首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), was probably introduced into the United States from China with solid wood packing and dunnage during the 1980s, and it has recently become established in limited infestations near several major cities in the United States. Regulated wood packing material (RWPM) arriving in the United States from China is required to undergo fumigation with methyl bromide (MeBr), to be heat treated, or kiln dried. Sulfuryl fluoride (SF) is a candidate fumigant to replace MeBr under certain conditions. SF fumigations were conducted in 432-liter Lexan chambers held in a 6.1-m (20-foot) refrigerated container for temperature control. Each fumigation consisted of 12 Populus spp. 10- by 10- by 115-cm timbers, of high moisture content, naturally infested with Asian longhorned beetle. During 2001, we fumigated wood for 24 h at a range of doses (20-112 g/m3) and temperatures (4.4, 10.0, 15.6, and 21.1 degrees C) and subjected the data to probit analysis. Confirmatory fumigations were conducted at doses of 120 and 104 g/m3 at temperatures of 10.0 and 15.6 or 21.1 degrees C, respectively, which resulted in complete kill of all larvae. Pupae that became available later in the year as temperatures warmed were fumigated at 15.6 and 21.1 degrees C with 104 g/m3, which resulted in complete pupal mortality. The next year (2002), we conducted 24-h fumigations with doses of 116 g/m3 at 4.4 and 10.0 degrees C with cold-harvested wood infested with cold-acclimated larvae. Cold-acclimated larvae required much higher concentration times time (CxT) product for control at 4.4 and 10.0 degrees C compared with nonacclimated larvae. Sulfuryl fluoride treatments at a dose of 104 g/m3 and temperature of 15.6 degrees C and above and that achieved a CxT product of 1,095 g-h/m3 or above are recommended for RWPM infested with Asian longhorned beetle larvae and pupae.  相似文献   

2.
The Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is recognised as potentially one of the most damaging invasive insects in Europe and North America. International trade has increased the risk of accidental introduction of ALB. An eradication programme was initiated in Northeast Italy in June 2009, when an ALB infestation was discovered. The infestation was monitored by annual surveys of all host‐tree species growing in the eradication area. Infested trees were cut down and chipped. This study analyses the spatiotemporal distribution of infested trees for a 5‐year period from 2008 to 2012 using a generalised linear model approach. The results show that spread and infestation risk were significantly affected by (1) distance of suitable hosts from the nearest infested trees, (2) number of infested trees in the surroundings, and (3) annual variation. The significant differences in beetle dispersal between years reflect to some extent the onset of the eradication programme. The model allowed the estimation of arbitrary probability‐based management boundaries surrounding ALB‐infested trees. For example, the model estimated a 0.1% probability of attack on a suitable host tree 1 910 m from an existing attack.  相似文献   

3.
Anoplophora glabripennis Motschulsky, a wood borer native to Asia, was recently found in New York City and Chicago. In an attempt to eradicate these beetle populations, thousands of infested city trees have been removed. Field data from nine U.S. cities and national tree cover data were used to estimate the potential effects of A. glabripennis on urban resources through time. For the cities analyzed, the potential tree resources at risk to A. glabripennis attack based on host preferences, ranges from 12 to 61% of the city tree population, with an estimated value of $72 million-$2.3 billion per city. The corresponding canopy cover loss that would occur if all preferred host trees were killed ranges from 13-68%. The estimated maximum potential national urban impact of A. glabripennis is a loss of 34.9% of total canopy cover, 30.3% tree mortality (1.2 billion trees) and value loss of $669 billion.  相似文献   

4.
As part of the eradication program for recent introductions of the longhorned beetle Anoplophora glabripennis (Motschulsky) in the United States, wood from infested trees is chipped and incinerated. Two tests were conducted to evaluate the efficiency of chipping wood from infested trees on the survival of the beetle. In the first test, plastic worms were used as surrogates for larvae of the beetle. Plastic worms of different sizes were placed in holes drilled in logs of sugar maple, Acer saccharum Marsh. In a second test, in addition to plastic worms, we used different instars and pupae of gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae); larvae of the beetle Phyllophaga annina Lewis (Coleoptera: Scarabaeidae); and larvae of an unidentified weevil (Coleoptera: Curculionidae). Although chipping did not result in an obvious damage to all plastic worms, it did kill all larvae and pupae of insects placed in holes of maple logs. The overall recovery rate (percent recovered) for the plastic worms was 96% in the first (1997) test, and 71 and 98% for 10 and 40 mm long plastic worms in the second (1998) test, respectively. Logistic regression analysis of the data from the first experiment indicates that larger worms receive more severe damage. Size of logs did not have a significant effect on the level of damage received by plastic worms. All recovered insects were severely damaged after chipping logs and we could not determine recovery rates. Results of the two tests indicate that chipping wood from infested trees without incineration of the resulting chips provides a highly effective method for destroying wood inhabiting insect pests such as A. glabripennis. The elimination of incineration saves considerable resources while effectively eliminating risks associated with movements of wood containing living wood-boring insects.  相似文献   

