首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extracellular calcium protects isolated rat hepatocytes from injury   总被引:3,自引:0,他引:3  
The incubation of isolated rat hepatocytes in calcium-free medium resulted in a pronounced increase in lipid peroxidation, mitochondrial and cytoplasmic glutathione depletion, glutathione disulfide formation and efflux of reduced glutathione as compared with hepatocytes incubated in calcium containing medium. These data suggest that extracellular calcium ions serve a protective role in isolated rat hepatocytes against cell injury.  相似文献   

2.
Using of isolated hepatocytes for investigation of the effects of hypothermia, it has been demonstrated that sucrose-base solution provides of maintenance of the energetic parameters (level of ATP, glucose synthesis, rate of gluconeogenesis) within 48 hrs of storage at 4 degrees C. It efficiency was compared with effect on the energetic status of isolated hepatocytes widely used preservation solution--solution of University Wisconsin (UW). After long-term of cold storage of isolated hepatocytes (72 hrs) at 4 degrees C in both solutions, it has been shown sharp decrease of ATP level (on two time). Viability of the liver cells (in both cases) was practically without change.  相似文献   

3.
Crushing injury of the hand usually causes "explosive" damage. Subsequent swelling of the palmar structures further impairs venous outflow, and hemorrhage into structural spaces increases the pressure. The arterial system and the large dorsal veins, however, are seldom obstructed and provide adequate circulation unless hampered by improper bandaging. A bandage that compresses the dorsal veins causes back-pressure, which increases the swelling further and brings about ischemia. Swelling and pain cause the patient to restrict exercise of the injured hand, which permits contractures to develop. The author has averted this sequence in more than 100 cases by preserving integrity of veins during debridement, arresting hemorrhage, bandaging the hand with compression dressings in functional flexion, and reducing swelling with hyaluronidase. In these cases, on removal of bandages in 24 hours, swelling was reduced and continued to diminish. All patients exercised the hand at this time without discomfort and only a few required aspirin for pain.  相似文献   

4.
BACKGROUND: Cold ischemic injury plays an important role in short- and long-term function of kidneys after transplant. Antimicrobial peptides have not previously been studied for their impact on cold ischemia in transplanted kidneys. METHODS: Bactenecin (L- and D-forms) was added to University of Wisconsin (UW) preservation solution for 3-day cold storage of dog kidneys. Effects on membrane permeability were studied in synthetic liposomes and in kidney cortex tissue slices. The role of bactenecin as a tissue mitogen and direct cytoskeletal stabilizer were studied with cultured cells and in vitro. RESULTS: Bactenecin (both L- and D- forms) resulted in significant decreases in postoperative serum creatinine and time required for return of creatinine to the normal range showing the effect was independent of chirality. Bactenecin permeabilized synthetic liposomes and altered kidney cortex tissue slice membrane permeability characteristics, irrespective of chirality. Neither did bactenecin act as a mitogen for either primary renal tubule or Madin-Darby canine kidney (MDCK) cells stored in UW solution, nor did it appear to directly affect cytoskeletal dynamics. CONCLUSIONS: These results show that the antimicrobial peptide bactenecin can improve the quality of static cold storage of kidneys. The mechanism of its action is independent of receptor binding and does not appear to involve either an effect on the cytoskeleton or via activity as a mitogen. Current evidence best supports the hypothesis that bactenecin protects against cold ischemic injury by a controlled permeabilization of the membranes of the kidney during cold storage.  相似文献   

5.
The aim of this work was to study the metabolic activity in isolated hepatocytes from control rats and rats exposed for 15 or 30 days to cold, all subjected to 24-h fasting. Hepatocyte oxygen consumption was used as an index of metabolic activity. The results show that 24-h fasting induces a decrease in energy expenditure at the level of the liver in cold-exposed rats but not in control animals.  相似文献   

