin in intraneuronal aggregates. This suggests that LRRK2 is a key to understanding the aetiology of the disorder. Although loss-of-function does not appear to be the mechanism causing PD in LRRK2 patients, it is not clear how this protein mediates toxicity. In this study, we report that LRRK2 overexpression in cells and in vivo impairs the activity of the ubiquitin-proteasome pathway, and that this accounts for the accumulation of diverse substrates with LRRK2 overexpression. We show that this is not mediated by large LRRK2 aggregates or sequestration of ubiquitin to the aggregates. Importantly, such abnormalities are not seen with overexpression of the related protein LRRK1. Our data suggest that LRRK2 inhibits the clearance of proteasome substrates upstream of proteasome catalytic activity, favouring the accumulation of proteins and aggregate formation. Thus, we provide a molecular link between LRRK2, the most common known cause of PD, and its previously described phenotype of protein accumulation. 相似文献
5.
Precise spatiotemporal control of microtubule nucleation and organization is critical for faithful segregation of cytoplasmic and genetic material during cell division and signaling via the primary cilium in quiescent cells. Microtubule-associated proteins (MAPs) govern assembly, maintenance, and remodeling of diverse microtubule arrays. While a set of conserved MAPs are only active during cell division, an emerging group of MAPs acts as dual regulators in dividing and nondividing cells. Here, we elucidated the nonciliary functions and molecular mechanism of action of the ciliopathy-linked protein CCDC66, which we previously characterized as a regulator of ciliogenesis in quiescent cells. We showed that CCDC66 dynamically localizes to the centrosomes, the bipolar spindle, the spindle midzone, the central spindle, and the midbody in dividing cells and interacts with the core machinery of centrosome maturation and MAPs involved in cell division. Loss-of-function experiments revealed its functions during mitotic progression and cytokinesis. Specifically, CCDC66 depletion resulted in defective spindle assembly and orientation, kinetochore fiber stability, chromosome alignment in metaphase as well as central spindle and midbody assembly and organization in anaphase and cytokinesis. Notably, CCDC66 regulates mitotic microtubule nucleation via noncentrosomal and centrosomal pathways via recruitment of gamma-tubulin to the centrosomes and the spindle. Additionally, CCDC66 bundles microtubules in vitro and in cells by its C-terminal microtubule-binding domain. Phenotypic rescue experiments showed that the microtubule and centrosome-associated pools of CCDC66 individually or cooperatively mediate its mitotic and cytokinetic functions. Collectively, our findings identify CCDC66 as a multifaceted regulator of the nucleation and organization of the diverse mitotic and cytokinetic microtubule arrays and provide new insight into nonciliary defects that underlie ciliopathies.The ciliopathy-linked protein CCDC66 is only known for its ciliary functions. This study reveals that CCDC66 also has extensive non-ciliary functions, localizing to the spindle poles, spindle midzone, central spindle and midbody throughout cell division, where it regulates mitosis and cytokinesis by promoting microtubule nucleation and organization. 相似文献
6.
Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination 总被引:4,自引:0,他引:4 下载免费PDF全文
Sankaran S Starita LM Groen AC Ko MJ Parvin JD 《Molecular and cellular biology》2005,25(19):8656-8668
In this study we find that the function of BRCA1 inhibits the microtubule nucleation function of centrosomes. In particular, cells in early S phase have quiescent centrosomes due to BRCA1 activity, which inhibits the association of gamma-tubulin with centrosomes. We find that modification of either of two specific lysine residues (Lys-48 and Lys-344) of gamma-tubulin, a known substrate for BRCA1-dependent ubiquitination activity, led to centrosome hyperactivity. Interestingly, mutation of gamma-tubulin lysine 344 had a minimal effect on centrosome number but a profound effect on microtubule nucleation function, indicating that the processes regulating centrosome duplication and microtubule nucleation are distinct. Using an in vitro aster formation assay, we found that BRCA1-dependent ubiquitination activity directly inhibits microtubule nucleation by centrosomes. Mutant BRCA1 protein that was inactive as a ubiquitin ligase did not inhibit aster formation by the centrosome. Further, a BRCA1 carboxy-terminal truncation mutant that was an active ubiquitin ligase lacked domains critical for the inhibition of centrosome function. These experiments reveal an important new functional assay regulated by the BRCA1-dependent ubiquitin ligase, and the results suggest that the loss of this BRCA1 activity could cause the centrosome hypertrophy and subsequent aneuploidy typically found in breast cancers. 相似文献
7.
Control of nucleation in microtubule self-assembly 总被引:1,自引:0,他引:1
The inhibition of the rate and amplitude of assembly of microtubule protein at low GTP concentration is shown by measurement of microtubule length distributions to be due to the suppression of microtubule nucleation. This inhibitory effect is enhanced by GDP added before assembly, but can be overcome by a number of molecules such as pyrophosphate or ADP. The selective inhibition of nucleation by GDP in vitro, which occurs in addition to inhibition of elongation, could provide a mechanism for the control of spontaneous microtubule nucleation in vivo. 相似文献
8.
