首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To evaluate the effect of progesterone on the synthesis and secretion of gonadotropins, ovariectomized ewes either were treated with progesterone (n = 5) for 3 wk or served as controls (n = 5) during the anestrous season. After treatment for 3 wk, blood samples were collected from progesterone-treated and ovariectomized ewes. After collection of blood samples, hypothalamic and hypophyseal tissues were collected from all ewes. Half of each pituitary was used to determine the content of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the number of receptors for gonadotropin-releasing hormone (GnRH). The amounts of mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were measured in the other half of each pituitary. Treatment with progesterone reduced mean serum concentrations of LH (p less than 0.001) but ot FSH (p greater than 0.05). Further, progesterone decreased (p less than 0.05) the total number of pulses of LH. We were unable to detect pulsatile release of FSH. Hypothalamic content of GnRH, number of receptors for GnRH, pituitary content of gonadotropins and mRNA for LH beta subunit, FSH beta subunit, alpha subunit, growth hormone, and prolactin were not affected (p greater than 0.05) by treatment with progesterone. Thus, after treatment with progesterone, serum concentrations of LH (but not FSH) are decreased. This effect, however, is not due to a decrease in the steady-state amount of mRNA for LH beta or alpha subunits.  相似文献   

3.
Primary pituitary cell cultures derived from adult male rats were used to explore the direct effects of purified porcine inhibin and follistatin, and recombinant human activin A on FSH beta, as well as LH beta and alpha-subunit mRNA levels. Subunit mRNAs were determined by blot hybridization using alpha, LH beta, and FSH beta cDNA and genomic fragments. Treatment with inhibin for 72 h significantly suppressed alpha and FSH beta mRNA levels with parallel changes in FSH secretion. No change in LH beta mRNA levels was observed. A decrease in FSH beta mRNA to undetectable levels was seen 4 h after inhibin administration. Recombinant human Activin A caused dose-dependent and parallel increases in FSH beta mRNA levels and FSH secretion. This increase was evident at 4 h after activin administration and maintained at longer times. alpha and LH beta mRNA levels remained unchanged. Follistatin addition to cultures for 72 h significantly reduced FSH beta mRNA levels. In a time-course experiment, a reduction in FSH beta mRNA to undetectable levels was observed 24 h after follistatin administration. There were no changes in alpha or LH beta mRNA levels. These data demonstrate that the actions of these gonadal peptides on FSH secretion may be accounted for, at least in part at the level of biosynthesis, by reductions in FSH beta mRNA levels directly at the level of the anterior pituitary gland.  相似文献   

4.
We investigated the mechanism of estradiol-17beta (E2) action on stimulation of LH (=gonadotropin II) release in the black porgy fish (Acanthopagrus schlegeli Bleeker) using an in vivo approach and primary cultures of dispersed pituitary cells in vitro. In vivo, E2 but not androgens (testosterone [T] and 11-ketotestosterone [11-KT]) significantly stimulated plasma LH in a dose-dependent manner. Estradiol-17beta also increased brain content of seabream GnRH. GnRH antagonist prevented E2 stimulation of LH release in vivo, indicating that the effect of E2 on LH was mediated by GnRH. In vitro, sex steroids (E2, T, 11-KT) alone had no effect on basal LH release in the cultured pituitary cells, but GnRH significantly stimulated LH release. Estradiol-17beta potentiated GnRH stimulation of LH release, an effect that was inhibited by GnRH antagonist, and 11-KT, but not T, also potentiated GnRH stimulation of LH release. The potentiating effect of 11-KT on GnRH-induced LH release in vitro was stronger than that of E2. These data suggest that E2 triggers LH release in vivo by acting both on GnRH production at the hypothalamus and on GnRH action at the pituitary. In contrast, 11-KT may only stimulate GnRH action at the pituitary. The E2) induction of LH release, through multiple interactions with GnRH control, supports a possible central role of E2in the sex change observed in the protandrous black porgy.  相似文献   

