首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular calcium [Ca(2+)](i) is mobilized in many cell types in response to activation of phosphoinositide (PIP(n)) signaling pathways involving PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3). To further explore the relationship between increases in intracellular PIP(n) concentrations and mobilization of [Ca(2+)](i), each of the seven phosphorylated phosphoinositides (PIP(n)s) were delivered into cells and the metabolism and physiological effects of the exogenously administered PIP(n)s were determined. The efficient cellular delivery of fluorophore-tagged and native PIP(n)s was accomplished using histone protein, neomycin, and dendrimeric polyamines. PtdIns(4,5)P(2) fluorophore-tagged analogs with short- and long-acyl chains were substrates for cellular enzymes in vitro and for phospholipases in stimulated fibroblasts. PtdIns(4)P, PtdIns(3,4)P(2) and PtdIns(4,5)P(2), each induced calcium mobilization rapidly after exogenous addition to fibroblasts. PtdIns(3,4,5)P(3) induced a significant, but smaller increase in intracellular calcium. These observations suggest that PIP(n)s other than PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) may have direct roles in signaling involving [Ca(2+)](i).  相似文献   

2.
Many cytosolic proteins are recruited to the plasma membrane (PM) during cell signaling and other cellular processes. Recent reports have indicated that phosphatidylserine (PS), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) that are present in the PM play important roles for their specific PM recruitment. To systematically analyze how these lipids mediate PM targeting of cellular proteins, we performed biophysical, computational, and cell studies of the Ca(2+)-dependent C2 domain of protein kinase Calpha (PKCalpha) that is known to bind PS and phosphoinositides. In vitro membrane binding measurements by surface plasmon resonance analysis show that PKCalpha-C2 nonspecifically binds phosphoinositides, including PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), but that PS and Ca(2+) binding is prerequisite for productive phosphoinositide binding. PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) augments the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by slowing its membrane dissociation. Molecular dynamics simulations also support that Ca(2+)-dependent PS binding is essential for membrane interactions of PKCalpha-C2. PtdIns(4,5)P(2) alone cannot drive the membrane attachment of the domain but further stabilizes the Ca(2+)- and PS-dependent membrane binding. When the fluorescence protein-tagged PKCalpha-C2 was expressed in NIH-3T3 cells, mutations of phosphoinositide-binding residues or depletion of PtdIns(4,5)P(2) and/or PtdIns(3,4,5)P(3) from PM did not significantly affect the PM association of the domain but accelerated its dissociation from PM. Also, local synthesis of PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) at the PM slowed membrane dissociation of PKCalpha-C2. Collectively, these studies show that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) augment the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by elongating the membrane residence of the domain but cannot drive the PM recruitment of PKCalpha-C2. These studies also suggest that effective PM recruitment of many cellular proteins may require synergistic actions of PS and phosphoinositides.  相似文献   

3.
A genetic approach was used to increase phosphatidylinositol(4,5)bisphosphate [PtdIns(4,5)P2] biosynthesis and test the hypothesis that PtdInsP kinase (PIPK) is flux limiting in the plant phosphoinositide (PI) pathway. Expressing human PIPKIalpha in tobacco (Nicotiana tabacum) cells increased plasma membrane PtdIns(4,5)P2 100-fold. In vivo studies revealed that the rate of 32Pi incorporation into whole-cell PtdIns(4,5)P2 increased >12-fold, and the ratio of [3H]PtdInsP2 to [3H]PtdInsP increased 6-fold, but PtdInsP levels did not decrease, indicating that PtdInsP biosynthesis was not limiting. Both [3H]inositol trisphosphate and [3H]inositol hexakisphosphate increased 3-and 1.5-fold, respectively, in the transgenic lines after 18 h of labeling. The inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] binding assay showed that total cellular Ins(1,4,5)P3/g fresh weight was >40-fold higher in transgenic tobacco lines; however, even with this high steady state level of Ins(1,4,5)P3, the pathway was not saturated. Stimulating transgenic cells with hyperosmotic stress led to another 2-fold increase, suggesting that the transgenic cells were in a constant state of PI stimulation. Furthermore, expressing Hs PIPKIalpha increased sugar use and oxygen uptake. Our results demonstrate that PIPK is flux limiting and that this high rate of PI metabolism increased the energy demands in these cells.  相似文献   