6.
Adaptive changes in membrane physical properties in response to changing environmental temperature (e.g., inereased fluidity at low growth temperatures) are well known in poikilotherms; however, the timecourse of this response has received little attention. In this study the plasma membrane lipids of hepatocytes prepared from 20°C-acclimated trout were analyzed for phospholipid class and molecular species composition and metabolism after the cells were exposed to 5°C for 6 hours. Proportions of phosphatidylethanolamine and phosphatidylcholine were not altered by in vitro incubation at either 5 or 20°C. Molecular species analysis revealed that proportions of 18:1/20:5-phosphatidylcholine were significantly lower in plasma membranes of 5°C incubated cells, while decreases in 16:0/20:4-phosphatidylcholine, an unidentified phosphatidylcholine species, and 16:0/16:0-phosphatidylethanolamine as well as increases in 16:0/16:1-phosphatidylethanolamine as well as increases in 16:0/16:1-phosphatidylcholine bordered on significance. Exogenous radiolabeled molecular species of phosphatidylcholine (16:0/16:0-phosphatidylcholine and 16:0/18:1-phosphatidylcholine) were converted into other species at both temperatures, and the formation of some was influenced by incubation temperature. For example, cells exposed to 5°C convert significantly more 16:0/16:0-phosphatidylcholine into 16:0/20:4-phosphatidylcholine and 18:0/16:1-phosphatidylcholine and less into 18:1/18:1-phosphatidylcholine and 16:0/22:6-phosphatidylcholine than cells incubated at 20°C. In addition, cells at 5°C metabolized 16:0/18:1-phosphatidylcholine to a lesser extent than those at 20°C. The profile of conversion products indicates that deacylation/reacylation, elongation and desaturation reactions all participate in this early membrane restructuring. It is concluded that the plasma membrane of trout hepatocytes is a highly dynamic structure characterized by continuous lipid restructuring/turnover which can be rapidly altered upon acute cold exposure to adjust membrane phospholipid molecular species composition to the prevailing thermal environment.Abbreviations BHT butylated hydroxytoluene - BSA bovine serum albumin - HEPES N-(2-hydroxyethyl)piperazine-N-(2-ethanesnlphonic acid) - HELC high-performance liquid chromatography - HVA homeoviscous adaptation - MS molecular species - MS-222 2-aminobenzoic acid ethyl ester (methanesulphonate salt) - RRT relative reteption time - PC phosphatidylcholine - PE phosphatidylethanolamine - TLC thin-layer chromatography - TRIS tris(hydroxymethyl)aminoethane - T a ambient temperature  相似文献   

7.
In this study the Ca2+ ionophore, A23187, was used to determine the effects of disrupted Ca2+ homeostasis on cellular thiols. Isolated rat hepatocytes were incubated with varying concentrations of extracellular Ca2+ and A23187 to induce accumulation or loss of cellular Ca2+. These treatments resulted in loss of mitochondrial and cytosolic glutathione (GSH), loss of protein-thiols, and cell injury. This injury was dependent on the concentrations of ionophore and extracellular Ca2+. A correlation was found between cell injury and the loss of mitochondrial GSH, while the loss of cytosolic glutathione preceded both these events. The time course of protein-thiol loss appeared secondary to the loss of non-protein thiols. In the absence of extracellular Ca2+, the antioxidants alpha-tocopherol and diphenyl-p-phenylenediamine both totally prevented A23187-induced cell injury and loss of mitochondrial GSH, and thus protected the cells from the effects of mobilization of intracellular Ca2+. In the presence of extracellular Ca2+, cell injury as well as the loss of mitochondrial GSH were only partially prevented by antioxidant treatment. The mitochondrial Ca2+ channel blocker, ruthenium red, protected hepatocytes from A23187-induced injury in the absence of extracellular Ca2+. Leupeptin, an inhibitor of Ca2+-activated proteases, and dibucaine, a phospholipase inhibitor, did not affect cytotoxicity. Our results indicate that the level of mitochondrial GSH may be important for cell survival during ionophore-induced perturbation of cellular Ca2+ homeostasis.  相似文献   