5.
The current dogma is that the differential regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) synthesis and secretion is modulated by gonadotropin-releasing hormone (GnRH) pulse frequency and by changes in inhibins, activins, and follistatins both at the pituitary and at the peripheral level. To date no studies have looked at the overlapping function of these regulators in a combined setting. We tested the hypothesis that changes in GnRH pulse frequency alter the relative abundance of these regulators at the pituitary and peripheral levels in a manner consistent with changes in pituitary and circulating concentrations of FSH; that is, an increase in FSH will be accompanied by increased stimulatory input (activin) and/or reduced follistatin and inhibin. Ovariectomized ewes were subjected to a combination hypothalamic pituitary disconnection (HPD)-hypophyseal portal blood collection procedure. Hypophyseal portal and jugular blood samples were collected for a 6-h period from non-HPD ewes, HPD ewes, or HPD ewes administered GnRH hourly or every 3 h for 4 days. In the absence of endogenous hypothalamic and ovarian hormones that regulate gonadotropin secretion, 3-hourly pulses of GnRH increased pituitary content of FSH more than hourly GnRH, although these differences were not evident in the peripheral circulation. The results failed to support the hypothesis in that the preferential increase of pituitary content of FSH by the lower GnRH pulse frequency could be explained by changes in the pituitary content of inhibin A, follistatin, or activin B. Perhaps the effects of GnRH pulse frequency on FSH is due to changes in the balance of free versus bound amounts of these FSH regulatory proteins or to the involvement of other regulators not monitored in this study.  相似文献   

6.
Changes in the frequency of GnRH and LH pulses have been shown to occur between the luteal and preovulatory periods in the ovine estrous cycle. We examined the effect of these different frequencies of GnRH pulses on pituitary concentrations of LH and FSH subunit mRNAs. Eighteen ovariectomized ewes were implanted with progesterone to eliminate endogenous GnRH release during the nonbreeding season. These animals then received 3 ng/kg body weight GnRH in frequencies of once every 4, 1, or 0.5 h for 4 days. These frequencies represent those observed during the luteal and follicular phases, and the preovulatory LH and FSH surge of the ovine estrous cycle, respectively. On day 4, the ewes were killed and their anterior pituitary glands were removed for measurements of pituitary LH, FSH, and their subunit mRNAs. Pituitary content of LH and FSH, as assessed by RIA, did not change (P greater than 0.10) in response to the three different GnRH pulse frequencies. However, subunit mRNA concentrations, assessed by solution hybridization assays and expressed as femtomoles per mg total RNA, did change as a result of different GnRH frequencies. alpha mRNA concentrations were higher (P less than 0.05) when the GnRH pulse frequency was 1/0.5 h and 1 h, whereas LH beta and FSH beta mRNA concentrations were maximal (P less than 0.05) only at a pulse frequency of 1/h. Additionally, pituitary LH and FSH secretory response to GnRH on day 4 was maximal (P = 0.05) when the pulse infusion was 1/h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Progesterone and certain corticosteroids, such as deoxycorticosterone (DOC) and triamcinolone acetonide (TA), can stimulate gonadotropin surges in rats. The mechanism of these steroids could involve a pituitary or hypothalamic site of action, or both. Progesterone and TA did not alter the ability of GnRH to release LH or FSH either before, during, or after the gonadotropin surge induced by these steroids in estrogen-primed ovariectomized female rats. Furthermore, progesterone, TA and DOC were unable to induce a gonadotropin surge in short-term estrogen-primed castrated male rats. These results suggested a hypothalamic rather than a pituitary site of action of progesterone and corticosteroids in the release of gonadotropins. Since progestin and corticosteroid receptors are present in catecholamine neurons, a role for catecholamine neurotransmission in progesterone and corticosteroid-induced surges of LH and FSH in estrogen-primed ovariectomized rats was examined. Catecholamine synthesis inhibitors and specific alpha 1 (prazosin), alpha 2 (yohimbine), and beta (propranolol) receptor antagonists were used to determine the role of catecholamine neurotransmission in the steroid-induced surges of LH and FSH. Both of the catecholamine synthesis inhibitors, alpha-methyl-p-tyrosine HCl (alpha-MPT), a tyrosine hydroxylase inhibitor, and sodium diethyldithiocarbamate (DDC), an inhibitor of dopamine-beta-hydroxylase, attenuated the ability of progesterone, TA, and DOC to induce LH surges when administered 3 h and 1 h, respectively, before the steroid. DDC also suppressed the ability of progesterone, TA, and DOC to induce FSH surges. Rats treated with alpha-MPT had lower mean FSH values than did steroid controls, but the effect was not significant. Both the alpha 1 and alpha 2 adrenergic antagonists, prazosin and yohimbine, significantly suppressed the ability of progesterone, TA, and DOC to induce LH and FSH surges. In contrast, the beta adrenergic receptor blocker, propranolol, had no effect upon the ability of progesterone, TA, or DOC to facilitate LH and FSH secretion. Finally, the stimulatory effect of progesterone and TA upon LH and FSH release was found to be blocked by prior treatment with a GnRH antagonist, further suggesting hypothalamic involvement. In conclusion, this study provides evidence that the stimulation of gonadotropin release by progesterone and corticosteroids is mediated through a common mechanism, and that this mechanism involves the release of GnRH, most likely through catecholaminergic stimulation. Furthermore, catecholamine neurotransmission, through alpha 1 and alpha 2 but not beta receptor sites, is required for the expression of progesterone and corticosteroid-induced surges of LH and FSH in estrogen-primed ovariectomized rats.  相似文献   