4.
Calpain-mediated proteolysis regulates cytoskeletal dynamics and is altered during aging and the progression of numerous diseases or pathological conditions. Although several cytoskeletal proteins have been identified as substrates, how localized calpain activity is regulated and the mechanisms controlling substrate recognition are not clear. In this study, we report that phosphoinositide binding regulates the susceptibility of the cytoskeletal adhesion protein alpha-actinin to proteolysis by calpains 1 and 2. At first, alpha-actinin did not appear to be a substrate for calpain 2; however, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) binding to alpha-actinin resulted in nearly complete proteolysis of the full-length protein, producing stable breakdown products. Calpain 1 was able to cleave alpha-actinin in the absence of phosphoinositide binding; however, PtdIns(3,4,5)P(3) binding increased the rate of proteolysis, and phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)) binding significantly inhibited cleavage. Phosphoinositide binding appeared to regulate calpain proteolysis of alpha-actinin by modulating the exposure of a highly sensitive cleavage site within the calponin homology 2 domain. In U87MG glioblastoma cells, which contain elevated levels of PtdIns(3,4,5)P(3), alpha-actinin colocalized with calpain within dynamic actin cytoskeletal structures. Furthermore, proteolysis of alpha-actinin producing stable breakdown products was observed in U87MG cells treated with calcium ionophore to activate the calcium-dependent calpains. Additional evidence of PtdIns(3,4,5)P(3)-mediated calpain proteolysis of alpha-actinin was observed in rat embryonic fibroblasts. These results suggest that PtdIns(3,4,5)P(3) binding is a critical determinant for alpha-actinin proteolysis by calpain. In conclusion, phosphoinositide binding to the substrate is a potential mechanism for regulating susceptibility to proteolysis by calpain.  相似文献   

5.
Phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) are lipid second messengers that regulate various cellular processes by recruiting a wide range of downstream effector proteins to membranes. Several pleckstrin homology (PH) domains have been reported to interact with PtdIns(3,4)P2 and PtdIns(3,4,5)P3. To understand how these PH domains differentially respond to PtdIns(3,4)P2 and PtdIns(3,4,5)P3 signals, we quantitatively determined the PtdIns(3,4)P2 and PtdIns(3,4,5)P3 binding properties of several PH domains, including Akt, ARNO, Btk, DAPP1, Grp1, and C-terminal TAPP1 PH domains by surface plasmon resonance and monolayer penetration analyses. The measurements revealed that these PH domains have significant different phosphoinositide specificities and affinities. Btk-PH and TAPP1-PH showed genuine PtdIns(3,4,5)P3 and PtdIns(3,4)P2 specificities, respectively, whereas other PH domains exhibited less pronounced specificities. Also, the PH domains showed different degrees of membrane penetration, which greatly affected the kinetics of their membrane dissociation. Mutational studies showed that the presence of two proximal hydrophobic residues on the membrane-binding surface of the PH domain is important for membrane penetration and sustained membrane residence. When NIH 3T3 cells were stimulated with platelet-derived growth factor to generate PtdIns(3,4,5)P3, reversible translocation of Btk-PH, Grp1-PH, ARNO-PH, DAPP1-PH, and its L177A mutant to the plasma membrane was consistent with their in vitro membrane binding properties. Collectively, these studies provide new insight into how various PH domains would differentially respond to cellular PtdIns(3,4)P2 and PtdIns(3,4,5)P3 signals.  相似文献   