8.
9.
A sucrose-based solution has been compared with other preservation solutions (University of Wisconsin (UW) solution and Marshall's citrate solution, with Dulbecco's medium as control) during hypothermic preservation of isolated rat hepatocytes for up to 72 h. Studies on the stability of liver cells at low temperature by exclusion of trypan blue dye and morphological appearance were conducted. During storage beyond 24 h, there was a clear difference between cells stored in Dulbecco's medium and Marshall's citrate and those stored in sucrose-based solution and UW solution, with the former storage groups showing many cells developing large membrane "blebs" and the latter storage groups maintaining a more typical morphology and developing only small membrane protrusions. Dye exclusion was higher in sucrose-based solution (48 h, 75 +/- 7%; 72 h, 65 +/- 6%) and UW solution (48 h, 72 +/- 5%; 72 h, 63 +/- 4%) than in Marshall's citrate (48 h, 31 +/- 5%; 72 h, 10 +/- 1%) and Dulbecco's medium (48 h, 8 +/- 2%; 72 h, 5 +/- 1%). These data suggest that sucrose-based solution should be investigated further as a less complex alternative solution for storage of isolated hepatocytes.  相似文献   

10.
This preliminary study reports the functional capacities of freshly isolated human hepatocytes in regard to their energetic metabolism and monooxygenase activities. Incubated for 30 or 60 min, isolated cells maintain their membrane integrity, AIP and reduced glutathione content and redox potential estimated by means of lactate to pyruvate and ß-hydroxypyruvate to acetoacetate ratios. Three monooxygenase activities, supported by different isoenzymes of cytochrome P30 are determined by the accumulation of unconjugated metabolites: their relative magnitudes are similar to those observed in microsomes, indicating a good preservation of hydroxylase activities during cell isolation and incubation. Although incubations did not exceed 60 min, one can conclude that human hepatocytes maintain their viability and metabolic capacities after isolation and might be considered in transplantation process for the treatment of acute hepatic failure. Isolated human hepatocytes might be also used as a tool for studying biochemical and toxicological effects of a drug.  相似文献   

11.
Fatty acids accumulate during myocardial ischemia and are implicated in ischemia-reperfusion injury and mitochondrial dysfunction. Because functional recovery after ischemia-reperfusion ultimately depends on the ability of the mitochondria to recover membrane potential (DeltaPsim), we studied the effects of fatty acids on DeltaPsim regulation, cytochrome c release, and Ca2+ handling in isolated mitochondria under conditions that mimicked aspects of ischemia-reperfusion. Long-chain but not short-chain free fatty acids caused a progressive and reversible (with BSA) increase in inner membrane leakiness (proton leak), which limited mitochondrial ability to support DeltaPsim. In comparison, long-chain activated fatty acids promoted 1). a slower depolarization that was not reversible with BSA, 2). cytochrome c loss that was unrelated to permeability transition pore opening, and 3). inhibition of the adenine nucleotide translocator. Together, these results impaired both mitochondrial ATP production and Ca2+ handling. Diazoxide, a selective opener of mitochondrial ATP-dependent potassium (KATP) channels, partially protected against these effects. These findings indicate that long-chain fatty acid accumulation during ischemia-reperfusion may predispose mitochondria to cytochrome c loss and irreversible injury and identify a novel cardioprotective action of diazoxide.  相似文献   

12.
At this present, enzyme perfusion method is a routine technique to isolate hepatocytes from rat liver for the physiological and pathological experiments. This study described a way of the classification of freshly isolated hepatocytes. First of all, the hepatocytes were fractionated with parenchymal and non-parenchymal cells by low speed centrifugation. And then these cells were subfractionated with a newly developed Percoll linear density gradient method. The fractionated parenchymal cells were divided with cells of periportal and centrilobular areas, respectively. Furthermore, their characteristics were confirmed functionally and morphologically. Non-parenchymal cells (NPC) include Kupffer cells, endothelial cells and fat storing cells (FSC, Ito cells). These isolated NPC are fractionated with a method as mentioned above or centrifugal alutriation method. In this paper, fractionation and classification of Kupffer cells and FSC were discussed with the measurement of fluorescent intensity of vitamin A and the morphological observation of cytoskeleton in culture. Especially, transport of vitamin A into FSC were detected autoradiographically.  相似文献   