8.
Episodic GnRH input is necessary for the maintenance of LH and FSH secretion. In the current study we have assessed the requirement of a pulsatile GnRH signal for the regulation of gonadotropin alpha- and beta-subunit gene expression. Using a dispersed rat pituitary perifusion system, GnRH (10 nM) was administered as a continuous infusion vs. hourly pulses. Secretion of free alpha-subunit, LH, and FSH were monitored over 5-min intervals for the entire 12-h treatment period before the responses of alpha, LH beta, and FSH beta mRNAs were assessed. Basal release of all three glycoproteins declined slowly over 6-8 h before reaching a plateau. The cells were responsive to each pulse of GnRH, but continuous GnRH elicited only a brief episode of free alpha-subunit, LH, and FSH release, followed by a return to unstimulated levels. Despite the similar patterns of secretion, differences were observed in the responses of gonadotropin mRNAs to the two modes of GnRH. alpha mRNA increased in response to continuous (1.6-fold) or pulsatile (1.7-fold) GnRH. FSH beta mRNA was suppressed to 48% of the control value after continuous GnRH, but was stimulated over 4-fold by the pulses. LH beta mRNA was unresponsive to either treatment paradigm. We conclude that in vitro 1) alpha mRNA levels are increased in response to GnRH independent of the mode of stimulation; 2) under the conditions studied, LH beta mRNA levels are unresponsive to either mode of GnRH input; and 3) the response of FSH beta mRNA to GnRH is highly dependent on the mode of administration, with levels depressed in response to continuous GnRH, but stimulated by pulsatile GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The hormonal interactions required for the generation of a secondary surge of FSH on the evening of proestrus have not been clearly defined. The role of GnRH in driving a surge of FSH has been questioned by findings in previous studies. In the current study, gonadotropin secretion was measured from pituitary fragments obtained from rats at 0900 and 2400 h on each day of the estrous cycle. Pituitary fragments were perifused in basal (unstimulated) conditions or in the presence of GnRH pulses to determine whether a selective increase in basal release of FSH and/or an increase in the responsiveness to GnRH occurs during the secondary FSH surge. Each anterior pituitary was cut into eighths and placed into a microchamber for perifusion. Seven pulses of GnRH (peak amplitude = 50 ng/ml; duration = approximately 2 min) were administered at a rate of one per hour starting at 30 min. Fractions of perfusate were collected every 5 min and frozen until RIA for LH and FSH. The mean total amount of LH or FSH secreted during the hour interval following each of the last six pulses of GnRH (or the corresponding basal hour) was calculated. Analysis of variance with repeated measures indicated that the evening secretion of LH on proestrus (2400 h) dropped significantly (p less than 0.05) from a maximum on the morning of proestrus (0900 h), whereas the FSH secretion remained elevated at this time. Therefore, the ratio of FSH to LH secreted in response to GnRH pulses was highest during the secondary FSH surge and lowest on the morning of proestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
To study the structure-function relationships of follitropin (FSH), we expressed the hormone in a heterologous cell system. A genomic clone bearing a 3.7-kilobase FSH beta insert containing the entire coding sequence was transfected alone or together with the alpha subunit gene into Chinese hamster ovary cells and stable lines expressing either FSH beta or FSH dimer were selected. Pulse-chase experiments revealed that, when transfected alone FSH beta was very slowly secreted similar to lutropin beta and thyrotropin beta but unlike choriogonadotropin beta which is efficiently secreted. However, cotransfection of the FSH beta and alpha subunit genes resulted in "rescue" of the beta subunit and rapid secretion of dimer. These data support the hypothesis that the glycoprotein hormones of pituitary origin have determinants for secretion that differ from those on the placental hormone, choriogonadotropin. Recombinant FSH stimulated steroidogenesis comparable to purified human FSH isolated from pituitaries in an in vitro rat granulosa cell assay and appears more homogeneous by chromatofocusing. Human FSH produced by this cell line provides a source of bioactive FSH for experimental and clinical use.  相似文献   