6.
The involvement of small GTPases of the Rho family in the control of phosphoinositide metabolism by adhesion signals was examined in NIH 3T3 fibroblasts. Abrogation of adhesion signals by detachment of cells from their substratum resulted in a time-dependent decrease in the cellular level of PtdIns(4,5)P2 by approximately 50%. This effect could be mimicked by treatment of adherent cells with Clostridium difficile toxin B and toxin B-1470, which inhibit specific subsets of Rho and Ras GTPases. Detachment of cells that had been pretreated with the clostridial toxins did not cause a further reduction in PtdIns(4,5)P2 levels, suggesting that the target GTPases are integrated into the control of phosphoinositide levels by adhesion signals. The reduction in PtdIns(4,5)P2 levels could be attributed to reduced activity of the major PtdIns(4, 5)P2-producing enzyme, PtdIns4P 5-kinase. Unexpectedly, both cell detachment and toxin treatment resulted in a twofold to threefold increase in inositol phosphate production in intact cells. In lysates of these cells, in vitro phospholipase C activity was found to be elevated by 30-50%. The effects of cell detachment and toxin treatment on inositol phosphate formation could be mimicked by expression of dominant-negative N17 Rac1. Taken together, these data suggest that adhesion-controlled small GTPases of the Rho family are involved in the regulation of the cellular PtdIns(4,5)P2 levels in NIH 3T3 fibroblasts, by controlling the activities of both PtdIns4P 5-kinase and phospholipase C.  相似文献   

7.
The pleckstrin homology (PH) domains of the homologous proteins Grp1 (general receptor for phosphoinositides), ARNO (Arf nucleotide binding site opener), and Cytohesin-1 bind phosphatidylinositol (PtdIns) 3,4,5-trisphosphate with unusually high selectivity. Remarkably, splice variants that differ only by the insertion of a single glycine residue in the beta1/beta2 loop exhibit dual specificity for PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2). The structural basis for this dramatic specificity switch is not apparent from the known modes of phosphoinositide recognition. Here, we report crystal structures for dual specificity variants of the Grp1 and ARNO PH domains in either the unliganded form or in complex with the head groups of PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3). Loss of contacts with the beta1/beta2 loop with no significant change in head group orientation accounts for the significant decrease in PtdIns(3,4,5)P(3) affinity observed for the dual specificity variants. Conversely, a small increase rather than decrease in affinity for PtdIns(4,5)P(2) is explained by a novel binding mode, in which the glycine insertion alleviates unfavorable interactions with the beta1/beta2 loop. These observations are supported by a systematic mutational analysis of the determinants of phosphoinositide recognition.  相似文献   

8.
BACKGROUND: Phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is a key second messenger found ubiquitously in higher eukaryotic cells. The activation of Class I phosphoinositide 3-kinases and the subsequent production of PtdIns(3,4,5)P(3) is an important cell signaling event that has been causally linked to the activation of a variety of downstream cellular processes, such as cell migration and proliferation. Although numerous proteins regulating a variety of biological pathways have been shown to bind PtdIns(3,4,5)P(3), there are no data to demonstrate multiple mechanisms for PtdIns(3,4,5)P(3) synthesis in vivo. RESULTS: In this study, we demonstrate an alternative pathway for the in vivo production of PtdIns(3,4,5)P(3) mediated by the action of murine Type Ialpha phosphatidylinositol 4-phosphate 5-kinase (Type Ialpha PIPkinase), an enzyme best characterized as regulating cellular PtdIns(4,5)P(2) levels. Analysis of this novel pathway of PtdIns(3,4,5)P(3) synthesis in cellular membranes leads us to conclude that in vivo, Type Ialpha PIPkinase also acts as a PtdIns(3,4)P(2) 5-kinase. We demonstrate for the first time that cells actually contain an endogenous PtdIns(3,4)P(2) 5-kinase, and that during oxidative stress, this enzyme is responsible for PtdIns(3,4,5)P(3) synthesis. Furthermore, we demonstrate that by upregulating the H(2)O(2)-induced PtdIns(3,4,5)P(3) levels using overexpression studies, the endogenous PtdIns(3,4)P(2) 5-kinase is likely to be Type Ialpha PIPkinase. CONCLUSIONS: We describe for the first time a novel in vivo activity for Type Ialpha PIPkinase, and a novel pathway for the in vivo synthesis of functional PtdIns(3,4,5)P(3), a key lipid second messenger regulating a number of diverse cellular processes.  相似文献   