9.
Gamma-tubulin complexes and microtubule organization 总被引:6,自引:0,他引:6
Microtubule nucleation requires gamma-tubulin, which exists in two main protein complexes: the gamma-tubulin small complex, and the gamma-tubulin ring complex. During mitosis, these complexes accumulate at the centrosome to support spindle formation. Gamma-tubulin complexes are also present at non-centrosomal microtubule nucleation sites, both in interphase and in mitosis. In interphase, non-centrosomal nucleation enables the formation of microtubule bundles or networks of branched microtubules. Gamma-tubulin complexes may be involved not only in microtubule nucleation, but also in regulating microtubule dynamics. Recent findings indicate that the dynamics of microtubule plus-ends are altered, depending on the expression of gamma-tubulin complex proteins. 相似文献
10.
11.
Skeletal muscle differentiation involves a complete reorganization of the microtubule network. Nearly 20 years ago, Tassin et al. [1985: J Cell Biol 100:35-46] suggested a mechanism for this reorganization by showing a redistribution of the microtubule organizing center from the centrosome to the nuclear membrane. Little progress has been made since. It is still not clear whether centrosomal proteins are redistributed together, whether microtubules are nucleated at the nuclear membrane or transported there post-nucleation, and whether gamma-tubulin (gammatub) remains necessary for nucleation in myotubes. To investigate these questions, we have examined the redistribution of the centrosomal proteins pericentrin (PC), gammatub, and ninein in the C2 muscle cell line. Immunofluorescence of differentiated myotubes shows PC along the nuclear membrane whereas gammatub is only detected there after pre-fixation detergent extraction. After expression of a GFP-tagged gammatub, we observe a weak fluorescence along the nuclear membrane, confirming the presence of gammatub at a low concentration relative to PC. Microinjection of anti-gammatub antibodies into myotubes blocks microtubule growth from both nuclear membranes and centrosomal sites. The centrosomal microtubule-anchoring protein, ninein, is found at the nuclear membrane as well and its distribution appears independent of microtubule integrity. We conclude that centrosomal proteins are redistributed independently during muscle differentiation, to sites that nucleate microtubules both along the nuclear membranes and through the cytoplasm. 相似文献
12.
D'Arcy P Brnjic S Olofsson MH Fryknäs M Lindsten K De Cesare M Perego P Sadeghi B Hassan M Larsson R Linder S 《Nature medicine》2011,17(12):1636-1640
Ubiquitin-tagged substrates are degraded by the 26S proteasome, which is a multisubunit complex comprising a proteolytic 20S core particle capped by 19S regulatory particles. The approval of bortezomib for the treatment of multiple myeloma validated the 20S core particle as an anticancer drug target. Here we describe the small molecule b-AP15 as a previously unidentified class of proteasome inhibitor that abrogates the deubiquitinating activity of the 19S regulatory particle. b-AP15 inhibited the activity of two 19S regulatory-particle-associated deubiquitinases, ubiquitin C-terminal hydrolase 5 (UCHL5) and ubiquitin-specific peptidase 14 (USP14), resulting in accumulation of polyubiquitin. b-AP15 induced tumor cell apoptosis that was insensitive to TP53 status and overexpression of the apoptosis inhibitor BCL2. We show that treatment with b-AP15 inhibited tumor progression in four different in vivo solid tumor models and inhibited organ infiltration in an acute myeloid leukemia model. Our results show that the deubiquitinating activity of the 19S regulatory particle is a new anticancer drug target. 相似文献
13.
Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B' subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation. 相似文献
14.
Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis 下载免费PDF全文
Kinoshita K Noetzel TL Pelletier L Mechtler K Drechsel DN Schwager A Lee M Raff JW Hyman AA 《The Journal of cell biology》2005,170(7):1047-1055
Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3-XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A-dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis. 相似文献
15.
Genetic evidence that cellulose synthase activity influences microtubule cortical array organization 总被引:2,自引:1,他引:2
To identify factors that influence cytoskeletal organization we screened for Arabidopsis (Arabidopsis thaliana) mutants that show hypersensitivity to the microtubule destabilizing drug oryzalin. We cloned the genes corresponding to two of the 131 mutant lines obtained. The genes encoded mutant alleles of PROCUSTE1 and KORRIGAN, which both encode proteins that have previously been implicated in cellulose synthesis. Analysis of microtubules in the mutants revealed that both mutants have altered orientation of root cortical microtubules. Similarly, isoxaben, an inhibitor of cellulose synthesis, also altered the orientation of cortical microtubules while exogenous cellulose degradation did not. Thus, our results substantiate that proteins involved in cell wall biosynthesis influence cytoskeletal organization and indicate that this influence on cortical microtubule stability and orientation is correlated with cellulose synthesis rather than the integrity of the cell wall. 相似文献
16.