11.
The feedback effects of two ovarian steroids, estradiol-17 beta (E2) and 20 alpha-hydroxypregn-4-en-3-one (20 alpha OH), were examined in both intact (INT) and ovariectomized (OVEX) does. We measured steroid-induced alterations in endogenous gonadotropin-releasing hormone (GnRH) from sequential 10-min samples of hypothalamic perfusates, simultaneous changes in peripheral plasma luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the modification of pituitary responsiveness, i.e., increments in plasma LH (delta LH) and plasma FSH (delta FSH), after 50 ng, 250 ng, and 1 microgram of exogenous GnRH in individual does of 6 treatment groups. The groups were: INT does, OVEX does, OVEX does receiving either one (1 E2) or two (2 E2) E2-filled Silastic capsules, OVEX does receiving a 20 alpha OH-filled capsule (20 alpha OH), and OVEX does receiving both capsules of E2 and 20 alpha OH (1 E2 + 20 alpha OH). Ovariectomy enhanced the pulsatile release of hypothalamic GnRH and pituitary LH and FSH, and increased the LH response (delta LH) to exogenous GnRH (OVEX vs. INT, p less than 0.05). Replacement of E2 at the time of ovariectomy prevented the increased GnRH and gonadotropin secretion as well as the enhanced delta LH that were observed in untreated OVEX does. The release of hypothalamic GnRH in the 20 alpha OH group was lower (p less than 0.05) than that in the OVEX group and not different from that in the INT group. The release of pituitary LH and FSH and the delta LH in the 20 alpha OH group was not different from that in the OVEX group, but these parameters were greater (p less than 0.05) than those in the INT group. The hypothalamic GnRH pulse frequency in the 1 E2 + 20 alpha OH group was lower (p less than 0.05) than that in either the 1 E2 or the 20 alpha OH group, but the delta LH in the 1 E2 + 20 alpha OH group was not different from that in either the 1 E2 or the 20 alpha OH group. The highest dose (1 microgram) of exogenous GnRH stimulated a modest increase in FSH in the OVEX, 20 alpha OH, 1 E2 + 20 alpha OH, and 1 E2 groups; but a steroid effect on delta FSH among these 4 groups was not apparent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of GnRH pulse amplitude, frequency, and treatment duration on pituitary alpha and LH beta subunit mRNA concentrations were examined in castrate-testosterone replaced male rats. Experimental groups received iv GnRH pulses (5, 25, or 125 ng) at 7.5-, 30-, or 120-min intervals for 8, 24, or 48 h. Saline pulses were given to control rats. Acute LH secretion was measured in blood drawn before and 20 min after the last GnRH pulse. In saline controls, alpha and LH beta mRNAs (150 +/- 14, 23 +/- 2 pg cDNA bound/100 micrograms pituitary DNA) fell to 129 +/- 14 and 18 +/- 2, respectively, after 48 h. In animals receiving GnRH pulses (7.5-min intervals), the 125-ng dose stimulated a slight increase (P less than 0.01) in alpha mRNA levels after 8 and 24 h and both LH subunit mRNAs were increased by the 25- and 125-ng doses after 48 h. The 30-min pulse interval injections (25- and 125-ng doses) increased LH beta mRNA levels after 8 h, but alpha mRNAs were not elevated until after 24 h. Maximum (3-fold) increases in alpha and LH beta mRNAs were seen in rats receiving 25-ng pulses every 30 min for 48 h. Using 120-min pulses, LH subunit mRNAs were not increased by any GnRH dose through 48 h. Acute LH release was not seen in rats receiving 5 ng GnRH pulses at any pulse interval.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Insulin-like growth factor-I (IGF-I) has been shown to be involved in pubertal activation of gonadotropin (GTH) secretion. The aim of this study was to determine if IGF-I directly stimulates synthesis and release of GTH at an early stage of gametogenesis. The effects of IGF-I on expression of genes encoding glycoprotein alpha (GPalpha), follicle-stimulating hormone (FSH) beta, and luteinizing hormone (LH) beta subunits and release of FSH and LH were examined using primary pituitary cells of masu salmon at three reproductive stages: early gametogenesis, maturing stage, and spawning. IGF-I alone or IGF-I + salmon GnRH (sGnRH) were added to the primary pituitary cell cultures. Amounts of GPalpha, FSHbeta, and LHbeta mRNAs were determined by real-time PCR. Plasma and medium levels of FSH and LH were determined by RIA. In males, IGF-I increased the amounts of all three subunit mRNAs early in gametogenesis in a dose-dependent manner, but not in the later stages. In females, IGF-I stimulated release of FSH and LH early in gametogenesis, whereas no stimulatory effects on the subunit mRNA levels were observed at any stage. IGF-I + sGnRH stimulated release of FSH and LH at all stages in both sexes, but had different effects on the subunit mRNA levels depending on subunit and stage. The present results suggest that IGF-I itself directly stimulates synthesis and release of GTH early in gametogenesis in masu salmon, possibly acting as a metabolic signal that triggers the onset of puberty.  相似文献   