9.
It is now apparent that each of the known, naturally occurring polyphosphoinositides, the phosphatidylinositol monophosphates (PtdIns3P, PtdIns4P, PtdIns5P), phosphatidylinositol bisphosphates [PtdIns(3,4)P(2), PtdIns(3,5)P(2), PtdIns(4,5)P(2)], and phosphatidylinositol trisphosphate [PtdIns(3,4,5)P(3)], have distinct roles in regulating many cellular events, including intracellular signaling, migration, and vesicular trafficking. Traditional identification techniques require [(32)P]inorganic phosphate or [(3)H]inositol radiolabeling, acidified lipid extraction, deacylation, and ion-exchange head group separation, which are time-consuming and not suitable for samples in which radiolabeling is impractical, thus greatly restricting the study of these lipids in many physiologically relevant systems. Thus, we have developed a novel, high-efficiency, buffered citrate extraction methodology to minimize acid-induced phosphoinositide degradation, together with a high-sensitivity liquid chromatography-mass spectrometry (LC-MS) protocol using an acetonitrile-chloroform-methanol-water-ethylamine gradient with a microbore silica column that enables the identification and quantification of all phosphoinositides in a sample. The liquid chromatograph is sufficient to resolve PtdInsP(3) and PtdInsP(2) regioisomers; however, the PtdInsP regioisomers require a combination of LC and diagnostic fragmentation to MS(3). Data are presented using this approach for the analysis of phosphoinositides in human platelet and yeast samples.  相似文献   

10.
Protrudin is a FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia. Our image-based screening of the lipid binding domain library revealed novel plasma membrane localization of the FYVE domain of protrudin unlike canonical FYVE domains that are localized to early endosomes. The membrane binding study by surface plasmon resonance analysis showed that this FYVE domain preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) unlike canonical FYVE domains that specifically bind phosphatidylinositol 3-phosphate (PtdIns(3)P). Furthermore, we found that these phosphoinositides (PtdInsP) differentially regulate shuttling of protrudin between endosomes and plasma membrane via its FYVE domain. Protrudin mutants with reduced PtdInsP-binding affinity failed to promote neurite outgrowth in primary cultured hippocampal neurons. These results suggest that novel PtdInsP selectivity of the protrudin-FYVE domain is critical for its cellular localization and its role in neurite outgrowth.  相似文献   

11.
Class I phosphoinositide-3-kinase (PI3K) isoforms generate the intracellular signaling lipid, phosphatidylinositol(3,4,5)trisphosphate (PtdIns(3,4,5)P(3)). PtdIns(3,4,5)P(3) regulates major aspects of cellular behavior, and the use of both genetic and pharmacological intervention has revealed important isoform-specific roles for PI3Ks in health and disease. Despite this interest, current methods for measuring PtdIns(3,4,5)P(3) have major limitations, including insensitivity, reliance on radiolabeling, low throughput and an inability to resolve different fatty-acyl species. We introduce a methodology based on phosphate methylation coupled to high-performance liquid chromatography-mass spectrometry (HPLC-MS) to solve many of these problems and describe an integrated approach to quantify PtdIns(3,4,5)P(3) and related phosphoinositides (regio-isomers of PtdInsP and PtdInsP(2) are not resolved). This methodology can be used to quantify multiple fatty-acyl species of PtdIns(3,4,5)P(3) in unstimulated mouse and human cells (≥10(5)) or tissues (≥0.1 mg) and their increase upon appropriate stimulation.  相似文献   