5.
The Asian longhorned beetle Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) is one of the most dangerous xylophagous pests affecting broadleaf trees in the world. Eradication programmes are undertaken in non‐native regions, requiring extensive resources and involving high costs. An adapted strategy must be set up to optimize the ratio cost/probability of success. We developed a method to generate a risk index of A. glabripennis presence at a local scale, in the surrounding area of an infestation, using field observations (counts of adult insects, exit holes and infested trees). The method, mathematically based on the bivariate symmetric Laplace distribution, has thus reasonable input requirements. The output risk map is easy to interpret and can be directly used by decision‐makers. We used our approach in three infestations in Switzerland. The risk map represented well the insect pressure (beetle population density). We highlighted the fact that survey boundaries, commonly chosen using constant distances from the infestation, should be selected regarding the spatial distribution of the insect pressure, to prioritize monitoring activities. The risk map provides a helpful instrument for advanced survey planning after a first overview, for example to decide which area and which host trees should be inspected for infestations.  相似文献   

6.
Anoplophora glabripennis Motschulsky, an Asian cerambicid beetle, was first found in the United States in 1996 and was likely introduced into the United States through infested wood packing materials and dunnage. Methyl bromide (MeBr) fumigation is an internationally accepted treatment for such wood-boring beetles, but the use of MeBr is scheduled for reduction or elimination as alternatives become available. The use of MeBr can be reduced by more efficient and technically sound fumigation techniques, including good circulation and proper loading. Concentration x time products (CxT) reported for A. glabripennis in solid wood timbers were used to test estimated doses in container fumigations conducted in Tianjin and Shanghai, China, during years 2002-2003. We found that CxT products observed were generally adequate and would support reduced doses of MeBr at temperatures intermediate (10.0 and 15.6 degrees C) to the Animal and Plant Health Inspection Service schedule of 80 g and 48 g/m3 at > or =4.4 and > or = 21.1degrees C, respectively. The use of fans is recommended, and loading of the containers should never reach 100% to allow for better circulation and desorption. Proper use of fans will allow for better aeration and increase safety to inspectors and consignees of containerized fumigated commodities.  相似文献   

7.
杨树截干上白杨透翅蛾的危害及防治   总被引:1,自引:0,他引:1  
在内蒙古巴彦淖尔市杨树人工防护林区,采用杨树高枝截干是防治光肩星天牛Anoplophora glabripennis(Motschulsky)的有效手段之一。但在当年春季杨树截干上留下的机械伤口及新萌发枝条,为白杨透翅蛾Paranthrene tabaniformis(Rott.)的入侵提供了有利条件。白杨透翅蛾在1~3年的截干上发生密度较高,严重时影响到新萌发枝干的生长甚至死亡。2007年5月调查发现,在杨树截干上白杨透翅蛾的有虫株率达到89·17%,平均虫口密度达到(3·40±0·21)头/株,远远超过了0·3头/株的最低防治标准。最后,结合当地杨树人工防护林网的特殊环境条件,提出了针对性的防治措施。  相似文献   

8.
Cover Caption     
《Insect Science》2012,19(3):i-i
Anoplophora glabripennis, the Asian longhorned beetle (ALB), is a serious pest of hardwood trees in China, North America and Europe. It is native to China and the Korean Peninsula and was introduced to North America and Europe. ALB control relies on removal of infested and susceptible trees. Host location, mating behaviors and associated semiochemicals are being elucidated for the purpose of developing attractant lures in support of ALB management (see pages 355–71). Here, a male ALB guards a female on a poplar tree in Ningxia, China. Photo provided by Dr. Jacob D. Wickham.  相似文献   