14.
Our previous work has suggested that glucocorticoid pretreatment suppresses the enhanced responsiveness to GnRH seen in serum LH 12 h after castration. By contrast, serum FSH continues to show the castration-induced hypersensitivity to GnRH. Our attempts to replicate this LH suppression in static pituitary culture in vitro were not successful. This suggested to us the possibility that corticoids in vivo might be preventing castration-induced increases in pituitary GnRH receptor levels. We tested this at 24 h post-castration and, in fact, corticoids did not suppress the increase in GnRH receptors. In addition to the aforementioned effects of corticoids, we have seen that cortisol reverses the castration-induced drop in pituitary FSH content. It does this for 7 days post-castration, even though it no longer has an effect in suppressing serum LH. Thus, our accumulated data reveal that glucocorticoids have a differential effect on LH and FSH synthesis and secretion. Further studies are needed to clarify the site(s) of action of glucocorticoids in gonadotropin secretion and synthesis. Glucocorticoids may well prove to be a key in unlocking the mystery of the mechanism of differential control of regulation of LH and FSH.  相似文献   

15.
We previously reported that annexin 5 is found specifically in gonadotropes and that the expression is dramatically enhanced after ovariectomy. In the present study, the expression of annexin 5 was examined in the primary culture of rat anterior pituitary cells using semiquantitative RT-PCR to determine if it is under the direct control of gonadotropin-releasing hormone (GnRH). Continuous administration of GnRH analog for 1 h enhanced the expression of both FSH beta subunit and annexin 5 mRNA. The expression of annexin 5 mRNA was also augmented by phorbol 12-myristate 13-acetate but not by forskolin. Administration of recombinant rat annexin 5 to the culture increased LH beta mRNA expression. These data clearly demonstrate that the expression of annexin 5 mRNA is directly controlled by GnRH and suggest that annexin 5 is involved in mediating GnRH action in the pituitary gland.  相似文献   

16.
LH, FSH, and chorionic gonadotropin (CG) are comprised of a common alpha subunit and a hormone-specific beta subunit. Using Madin-Darby canine kidney (MDCK) epithelial cells to examine the polarized secretion of human CG/LH, we previously reported that CG and LH were detected in the apical and basolateral compartments, respectively, and the carboxyl terminal end of the CGbeta subunit contains a strong apical signal. Here we show that the carboxyl seven amino acids in the LHbeta subunit contribute to the basolateral secretion of LH, and an LH chimera bearing the CGbeta apical signal is redirected from the basolateral to the apical compartments. Because LH and FSH are synthesized in the same cell, we also compared the secretion polarity of LH with FSH. MDCK cells expressing the FSH dimer displayed an almost equal distribution of protein into the apical and basolateral compartments. Given that the LHbeta and CGbeta carboxy terminal sequences, which differ from that in the FSHbeta subunit, occupy a pivotal role in their polarized behavior, the results support the hypothesis that pituitary exit of LH and FSH occur via different secretion pathways, and are released spatially from the pituitary via different circulatory routes.  相似文献   

17.
In tilapia, hormone treatment during the period of sexual differentiation can alter the phenotype of the gonads, indicating that endocrine factors can cause gonadal sex reversal. However, the endocrine mechanism underlying sex reversal of reproductive behaviors remains unsolved. In the present study, we detected sexual dimorphism of gonadotropin-releasing hormone type III (GnRH3) neurons in Mozambique tilapia Oreochromis mossambicus. Our immunohistochemical observations showed sex differences in the number of GnRH3 immunoreactive neurons in mature tilapia; males had a greater number of GnRH3 neurons in the terminal ganglion than females. Treatment with androgen (11-ketotestosterone (11-KT) or methyltestosterone), but not that with 17β-estradiol, increased the number of GnRH3 neurons in females to a level similar to that in males. Furthermore, male-specific nest-building behavior was induced in 70% of females treated with 11-KT within two weeks after the onset of the treatment. These results indicate androgen-dependent regulation of GnRH3 neurons and nest-building behavior, suggesting that GnRH3 is importantly involved in sex reversal of male-specific reproductive behavior.  相似文献   

