首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To find potent and selective inhibitors of dipeptidyl peptidase IV (DPP-IV), we synthesized a series of 2-cyanopyrrolidine with P2-site 4-substituted glutamic acid derivatives and tested their activities against DPP-IV, DPP8, and DPP-II. Analogues that incorporated a bulky substituent at the first carbon position of benzylamine or isoquinoline showed over 30-fold selectivity for DPP-IV over both DPP8 and DPP-II. From structure-activity relationship studies, we speculate that the S2 site of DPP8 might be similar to that of DPP-IV, while DPP-IV inhibitor with N-substituted glycine in the P2 site and/or with a moiety involving in hydrophobic interaction with the side chain of Phe357 might provide a better selectivity for DPP-IV over DPP8.  相似文献   

2.
Dipeptidyl peptidase IV (DPP-IV) belongs to a family of serine peptidases, and due to its indirect regulatory role in plasma glucose modulation, DPP-IV has become an attractive pharmaceutical target for diabetes therapy. DPP-IV inactivates the glucagon-like peptide (GLP-1) and several other naturally produced bioactive peptides that contain preferentially a proline or alanine residue in the second amino acid sequence position by cleaving the N-terminal dipeptide. To elucidate the details of the active site for structure-based drug design, we crystallized a natural source preparation of DPP-IV isolated from rat kidney and determined its three-dimensional structure using X-ray diffraction techniques. With a high degree of similarity to structures of human DPP-IV, the active site architecture provides important details for the design of inhibitory compounds, and structures of inhibitor-protein complexes offer detailed insight into three-dimensional structure-activity relationships that include a conformational change of Tyr548. Such accommodation is exemplified by the response to chemical substitution on 2-cyanopyrrolidine inhibitors at the 5 position, which conveys inhibitory selectivity for DPP-IV over closely related homologues. A similar conformational change is also observed in the complex with an unrelated synthetic inhibitor containing a xanthine core that is also selective for DPP-IV. These results suggest the conformational flexibility of Tyr548 is unique among protein family members and may be utilized in drug design to achieve peptidase selectivity.  相似文献   

3.
In the search for an inhibitor of dipeptidyl peptidase IV (DPP-IV) highly potent both in vitro and in vivo, we synthesized a series of L-prolylthiazolidine-based DPP-IV inhibitors having 4-arylpiperazine or 4-arylpiperidine at the gamma-position of the proline structure. Of these compounds, the 4-(5-nitro-2-pyridyl)piperazine analog 21e showed a sub-nanomolar (IC(50)=0.92 nmol/L) DPP-IV inhibitory activity and a long-lasting in vivo DPP-IV inhibition profile.  相似文献   

4.
Inhibition of dipeptidyl peptidase IV (DPP-IV), the main glucagon-like peptide 1 (GLP1)-degrading enzyme, has been proposed for the treatment of type II diabetes. We expressed and purified the ectodomain of human DPP-IV in Pichia pastoris and determined the X-ray structure at 2.1 A resolution. The enzyme consists of two domains, the catalytic domain, with an alpha/beta hydrolase fold, and a beta propeller domain with an 8-fold repeat of a four-strand beta sheet motif. The beta propeller domain contributes two important functions to the molecule that have not been reported for such structures, an extra beta sheet motif that forms part of the dimerization interface and an additional short helix with a double Glu sequence motif. The Glu motif provides recognition and a binding site for the N terminus of the substrates, as revealed by the complex structure with diprotin A, a substrate with low turnover that is trapped in the tetrahedral intermediate of the reaction in the crystal.  相似文献   

5.
Dipeptidyl peptidase IV (DPP-IV) and seprase belong to a small group of membrane-bound, proline-specific serine proteases, the serine integral membrane proteases (SIMPs). Whilst DPP-IV is the most exhaustively studied peptidase in this class, relatively less is known about the inhibitor/substrate specificity of its close homolog seprase. Additionally, whereas, DPP-IV expression is largely ubiquitous, seprase expression is restricted to tumour and tissue remodelling sites in vivo. Consequently, the highly restricted expression and distribution of seprase potentially make it an excellent therapeutic target for the modulation of neoplastic invasion and metastasis. Against this background, we now wish to report on the design, synthesis, and kinetic testing of a series of dipeptide proline diphenyl phosphonates, against DPP-IV and seprase. The most potent inhibitor of DPP-IV and seprase was found to be Gly-ProP(OPh)2, which exhibited overall second-order rate constants of inactivation of 5.24 x 105 M-1 min-1 and 1.06 x 104 M-1 min-1 against DPP-IV and seprase, respectively. Both proteases displayed differing profiles of susceptibility towards the other members of the series of inhibitors synthesised. In addition, Gly-ProP(OPh)2 and Tyr-ProP(OPh)2 were found to exert a considerable, dose-dependent anti-invasive effect on the LOX melanoma cell line, in vitro.  相似文献   