9.
不速之客:林业外来有害生物   总被引:14,自引:1,他引:14  
结合与中美两国林业有关的重要外来入侵性病虫害实例,包括板栗疫病、荷兰榆树病、松材线虫、光肩星天牛、红脂大小蠹和舞毒蛾等,对外来有害生物的危害严重程度、发生途径和控制对策进行了讨论,提出了入侵种监测、评估、科学研究、国际合作和信息共享等方面的具体建议。  相似文献   

10.
  • 1 Populations of the seed beetle Callosobruchus maculatus (F.) exhibit considerable differences in body size and larval behaviour. We examined whether such variation modifies the relationship between beetle infestation and host plant performance.
  • 2 Larvae from African and Asian biotypes were reared in seeds of four hosts that represented an almost four‐fold variation in seed mass. We estimated mass lost to larval consumption, and compared germination rates and seedling growth between infested and control seeds.
  • 3 In seeds bearing a single larva, the larger‐bodied, contest‐competing larvae of the Asian biotype caused a 38–47% greater reduction in seed mass compared with the smaller‐bodied, scramble‐competing larvae of the African biotype. The amount of seed mass lost per larva remained similar in seeds with one or two scramble‐competing larvae but decreased significantly in seeds bearing two contest‐competing Asian larvae.
  • 4 Differences in larval consumption and behaviour produced striking differences in the frequency of germination. Germination of singly‐infested mung bean (i.e. the smallest host) was 71% for African‐infested seeds versus 11% for Asian‐infested seeds. In cowpea (i.e. the largest host), 76% of Asian‐infested seeds germinated, whereas the germination rate of African‐infested cowpeas (92%) was similar to that of uninfested seeds.
  • 5 Effects of beetle origin persisted after germination. Seedlings derived from Asian‐infested seeds had greater cotyledon damage 7 days after germination, and displayed lower height and less biomass 15 days after germination. Cotyledon damage was a good predictor of seedling performance (i.e. better than seed mass consumed) 15 days after germination.
  • 6 Previous studies have suggested that population differences in larval size and burrowing behaviour (‘centripetal tendency’) reflect adaptation to different‐sized seeds. The present study demonstrates that these differences in turn influence the impact of larval feeding on host viability. Strong biotypic variation makes it difficult to generalize about pest impacts at the level of pest species.
  相似文献   

11.
The current system of production and consumption needs end‐of‐life disposal to function, but the linkage between upstream production‐consumption with the downstream landfill as terminus is, at best, a tenuous, one‐way relationship, suggesting a partial system failure. A starting point to fix this link is to confront, systematically, the messy “black box” that is mixed waste landfilling, interrogate its contents locally, and determine a baseline that can be used to scale up results. Here, we develop a detailed model characterizing landfilled municipal solid waste (MSW) in the United States across the dimensions of material quantity, quality, location, and time. The model triangulates measurements spanning 1,161 landfills (representing up to 95% of landfilled MSW) and 15,169 solid waste samples collected and analyzed at 222 sites across the United States. We confirm that landfilled quantities of paper (63 million megagrams [Mg]), food waste (35 million Mg), plastic (32 million Mg, textiles (10 million Mg), and electronic waste (3.5 million Mg) are far larger than computed by previous top‐down U.S. government estimates. We estimate the cost of MSW landfill disposal in 2015 (10.7 billion U.S. dollars [USD]) and gross lost commodity value of recyclable material (1.4 billion USD). Further, we estimate landfill methane emissions to be up to 14% greater (mass basis) than the 2015 U.S. inventory. By principally relying on measurements of waste quantity and type that are recorded annually, the model can inform more effective, targeted interventions to divert waste materials from landfill disposal, improve local, regional, and national emission estimates, enhance dissipative loss estimates in material flow analyses, and illuminate the dynamics linking material, energy, and economic dimensions to production, consumption, and disposal cycles.  相似文献   