12.
The signalling pathways used by the GM-CSF receptor are currently unknown. Here we show that in human myeloid derived cells GM-CSF can stimulate; (i) the accumulation of PtdIns(3,4,5)P3; (ii) increases in p53/p56lyn and p62c-yes directed protein tyrosine kinase activities in anti-lyn and anti-c-yes antibody directed immunoprecipitates, respectively and; (iii) increases in phosphoinositide 3OH-kinase activity in antiphosphotyrosine, anti-p53/p56lyn and anti-p62c-yes antibody directed immunoprecipitates. These results suggest that GM-CSF can stimulate formation of protein tyrosine kinase co-ordinated signalling complexes, that contain p53/p56lyn, p62c-yes and an activated PtdInsP2 directed phosphoinositide 3OH-kinase, which can drive the accumulation of the putative second-messenger PtdIns(3,4,5)P3.  相似文献   

13.
GRP1 and the related proteins ARNO and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. Here we show the PH domains of all three proteins exhibit relatively high affinity for dioctanoyl phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P(3)), with K(D) values of 0.05, 1.6 and 1.0 micrometer for GRP1, ARNO, and cytohesin-1, respectively. However, the GRP1 PH domain was unique among these proteins in its striking selectivity for PtdIns(3,4, 5)P(3) versus phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)), for which it exhibits about 650-fold lower apparent affinity. Addition of a glycine to the Gly(274)-Gly(275) motif in GRP1 greatly increased its binding affinity for PtdIns(4,5)P(2) with little effect on its binding to PtdIns(3,4,5)P(3), while deletion of a single glycine in the corresponding triglycine motif of the ARNO PH domain markedly reduced its binding affinity for PtdIns(4,5)P(2) but not for PtdIns(3,4,5)P(3). In intact cells, the hemagglutinin epitope-tagged PH domain of GRP1 was recruited to ruffles in the cell surface in response to insulin, as were full-length GRP1 and cytohesin-1, but the PH domain of cytohesin-1 was not. These data indicate that the unique diglycine motif in the GRP1 PH domain, as opposed to the triglycine in ARNO and cytohesin-1, directs its remarkable PtdIns(3,4,5)P(3) binding selectivity.  相似文献   

14.
Motile nonmuscle cells concentrate phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in areas of new actin filament assembly. There is great interest in assessing the in vivo functional significance of these phosphoinositides, and we have used Listeria monocytogenes to explore the contribution of PtdIns(3,4,5)P3 and PtdIns(4,5)P2 to its actin-based motility. In Listeria-infected PtK2 cells Akt-pleckstrin homology (PH)-green fluorescent protein (GFP) and phospholipase C delta (PLC delta)-PH-GFP both first concentrate at the front of motile Listeria, subsequently surrounding the bacterium and then concentrating in the actin filament tail. Surprisingly, Listeria ActA mutant strains lacking the putative phosphoinositide binding site are also able to concentrate these probes. Reduction of available PtdIns(3,4,5)P3 by expression of Akt-PH-GFP and available PtdIns(4,5)P2 by expression of PLC delta-PH-GFP both significantly slow Listeria actin-based movement. Treatment of cells with the PI 3-kinase inhibitor, LY294002, dissociates Akt-PH but not PLC delta-PH, from the bacterial surface and cell membranes, and results in near complete inhibition of Listeria actin-based motility and filopod formation. Removal of LY294002 results in rapid and full recovery of Akt-PH localization, Listeria actin-based motility, and filopod formation. These findings suggest that PtdIns(4,5)P2 is concentrated at the surface of Listeria and serves as the substrate for PtdIns(3,4,5)P3 production, indicating a central role for PI 3-kinases in Listeria intracellular actin-based motility and filopod formation.  相似文献   