6.
Due to the heterogeneous nature of commercial human serum albumin (cHSA), other components, such as the protease dipeptidyl peptidase IV (DPP-IV), possibly contribute to the therapeutic effect of cHSA. Here, we provide evidence for the first time that DPP-IV activity contributes to the formation of aspartate–alanine diketopiperazine (DA-DKP), a known immunomodulatory molecule from the N terminus of human albumin. cHSA was assayed for DPP-IV activity using a specific DPP-IV substrate and inhibitor. DPP-IV activity was assayed at 37 and 60 °C because cHSA solutions are pasteurized at 60 °C. DPP-IV activity in cHSA was compared with other sources of albumin such as a recombinant albumin (rHSA). In addition, the production of DA-DKP was measured by negative electrospray ionization/liquid chromatography mass spectrometry (ESI/LCMS). Significant levels of DPP-IV activity were present in cHSA. This activity was abolished using a specific DPP-IV inhibitor. Fully 70 to 80% DPP-IV activity remained at 60 °C compared with the 37 °C incubate. No DPP-IV activity was present in rHSA, suggesting that DPP-IV activity is present only in HSA produced using the Cohn fractionation process. The formation of DA-DKP at 60 °C was observed with the DPP-IV inhibitor significantly decreasing this formation. DPP-IV activity in cHSA results in the production of DA-DKP, which could account for some of the clinical effects of cHSA.  相似文献   

7.
Novel dipeptidyl peptidase IV (DPP-IV) inhibitors with a phenethylphenylphthalimide skeleton were prepared based on α-glucosidase inhibitors and liver X receptor (LXR) antagonists derived from thalidomide. Representative compounds showed non-competitive inhibition of DPP-IV and 28a exhibited 10-fold selectivity for DPP-IV over DPP-8. Compound 28a is the first non-competitive, selective DPP-IV inhibitor.  相似文献   

8.
Details of structure-activity relationships (SAR) for P2 moiety of a P1 2-cyanopyrrolidine dipeptidyl peptidase IV (DPP-IV) inhibitor 4a including stereochemistry are presented. Based on this information, a series of P1 (N-alkyl)aminoacetonitrile analogs 9-20 possessing optimal P2 structure were synthesized and evaluated as inhibitors of DPP-IV. Among them, a representative compound 11, N-(cyanomethyl)-N-ethyl-L-prolinamide, was further evaluated to determine its effect on the plasma glucose level. Also 4a, 10, and 11 were evaluated for their isozyme selectivity to predict their safety problems.  相似文献   

9.
The structure of sulphostin (1), a novel dipeptidyl peptidase IV (DPP-IV) inhibitor, is consisted of three key functional groups, including a characteristic amino(sulfoamino)phosphinyl group, on a piperidine ring. To examine the relationship between its structure and the inhibitory activity against DPP-IV, various analogues were synthesized and their activities were investigated. These results indicated that all of the functional groups on the piperidine ring were crucial to the DPP-IV inhibitory activity of sulphostin, and that the sulfonic acid group, which constructed the amino(sulfoamino)phosphinyl group, contributed to the stability of the compound. Moreover, those functional groups should be adjoined on the piperidine ring for the inhibitory activity. The size of the nitrogen-containing heterocyclic ring including piperidine appeared to scarcely affect the activity. In the present study, the sulfonic acid-deficient five-membered ring analogue 27a showed the strongest inhibitory activity (IC50=11 nM).  相似文献   

10.
A series of (2S)-cyanopyrrolidines with glutamic acid derivatives at the P2 site have been prepared and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV). The structure–activity relationships (SAR) led to the discovery of potent 3-substituted glutamic acid analogues, providing enhanced chemical stability and excellent selectivity over the closely related enzymes, DPP8, DPP-II and FAP. Compound 13f exhibited the ability to both significantly decrease the glucose excursion and inhibit plasma DPP-IV activity.  相似文献   