12.
Firewood can serve as a vector in the transport of non-native species, including wood-boring insects that feed within the wood and thus can be transported accidentally. Governments have enacted limitations on the movement of firewood in an effort to limit the anthropogenic movement of non-native species through, for example, recreational camping. Although the movement of invasive species through firewood is a documented invasion pathway, it is not trivial for governments to determine a "safe" allowable distance for moving firewood. We were motivated by this challenge and developed a theoretical simulation to determine the campgrounds that could be potentially exposed to infested firewood based upon the hypothetical distribution of an invasive species and the allowable distance for moving firewood. We extend this concept to the known distributions of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) and Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) Coleoptera: Cerambycidae). We illustrate, based upon theoretical and empirical observations, that as the distribution of an invasive species increases, more rigid constraints on the movement of firewood would be required relative to those species that are distributed over a smaller scale. Also, on the level of management within a state, smaller states have far less margin for error than larger ones, as even extremely rigid restrictions on the movement of firewood could have little management effect unless the infested area is spatially limited. These results collectively suggest the potential for a dynamic management strategy that adjusts allowable distances for firewood movement based upon the distribution of the non-native species.  相似文献   

13.
Two male-specific beetle volatiles were found that elicited strong gas chromatographic-electroantennographic responses from both sexes of Asian longhorned beetle adults, Anoplophora glabripennis. The secretion consisted of a approximately 1:1 (v/v) blend of functionalized dialkyl ethers, 4-(n-heptyloxy)butanal and 4-(n-heptyloxy)butan-1-ol. These compounds are chemically unusual natural products that are previously unknown from insects. Laboratory olfactometer studies showed that a blend of 10 microg of each synthetic compound on a filter paper strip was significantly attractive to ALB adults.  相似文献   

14.
光肩星天牛Anoplophora glabripennis(Motsch.)是我国重要林木蛀干害虫,造成了巨大的经济损失(张星耀、骆有庆,2003)。大斑啄木鸟Picoides major(L.)是林业蛀干类害虫的重要天敌,关于啄木鸟对蛀干类害虫的控制作用国内已有一些报道,  相似文献   

15.
The Asian longhorned beetle, Anoplophora glabripennis, is a destructive pest that attacks many species of deciduous hardwood trees. One of its natural enemies is Dastarcus helophoroides that parasitizes many species of longhorned beetles. Larval frass from six different host tree species varied in attraction to D. helophoroides adults, and frass from one host species, Acer negundo, showed no attraction at all. This information has practical benefits to evaluating the efficacy of D. helophoroides as a biological control agent for A. glabripennis and increases our understanding of the co-evolution between this parasitoid, its host, and host food trees.  相似文献   

16.
Goal, Scope and Background The disposal phase of a product’s life cycle in LCA is often neglected or based on coarse indicators like ‘kilogram waste’. The goal of report No. 13 of the ecoinvent project (Doka 2003) is to create detailed Life Cycle Inventories of waste disposal processes. The purpose of this paper is to give an overview of the models behind the waste disposal inventories in ecoinvent, to present exemplary results and to discuss the assessment of long-term emissions. This paper does not present a particular LCA study. Inventories are compiled for many different materials and various disposal technologies. Considered disposal technologies are municipal incineration and different landfill types, including sanitary landfills, hazardous waste incineration, waste deposits in deep salt mines, surface spreading of sludges, municipal wastewater treatment, and building dismantling. The inventoried technologies are largely based on Swiss plants. Inventories can be used for assessment of the disposal of common, generic waste materials like paper, plastics, packaging etc. Inventories are also used within the ecoinvent database itself to inventory the disposal of specific wastes generated during the production phase. Inventories relate as far as possible to the specific chemical composition of the waste material (waste-specific burdens). Certain expenditures are not related to the waste composition and are inventoried with average values (process-specific burdens). Methods The disposal models are based on previous work, partly used in earlier versions of ecoinvent/ETH LCI data. Important improvements were the extension of the number of considered chemical elements to 41 throughout all disposal models and new landfill models based on field data. New inventories are compiled for waste deposits in deep salt mines and building material disposal. Along with the ecoinvent data and the reports, also Excel-based software tools were created, which allow ecoinvent members to calculate waste disposal inventories from arbitrary waste compositions. The modelling of long-term emissions from landfills is a crucial part in any waste disposal process. In ecoinvent long-term emissions are defined as emissions occurring 100 years after present. They are reported in separate emission categories. The landfill inventories include long-term emissions with a time horizon of 60’000 years after present. Results and Discussion As in earlier studies, the landfills prove to be generally relevant disposal processes, as also incineration and wastewater treatment processes produce landfilled wastes. Heavy metals tend to concentrate in landfills and are washed out to a varying degree over time. Long-term emissions usually represent an important burden from landfills. Comparisons between burdens from production of materials and the burdens from their disposal show that disposal has a certain relevance. Conclusion The disposal phase should by default be included in LCA studies. The use of a material not only necessitates its production, but also requires its disposal. The created inventories and user tools facilitate heeding the disposal phase with a similar level of detail as production processes. The risk of LCA-based decisions shifting burdens from the production or use phase to the disposal phase because of data gaps can therefore be diminished. Recommendation and Perspective Future improvements should include the modelling of metal ore refining waste (tailings) which is currently neglected in ecoinvent, but is likely to be relevant for metals production. The disposal technologies considered here are those of developed Western countries. Disposal in other parts of the World can differ distinctly, for logistic, climatic and economic reasons. The cross-examination of landfill models to LCIA soil fate models could be advantageous. Currently only chemical elements, like copper, zinc, nitrogen etc. are heeded by the disposal models. A possible extension could be the modelling of the behaviour of chemical compounds, like dioxins or other hydrocarbons.  相似文献   