18.
Two distinct cDNAs encoding beta subunits of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were cloned from the cDNA library constructed for the pituitary of the red-bellied newt, Cynops pyrrhogaster, and sequenced. The newt FSHbeta and LHbeta cDNAs encode polypeptides of 129 and 131 amino acids, including signal peptides of 20 and 19 amino acids, respectively. The number and position of cysteine and N-glycosylation in each of the beta subunits of FSH and LH, which are considered essential for assembly of the alpha subunit, are well conserved between the newt and other tetrapods. The high homology (41.6%) between the beta subunits of newt FSH and LH imply less specificity of FSH and LH in gonadal function. One cDNA encoding the common polypeptide chain alpha subunit of FSH and LH was also isolated from the newt pituitary gland. The mRNAs of FSHbeta, LHbeta, and the alpha subunit were expressed only in the pituitary gland among various newt tissues. Double-staining with in situ hybridization and immunohistochemistry revealed coexpression of FSHbeta and LHbeta in the same newt pituitary cells. Ovariectomy induced a significant increase in FSHbeta mRNA levels, but there was no significant change in LHbeta or alpha subunit mRNA levels compared with those in control animals. Taken together, these data suggest that two kinds of gonadotropins, namely FSH and LH, are expressed in the same gonadotropin-producing cells in the pars distalis of the newt as well as in other tetrapods and that the expression of FSHbeta is negatively regulated by the ovaries.  相似文献   

19.
Partially purified inhibin from primate Sertoli cell culture medium (pSCl) suppresses both LH and FSH secretion from cultured rat pituitary cells stimulated with GnRH. To examine the mechanism of action of pSCl, we have measured steady state levels of mRNAs for the gonadotropin subunits in pituitary cell cultures exposed to 10 nM GnRH for 6 h in control or pSCl-containing medium (short term) and after 72-h pretreatment with pSCl or control medium (long term). Messenger RNA levels were determined by Northern analysis using specific cDNA probes for rat FSH beta, LH beta, and the common alpha-subunit. In the long term experiments, pSCl inhibited GnRH-stimulated release of FSH (47.4 +/- 3.3% of control), LH (69.2 +/- 2.3%), and free glycoprotein alpha-subunit (74.2 +/- 4.5%), and intracellular FSH declined to 88.4 +/- 3.5% of control. Concentrations of the subunit mRNAs were all decreased: FSH beta to 54.4 +/- 5.0%, LH beta to 79.6 +/- 9.4%, and alpha to 70.8 +/- 8.7% of control. In the short-term experiments, pSCl also suppressed FSH, LH, and alpha-subunit secretion to 75.9 +/- 3.6%, 79.5 +/- 2.1%, and 90.9 +/- 1.8% of control, respectively. Intracellular LH and alpha-subunit levels were significantly increased in cells treated for 6 h with GnRH and pSCl (155 +/- 18%, 145 +/- 14% of control), while FSH was comparable to control. After 6 h, pSCl selectively reduced the level of mRNA for FSH beta (56.5 +/- 5.8% of control).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The giant panda (Ailuropoda melanoleuca) is an endangered species and indigenous to China. It has been proposed that it has a highly specialized reproductive pattern with low fecundity, but little is known about its basic reproductive biology at the molecular level. In this report the genes encoding gonadotropin subunits alpha, follicle-stimulating hormone (FSH) beta and luteinizing hormone (LH) beta of the giant panda were amplified for the first time by RT-PCR from pituitary total RNA, and were cloned, sequenced and analyzed. The results revealed that the open reading region (ORF) of gonadotropin subunits alpha, FSH beta and LH beta are 363, 390 and 426 bp long, respectively. They displayed a reasonably high degree (74-94, 85-93, 75-91%, for alpha, FSH beta and LH beta subunits, respectively) of identity when deduced amino acids were compared with homologous sequences from partial available mammals including human, cattle, sheep, pig, rat, mouse. Three distinct differences were found at the site of 59 aa of the alpha subunit and 55 aa, 68 aa of FSH beta subunit. Our results provide an insight into understanding the mechanism of reproduction regulation and genetic characteristics of giant panda which will make an actual contribution to its conservation. In addition they lay a foundation for a further study towards producing recombinant panda FSH and LH which can be used in artificial breeding aimed to increase its captive reproductive efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号