13.
Oligomycin and uncoupler of oxidative phosphorylation have been studied for their effect on the respiration activity of hepatocytes in rats. The respiration rate in the presence of oligomycin and uncoupler is higher than it is with the respiration uncoupled in the absence of oligomycin. Exogenic succinate makes endogenic respiration of hepatocytes in the presence of digitonin 5 times more intensive. The obtained results evidence for the fact that the uncoupled respiration is limited by the concentration of substrates able to be oxidized in the respiration chain of mitochondria. Oligomycin induces accumulation of substrates and following addition of the disconnector evokes their fast oxidation.  相似文献   

14.
Cryopreservation of isolated rat hepatocytes   总被引:4,自引:0,他引:4  
Summary Isolated parenchymal hepatocytes from adult rats were frozen in media containing 10% glycerol, 10% dimethylsulfoxide (DMSO), or 20% DMSO. Three microsome-associated functions were compared in nonfrozen cells and cells frozen in each of the above cryoprotectant solutions. Freezing in DMSO maintains cytochromes P-450 and b5 and NADPH-cytochrome C reductase at levels nearer to control values than does freezing in glycerol. Cells frozen and subsequently thawed and cultured for 24 h lose a greater amount of cytochrome P-450 than do nonfrozen cultured cells. The levels of cytochrome b5 and reductase in frozen-thawed cells remain close to control values. Cell viability (trypan blue dye exclusion and percentage of attached cells) after freezing is maintained better using DMSO as a cryoprotectant. Dimethylsulfoxide protects the hepatocytes from freeze-induced damage to the extent that many viable cells attach to collagen-coated petri dishes, survive for at least 24 h, and still maintain significant levels of enzymes of importance to drug and carcinogen metabolism. This work was supported by Grant CA-30241 from the National Institutes of Health, Bethesda, Maryland.  相似文献   

15.
Gluconeogenesis in chick embryo isolated hepatocytes   总被引:1,自引:0,他引:1  
1. The effectiveness of gluconeogenic precursors in hepatocytes isolated from 18 day old chick embryos is:Lactate much much greater than pyruvate greater than alanine = glutamine greater than glycerol and other amino acids. This result is qualitatively and quantitatively similar to hepatocytes isolated after hatching. 2. In the presence of endogenous glycogenolysis, conversion of [U-14C]lactate to glucose was used to estimate gluconeogenic flux and its control by hormones. 3. Glucagon failed to stimulate lactate gluconeogenesis although simultaneously increasing glycogenolysis. Insulin had no effects on gluconeogenesis.  相似文献   

16.
17.
Intracellular lipid peroxidation was initiated by the addition of ADP-complexed ferric iron to isolated rat hepatocytes and the reaction monitored by the thiobarbituric acid method or by measurement of the formation of conjugated dienes. Both the production of malondialdehyde (thiobarbituric-acid-reacting substances) and of conjugated dienes was dependent, on the ADP-Fe-3+ concentration in a dose-related fashion. Malondialdehyde formation stopped spontaneously within 20 min after the initiation of the reaction and the plateau reached was also related to the ADP-Fe-3+ concentration. Control experiments revealed that more than 90% of the malondialdehyde accumulating during the incubation period could be ascribed to intracellular production. The cellular NADPH/NADP+ ratio was always high and only slightly decreased upon ADP-Fe-3+-induced lipid peroxidation which, however, was associated with a marked decrease in the cellular glutathione concentration. The rate of accumulation of malondialdehyde as well as the final level reached during ADP-Fe-3+-initiated lipid peroxidation was increased by the addition of chloral hydrate. This apparent stimulatory effect could, however, be ascribed to the inhibition of the mitochondrial oxidation of the malondialdehyde formed during cellular lipid peroxidation, thus allowing more malondialdehyde to accumulate during the process. ADP-Fe-3+-induced cellular lipid peroxidation was associated with a decrease in the concentration of glutathione. Also, lowering of the intracellular glutathione level by the addition of diethyl maleate or by simply preincubating the hepatocytes (up to 50 min) promoted the ADP-Fe-3+ malondialdehyde production and formation of conjugated dienes. Furthermore, when cellular glutathione concentration had been lowered by preincubation of the hepatocytes, significant malondialdehyde production could be observed even at ADP-Fe-3+ concentrations which were too low to induce measurable lipid peroxidation in fresh hepatocytes. It is thus concluded that glutathione has an important role in the cell defence against lipid peroxidation and suggested that the isolated hepatocytes provide a suitable experimental model system for the characterization of this and other possible cellular defence mechanisms and how they are affected by the nutritional status of the donor animal.  相似文献   