15.
Pleckstrin homology (PH) domains are protein modules of around 120 amino acids found in many proteins involved in cellular signaling. Certain PH domains drive signal-dependent membrane recruitment of their host proteins by binding strongly and specifically to lipid second messengers produced by agonist-stimulated phosphoinositide 3-kinases (PI 3-Ks). We describe X-ray crystal structures of two different PH domains bound to Ins(1,3,4,5)P4, the head group of the major PI 3-K product PtdIns(3,4,5)P3. One of these PH domains (from Grp1) is PtdIns(3,4,5)P3 specific, while the other (from DAPP1/PHISH) binds strongly to both PtdIns(3,4,5)P3 and its 5'-dephosphorylation product, PtdIns(3,4)P2. Comparison of the two structures provides an explanation for the distinct phosphoinositide specificities of the two PH domains and allows us to predict the 3-phosphoinositide selectivity of uncharacterized PH domains.  相似文献   

16.
NOXO1β [NOXO1 (Nox organizer 1) β] is a cytosolic protein that, in conjunction with NOXA1 (Nox activator 1), regulates generation of reactive oxygen species by the NADPH oxidase 1 (Nox1) enzyme complex. NOXO1β is targeted to membranes through an N-terminal PX (phox homology) domain. We have used NMR spectroscopy to solve the structure of the NOXO1β PX domain and surface plasmon resonance (SPR) to assess phospholipid specificity. The solution structure of the NOXO1β PX domain shows greatest similarity to that of the phosphatidylinositol 3-kinase-C2α PX domain with regard to the positions and types of residues that are predicted to interact with phosphatidylinositol phosphate (PtdInsP) head groups. SPR experiments identify PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) as preferred targets of NOXO1β PX. These findings contrast with previous lipid overlay experiments showing strongest binding to monophosphorylated PtdInsP and phosphatidylserine. Our data suggest that localized membrane accumulation of PtdIns(4,5)P(2) or PtdIns(3,4,5)P(2) may serve to recruit NOXO1β and activate Nox1.  相似文献   

17.
BACKGROUND: Septins are members of a conserved family of GTPases found in organisms as diverse as budding yeast and mammals. In budding yeast, septins form hetero-oligomeric filaments that lie adjacent to the membrane at the mother-bud neck, whereas in mammals, they concentrate at the cleavage furrow of mitotic cells; in both cases, septins provide a required function for cytokinesis. What directs the location and determines the stability of septin filaments, however, remains unknown. RESULTS: Here we show that the mammalian septin H5 is associated with the plasma membrane and specifically binds the phospholipids phosphatidylinositol 4, 5-bisphosphate (PtdIns(4,5)P(2)) and phosphatidylinositol 3,4, 5-trisphosphate (PtdIns(3,4,5)P(3)). Deletion analysis revealed that this binding occurs at a site rich in basic residues that is conserved in most septins and is located adjacent to the GTP-binding motif. Phosphoinositide binding was inhibited by mutations within this motif and was also blocked by agents known to associate with PtdInsP(2) or by a peptide corresponding to the predicted PtdInsP(2)-binding sequence of H5. GTP binding and hydrolysis by H5 significantly reduced its PtdInsP(2)-binding capability. Treatment of cells with agents that occluded, dephosphorylated or degraded PtdInsP(2) altered the appearance and localization of H5. CONCLUSIONS: These results indicate that the interaction of septins with PtdInsP(2) might be an important cellular mechanism for the spatial and temporal control of septin accumulation.  相似文献   