17.
Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle), and that a fungal species, Fusarium solani (ATCC MYA 4552), is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT) was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent peroxidase activities were not detected While little is known about the role of filamentous fungi and their associations with insects, these findings suggest that this isolate has the endogenous potential to degrade lignocellulose and extract nutrients from woody tissue.  相似文献   

18.
The imported longhorned weevil, Calomycterus setarius Roelofs, is an occasional pest of soybean, Glycine max (L.), and can cause substantial defoliation of seedling soybean when the weevil is present in large numbers. Because weevil populations can reach high levels, the potential exists for significant seedling injury, so economic injury levels (EILs) are needed for imported longhorned weevil on seedling soybean. Because the bean leaf beetle, Cerotoma trifurcata (Forster), also is present on seedling soybean, injury by this insect should be included in EIL calculations. This study was conducted to (1) determine daily soybean consumption rates of imported longhorned weevil; (2) compare soybean injury responses between weevil injured and noninjured soybeans; and (3) develop multiple species EILs for imported longhorned weevil and bean leaf beetle. Field and laboratory studies were conducted in 1997 to determine weevil daily consumption rates. Field experiments were conducted in 1998 to examine physiological responses of soybean to weevil injury. Field and laboratory consumption rates were 0.16 and 0.21 cm2 per day, respectively. There were no significant differences in physiological responses (i.e., photosynthetic rates, stomatal conductance, and transpiration rates) between noninjured soybean leaflets (caged) and weevil-injured leaflets. Multiple-species EILs were developed for imported longhorned weevil and bean leaf beetle on VC through V3 soybean.  相似文献   

19.
Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) is an important natural enemy of longhorned beetles (Coleoptera: Cerambycidae). It is distributed throughout most Provinces in China. We investigated whether there were differences among D. helophoroides populations collected from different hosts in different geographic locations. Results showed that different D. helophoroides populations displayed different olfactory responses to larval frass from different longhorned beetle species. All populations were significantly attracted to the frass of their original hosts. Parasitism rates of different populations also varied when supplied with host larvae of the same longhorned beetle species. These results indicate that the three D. helophoroides populations tested differed in host-related behaviors. Therefore, the population of D. helophoroides must be taken into consideration when implementing biological control programs for different species of longhorned beetle.  相似文献   

20.
We tested the hypothesis that the population density of ambrosia beetles at the stand level influences the spatial distribution of infested trees. We evaluated the spatial distribution of the ambrosia beetle, Platypus koryoensis (Murayama) in three oak forest stands that varied in beetle population density using a multi-year trapping survey. We used these data to inform a clustering analysis based on aggregation indices using the SADIE software. Four important findings emerged: (1) the spatial distribution pattern of P. koryoensis at the stand level changed as the population density of the beetle varied; (2) at low population densities, beetle distribution was contagious at the stand level; (3) as beetle population densities increased, the spatial distribution of infested trees became random, potentially due to beetle avoidance of mass attacked trees; and (4) at high beetle population densities, the spatial distribution of infested trees became contagious, possibly due to temporal changes in location of the attack epicenter within the stand. Our results support the hypothesis that beetle population density has consequences for the spatial distribution of infested trees at the within-stand scale. We conclude that the spatial distribution of infested trees is flexible in response to beetle population density, suggesting that beetle attack behaviors are mediated by one or more density-dependent effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号