18.
Calcium transport in isolated rat hepatocytes   总被引:6,自引:0,他引:6  
  相似文献   

19.
Lactate-stimulated ethanol oxidation in isolated hepatocytes   总被引:1,自引:1,他引:1       下载免费PDF全文
1. Hepatocytes isolated from starved rats and incubated without other substrates oxidized ethanol at a rate of 0.8-0.9mumol/min per g wet wt. of cells. Addition of 10mm-lactate increased this rate 2-fold. 2. Quinolinate (5mm) or tryptophan (1mm) decreased the rate of gluconeogenesis with 10mm-lactate and 8mm-ethanol from 0.39 to 0.04-0.08mumol/min per g wet wt. of cells, but rates of ethanol oxidation were not decreased. From these results it appears that acceleration of ethanol oxidation by lactate is not dependent upon the stimulation of gluconeogenesis and the consequent increased demand for ATP. 3. As another test of the relationship between ethanol oxidation and gluconeogenesis, the initial lactate concentration was varied from 0.5mm to 10mm and pyruvate was added to give an initial [lactate]/[pyruvate] ratio of 10. This substrate combination gave a large stimulation of ethanol oxidation (from 0.8 to 2.6mumol/min per g wet wt. of cells) at low lactate concentrations (0.5-2.0mm), but rates remained nearly constant (2.6-3.0mumol/min per g wet wt. of cells) at higher lactate concentrations (2.0-10mm). 4. In contrast, owing to the presence of ethanol, the rate of glucose synthesis was only slightly increased (from 0.08 to 0.12mumol/min per g wet wt. of cells) between 0.5mm- and 2.0mm-lactate and continued to increase (from 0.12 to 0.65mumol/min per g wet wt. of cells) with lactate concentrations between 2 and 10mm. 5. In the presence of ethanol, O(2) uptake increased with increasing substrate concentration over the entire range. 6. Changes in concentrations of glutamate and 2-oxoglutarate closely paralleled changes in the rate of ethanol oxidation. 7. In isolated hepatocytes, rates of ethanol oxidation are lower than those in vivo apparently because of depletion of malate-aspartate shuttle intermediates during cell preparation. Rates are returned to those observed in vivo by substrates that increase the intracellular concentration of shuttle metabolites.  相似文献   

20.
Reoxygenation of isolated hepatocytes from fed rats after 3 h of anaerobic incubation led to a significantly enhanced loss of cell viability. No evidence for the participation of reactive oxygen species generated by xanthine oxidase in this reoxygenation injury was found. Conversion of xanthine dehydrogenase to xanthine oxidase occurred at a time when almost all of the hepatocytes had lost their viability. Furthermore, xanthine dehydrogenase was first released from the severely injured cells and then converted to the oxidase form. The results suggest that in the intact organ participation of reactive oxygen species, generated by xanthine oxidase, in reoxygenation injury may only occur when, upon reoxygenation, hypoxic cell injury in part of the tissue has progressed to such an extent that there is a significant conversion of xanthine dehydrogenase to xanthine oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号