11.
Dipeptidyl peptidase IV (DPP-IV) inhibitors are looked to as a potential new antidiabetic agent class. A series of [(S)-gamma-(arylamino)prolyl]thiazolidine compounds in which the electrophilic nitrile is removed are chemically stable DPP-IV inhibitors. To discover a structure for the gamma-substituent of the proline moiety more suitable for interacting with the S(2) pocket of DPP-IV, optimization focused on the gamma-substituent was carried out. The indoline compound 22e showed a DPP-IV-inhibitory activity 100-fold more potent than that of the prolylthiazolidine 10 and comparable to that of NVP-DPP728. It also displayed improved inhibitory selectivity for DPP-IV over DPP8 and DPP9 compared to compound 10. Indoline compounds such as 22e have a rigid conformation with double restriction of the aromatic moiety by proline and indoline structures to promote interaction with the binding site in the S(2) pocket of DPP-IV. The double restriction effect provides a potent inhibitory activity which compensates for the decrease in activity caused by removing the electrophilic nitrile.  相似文献   

12.
The purpose of this research was to develop a stable fixed dose combination tablet for a model DPP-IV inhibitor and metformin hydrochloride. The dipeptidyl peptidase IV (DPP-IV) inhibitor was particularly challenging to formulate due to its significant chemical instability and moisture sensitivity. Various formulation strategies were investigated and placed on accelerated stability to determine the lead approach and critical quality attributes. The lead formulation investigated was a drug layered pellet containing the DPP-IV inhibitor, which was further coated with various seal coats and moisture barriers, then compressed into a tablet with compression aids and granulated metformin hydrochloride. The investigations revealed that the drug layered pellets compressed into a fixed dose combination tablet yielded a unique stability enhancement. The stability was highly dependent on the final tablet water content and could be further improved by the addition of moisture barrier coatings. A fundamental understanding of the key critical quality attributes for the fixed dose combination product containing a DPP-IV inhibitor and metformin hydrochloride as an oral solid dosage form were established. This research identified a formulation approach to enable a successful commercial product to be developed.  相似文献   

13.
Dipeptidyl peptidase IV (DPP-IV) inhibitors are promising antidiabetic drugs, and several drugs are in the developmental stage. We previously reported that the introduction of fluorine to the 4-position of 2-cyanopyrrolidine enhanced the DPP-IV inhibitory effect. In the present report, we examined the structure-activity relationship (SAR) of 2-cyano-4-fluoropyrrolidine with N-substituted glycine at the 1-position. We report the identification of a potent and stable DPP-IV inhibitor (TS-021) with a long-term persistent plasma drug concentration and a potent antihyperglycemic activity.  相似文献   

14.
Human dipeptidyl peptidase IV (DPP-IV) is a ubiquitously expressed type II transmembrane serine protease. It cleaves the penultimate positioned prolyl bonds at the N terminus of physiologically important peptides such as the incretin hormones glucagon-like peptide 1 and glucose-dependent insulinotropic peptide. In this study, we have characterized different active site mutants. The Y547F mutant as well as the catalytic triad mutants S630A, D708A, and H740L showed less than 1% wild type activity. X-ray crystal structure analysis of the Y547F mutant revealed no overall changes compared with wild type apoDPP-IV, except the ablation of the hydroxyl group of Tyr(547) and a water molecule positioned in close proximity to Tyr(547). To elucidate further the reaction mechanism, we determined the crystal structure of DPP-IV in complex with diisopropyl fluorophosphate, mimicking the tetrahedral intermediate. The kinetic and structural findings of the tyrosine residue are discussed in relation to the catalytic mechanism of DPP-IV and to the inhibitory mechanism of the 2-cyanopyrrolidine class of potent DPP-IV inhibitors, proposing an explanation for the specificity of this class of inhibitors for the S9b family among serine proteases.  相似文献   

15.
A series of non-covalent inhibitors of the serine protease dipeptidyl peptidase IV (DPP-IV) were found to adopt a U-shaped binding conformation in X-ray co-crystallization studies. Remarkably, Tyr547 undergoes a 70 degrees side-chain rotation to accommodate the inhibitor and allows access to a previously unexposed area of the protein backbone for hydrogen bonding.  相似文献   

16.
The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.  相似文献   

17.
Prolyl oligopeptidase contains a peptidase domain and its catalytic triad is covered by the central tunnel of a seven-bladed beta-propeller. This domain makes the enzyme an oligopeptidase by excluding large structured peptides from the active site. The apparently rigid crystal structure does not explain how the substrate can approach the catalytic groups. Two possibilities of substrate access were investigated: either blades 1 and 7 of the propeller domain move apart, or the peptidase and/or propeller domains move to create an entry site at the domain interface. Engineering disulfide bridges to the expected oscillating structures prevented such movements, which destroyed the catalytic activity and precluded substrate binding. This indicated that concerted movements of the propeller and the peptidase domains are essential for the enzyme action.  相似文献   