18.
Pleckstrin homology (PH) domains are protein modules that bind with varying degrees of affinity and specificity membrane phosphoinositides. Previously we have shown that although the PH domains of the Ras GTPase-activating proteins GAP1m and GAP1IP4BP are 63% identical at the amino acid level they possess distinct phosphoinositide-binding profiles. The GAP1m PH domain binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), whereas the domain from GAP1IP4BP binds PtdIns(3,4,5)P3 and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) equally well. These phosphoinositide specificities are translated into distinct subcellular localizations. GAP1m is cytosolic and undergoes a rapid PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. In contrast, GAP1IP4BP is constitutively associated, in a PtdIns(4,5)P2-dependent manner, with the plasma membrane (Cozier, G. E., Lockyer, P. J., Reynolds, J. S., Kupzig, S., Bottomley, J. R., Millard, T., Banting, G., and Cullen, P. J. (2000) J. Biol. Chem. 275, 28261-28268). In the present study, we have used molecular modeling to identify residues in the GAP1IP4BP PH domain predicted to be required for high affinity binding to PtdIns(4,5)P2. This has allowed the isolation of a mutant, GAP1IP4BP-(K591T), which while retaining high affinity for PtdIns(3,4,5)P3 has a 6-fold reduction in its affinity for PtdIns(4,5)P2. Importantly, GAP1IP4BP-(K591T) is predominantly localized to the cytosol and undergoes a PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. We have therefore engineered the phosphoinositide-binding profile of the GAP1IP4BP PH domain, thereby emphasizing that subtle changes in PH domain structure can have a pronounced effect on phosphoinositide binding and the subcellular localization of GAP1IP4BP.  相似文献   

19.
Background:Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5) P3) and Phosphatidylinositol 4,5-trisphosphate (PtdIns(4,5) P2] form an insignificant amount of phospholipids but play important roles in controlling membrane-bound signalling. Little attention has been given to visualize and monitor changes or differences in the local generation of PtdIns(4,5) P2 and PtdIns(3,4,5) P3 in the cell membranes of MDA-MB-231 breast cancer cell lines.Methods:PLCδ1-PH-GFP and Btk-PH-GFP were used as biosensors to detected PtdIns(4,5) P2 and PtdIns(3,4,5)P3 respectively. These biosensors and antibodies were transfected, immuostained and then visualized by confocal microscopy on different cell surfaces.Results:Our results showed that PLCδ1-PH-GFP/mCherry was localized at the cell membrane, while Btk-PH-GFP/mCherry was sometimes localized at the cell membrane but there was also a large amount of fluorescence present in the cytosol and nucleus. Our results also showed that the cells that expressed low levels of Btk-PH-GFP the fluorescence was predominantly localised to the cell membrane. While the cells that expressed high levels of Btk-PH-GFP the fluorescence was localization in the cytosol and cell membrane. Our results demonstrated that both anti-PtdIns(4,5)P2 and anti-PtdIns(3,4,5)P3 antibodies were localized everywhere in cell.Conclusion:Our results suggest that PLCδ1-PH-GFP and Btk-PH-GFP/mCherry have more specificity, reliability, suitability and accuracy than antibodies in binding with and detecting PtdIns(4,5)P2 and PtdIns(3,4,5)P3 and in studying the molecular dynamics of phospholipids in live and fixed cells.Key Words: Antibodies, Biosensors, MDA-MB-231, Phosphatidylinositol  相似文献   

20.
Focal adhesions (FAs) are large assemblies of proteins that mediate intracellular signals between the cytoskeleton and the extracellular matrix (ECM). The turnover of FA proteins plays a critical regulatory role in cancer cell migration. Plasma membrane lipids locally generated or broken down by different inositide kinases and phosphatase enzymes to activate and recruit proteins to specific regions in the plasma membrane. Presently, little attention has been given to the use of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) fluorescent biosensors in order to determine the spatiotemporal organisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 within and around or during assembly and disassembly of FAs. In this study, specific biosensors were used to detect PtdIns(4,5)P2, PtdIns(3,4,5)P3, and FAs proteins conjugated to RFP/GFP in order to monitor changes of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 levels within FAs. We demonstrated that the localisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 were moderately correlated with that of FA proteins. Furthermore, we demonstrate that local levels of PtdIns(4,5)P2 increased within FA assembly and declined within FA disassembly. However, PtdIns(3,4,5)P3 levels remained constant within FAs assembly and disassembly. In conclusion, this study shows that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 localised in FAs may be regulated differently during FA assembly and disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号