Previous experiments have shown that a fraction of microtubule-associated proteins is essential for the self-assembly of microtubules in vitro. When tubulin was titrated with increasing concentrations of these non-tubulin accessory factors, both the rate and extent of polymerization increased in a sigmoidal as opposed to a stoichiometric fashion. The non-tubulin proteins promoted the nucleation of microtubules as determined from the analysis of the kinetics of tubulin selfassembly and the examination of the microtubule length distribution following polymerization. The effect of the non-tubulin factors on microtubule elongation was determined by kinetic experiments in which purified tubulin subunits were added to microtubule seeds and the initial rate of polymerization was measured under conditions where spontaneous self-assembly was below detectable levels. In addition, microtubule growth was also observed when isolated flagellar axonemes were incubated with purified tubulin subunits indicating that the non-tubulin factors were not an absolute requirement for elongation. Analysis of the data in terms of the condensation mechanism of microtubule assembly indicated that the non-tubulin proteins stimulated the growth of microtubules not by increasing the rate of polymerization but by decreasing the rate of depolyerization. The mechanism by which these accessory factors promote tubulin assembly may be summarized as follows: under the conditions employed, they are required for tubulin initiation but not for elongation; the factors affect the extent and net rate at which polymer is formed by binding to the polymer, thereby stabilizing the formed microtubules and consequently shifting the equilibrium to favor assembly. 相似文献
17.
I Schweitzer D L Brown 《Biology of the cell / under the auspices of the European Cell Biology Organization》1984,52(2):147-159
Changes in the organization of centrosomes in mouse splenic T lymphocytes stimulated by concanavalin A (con A) were examined by electron microscopy of serial sections. In both resting and stimulated lymphocytes the single centrosome consists of a pair of centrioles, satellite bodies, and pericentriolar material. In resting cell centrosomes the satellite bodies are preferentially associated with, and appear to be attached by short stalks to, one of the centrioles. The satellite bodies are the primary sites of microtubule termination in the resting cell centrosome. During stimulation by con A there is a several-fold increase in microtubule content. This is correlated with an overall increase in centrosome size, an apparent increase in the size and in the number of satellite bodies, and a redistribution of satellite bodies to occupy a position between the two centrioles. Increased numbers of microtubules are detected terminating on the satellite bodies and in the pericentriolar material of the stimulated cell centrosome. Microtubule assembly from centrosomes in vitro was assessed by electron microscopy using detergent-permeabilized lymphocytes that had been pretreated to remove endogenous microtubules and supplied with purified bovine brain tubulin. These studies indicate that satellite bodies are major sites of microtubule assembly in both resting and stimulated cell centrosomes and show that the centrosomes of stimulated cells assemble more microtubules in vitro than resting cell centrosomes. This parallels the increase in microtubule content in intact lymphocytes stimulated by con A and suggests that the changes in centrosome organization and microtubule assembly capacity that occur during stimulation are causally related. 相似文献
18.
I. Schweitzer D. L. Brown 《Biology of the cell / under the auspices of the European Cell Biology Organization》1985,52(2):147-159
Changes in the organization of centrosomes in mouse splenic T lymphocytes stimulated by concanavalin A (con A) were examined by electron microscopy of serial sections. In both resting and stimulated lymphocytes the single centrosome consists of a pair of centrioles, satellite bodies, and pericentriolar material. In resting cell centrosomes the satellite bodies are preferentially associated with, and appear to be attached by short stalks to, one of the centrioles. The satellite bodies are the primary sites of microtubule termination in the resting cell centrosome. During stimulation by con A there is a several-fold increase in microtubule content. This is correlated with an overall increase in centrosome size, an apparent increase in the size and in the number of satellite bodies, and a redistribution of satellite bodies to occupy a position between the two centrioles. Increased numbers of microtubules are detected terminating on the satellite bodies and in the pericentriolar material of the stimulated cell centrosome. Microtubule assembly from centrosomes in vitro was assessed by electron microscopy using detergent-permeabilized lymphocytes that had been pretreated to remove endogenous microtubules and supplied with purified bovine brain tubulin. These studies indicate that satellite bodies are major sites of microtubule assembly in both resting and stimulated cell centrosomes and show that the centrosomes of stimulated cells assemble more microtubules in vitro than resting cell centrosomes. This parallels the increase in microtubule content in intact lymphocytes stimulated by con A and suggests that the changes in centrosome organization and microtubule assembly capacity that occur during stimulation are causally related. 相似文献
19.
[4-14C]Cholesteryl oleyl ether-labeled chylomicron remnants were injected into rats which received a specific goat antibody against rat hepatic lipase or a control serum. Chylomicron remnant cholesterol ether disappeared from circulation with a significantly higher half-life (2-fold) in antibody-treated rats than in controls (P less than 0.001). Recovered radioactivity in the liver was 2-fold lower in antibody-treated rats (22.8% (n = 6) vs. 45% (n = 4) P less than 0.01). These results clearly show that hepatic lipase may strongly promote chylomicron remnant cholesterol ether uptake by the liver. 相似文献