18.
In this study, we report on the synthesis, kinetic characterisation, and application of a novel biotinylated and active site-directed inactivator of dipeptidyl peptidase IV (DPP-IV). Thus, the dipeptide-derived proline diphenyl phosphonate NH(2)-Glu(biotinyl-PEG)-Pro(P)(OPh)(2) has been prepared by a combination of classical solution- and solid-phase methodologies and has been shown to be an irreversible inhibitor of porcine DPP-IV, exhibiting an over all second-order rate constant (k(i)/K(i)) for inhibition of 1.57 x 10(3) M(-1) min(-1). This value compares favourably with previously reported rates of inactivation of DPP-IV by dipeptides containing a P(1) proline diphenyl phosphonate grouping [B. Boduszek, J. Oleksyszyn, C.M. Kam, J. Selzler, R.E. Smith, J.C. Powers, Dipeptide phophonates as inhibitors of dipeptidyl peptidase IV, J. Med. Chem. 37 (1994) 3969-3976; B.F. Gilmore, J.F. Lynas, C.J. Scott, C. McGoohan, L. Martin, B. Walker, Dipeptide proline diphenyl phosphonates are potent, irreversible inhibitors of seprase (FAPalpha), Biochem, Biophys. Res. Commun. 346 (2006) 436-446.], thus demonstrating that the incorporation of the side-chain modified (N-biotinyl-3-(2-(2-(3-aminopropyloxy)-ethoxy)-ethoxy)-propyl) glutamic acid residue at the P(2) position is compatible with inhibitor efficacy. The utilisation of this probe for the detection of both purified dipeptidyl peptidase IV and the disclosure of a dipeptidyl peptidase IV-like activity from a clinical isolate of Porphyromonas gingivalis, using established electrophoretic and Western blotting techniques previously developed by our group, is also demonstrated.  相似文献   

19.
Dipeptidyl peptidase IV (DPP-IV) is an ectopeptidase with many roles, and a target of therapies for different pathologies. Zinc and calcium produce mixed inhibition of porcine DPP-IV activity. To investigate whether these results may be generalized to mammalian DPP-IV orthologues, we purified the intact membrane-bound form from rat kidney. Rat DPP-IV hydrolysed Gly-Pro-p-nitroanilide with an average Vmax of 0.86±0.01 μmol min–1mL–1 and KM of 76±6 μM. The enzyme was inhibited by the DPP-IV family inhibitor l-threo-Ile-thiazolidide (Ki=64.0±0.53 nM), competitively inhibited by bacitracin (Ki=0.16±0.01 mM) and bestatin (Ki=0.23±0.02 mM), and irreversibly inhibited by TLCK (IC50 value of 1.20±0.11 mM). The enzyme was also inhibited by divalent ions like Zn2+ and Ca2+, for which a mixed inhibition mechanism was observed (Ki values of the competitive component: 0.15±0.01 mM and 50.0±1.05 mM, respectively). According to bioinformatic tools, Ca2+ ions preferentially bound to the β-propeller domain of the rat and human enzymes, while Zn2+ ions to the α-β hydrolase domain; the binding sites were essentially the same that were previously reported for the porcine DPP-IV. These data suggest that the cationic susceptibility of mammalian DPP-IV orthologues involves conserved mechanisms.  相似文献   

20.
PepV from Lactobacillus delbrueckii, a dinuclear zinc peptidase, has been characterized as an unspecific amino dipeptidase. The crystal structure of PepV in complex with the phosphinic inhibitor AspPsi[PO(2)CH(2)]AlaOH, a dipeptide substrate mimetic, reveals a "catalytic domain" and a "lid domain," which together form an internal active site cavity that traps the inhibitor. The catalytic domain is topologically similar to catalytic domains from amino- and carboxypeptidases. However, the lid domain is unique among the related enzymes. In contrast to the other related exopeptidases, PepV recognizes and fixes the dipeptide backbone, while the side chains are not specifically probed and can vary, rendering it a nonspecific dipeptidase. The cocrystallized inhibitor illustrates the two roles of the two catalytic zinc ions, namely stabilization of the tetrahedral intermediate and activation of the catalytic water molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号