首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunofluorescent staining was used with thin sections of paraffin-embedded specimens to detect the development of Bacillus thuringiensis var. israelensis and Bacillus sphaericus in the gut of mosquito larvae. The third- and fourth-instar larvae of Aedes aegypti, Anopheles maculatus, and Culex quinquefasciatus were fed either vegetative cells or spores of the bacteria. Spore germination, multiplication, and sporulation were studied in the larvae of each species. The spores of B. thuringiensis var. israelensis and B. sphaericus strain 2297 could germinate and cells could sporulate in the larval body. The vegetative cells of B. sphaericus strain 810428 were also able to produce spores in the mosquito larval gut, but the germination of spores could not be detected in the larvae. Multiplication of all bacterial species was observed after the larvae died. Growth of the bacteria in distilled water containing crude extracts of larvae made from each species was compared with that in synthetic medium (nutrient broth). They could produce spores and toxins in all the media used and the toxins had larvicidal activity against the target mosquitos Ae. aegypti, An. maculatus, and C. quinquefasciatus.  相似文献   

2.
The larval susceptibility to Bacillus sphaericus strain 2362 of the non-man-biting mosquito Culex cinereus and the urban filariasis vector Culex quinquefasciatus, two competitor mosquitoes in polluted habitats, was compared. In the laboratory, both species ingested a similar amount of B. sphaericus spores when fed c. 2 x 10(5) spores per ml for 30 min. However, in the same experiment, third-instar larvae of Cx quinquefasciatus were reduced by 98% at 24 h exposure while Cx cinereus larvae were only reduced by 6% at 72 h. In the field, preimaginal populations of Cx cinereus ingested, within a week, more than 99% of the applied spores, but showed no significant decrease through 14 days in cesspools treated at 10 g/m2 of a flowable concentrate of B. sphaericus 2362, containing 2 x 10(10) spores/g. It is proposed that specific biological control of Cx quinquefasciatus could result from appropriate treatment of breeding-sites with larvicidal B. sphaericus and competitive displacement by Cx cinereus or other mosquitoes with larvae that are more tolerant of B. sphaericus.  相似文献   

3.
In the quest for effective control of mosquitoes, attention has turned increasingly to strains of the bacteria Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis, which produce potent toxins with specific mosquitocidal activities. However, sedimentation of the bacterial spores limits the duration of effective control after field application of these bacilli. We describe here the cloning of genes encoding the 51.4- and 41.9-kDa toxins from B. sphaericus 2297, the 100-kDa toxin from B. sphaericus SSII-1, and the 130-kDa toxin from B. thuringiensis subsp. israelensis into the broad-host-range plasmid pRK248 and the transfer of these genes for expression in Caulobacter crescentus CB15. The recombinant C. crescentus cells were shown to be toxic to mosquito larvae. Caulobacter species are ubiquitous microorganisms residing in the upper regions of aquatic environments and therefore provide the potential for prolonged control by maintaining mosquitocidal toxins in larval feeding zones.  相似文献   

4.
Dried preparations with Streptococcus faecium, strain A(2)1, and spores of Bacillus sphaericus, strain C(I)A, normally used for control of the microbiological efficiency of radiation sterilization plants and preparations with spores of Bacillus subtilis, normally used for control of sterilization by dry heat, formalin, and ethylene oxide, as well as similar preparations with Micrococcus radiodurans, strain R(1), and spores of Bacillus globigii (B. subtilis, var. niger) were gamma irradiated with dose rates from 16 to 70 krad/h at temperatures from 60 to 100 C. At 80 C the radiation response of the spore preparations was the same as at room temperature, whereas the radiation resistance of the preparations with the two vegetative strains was reduced. At 100 C the radiation response of preparations with spores of B. subtilis was unaffected by the high temperature, whereas at 16 and and 25 krad/h the radiation resistance of the radiation-resistant sporeformer B. sphaericus, strain C(I)A, was reduced to the level of radiation resistance of preparations with spores of B. subtilis. It is concluded that combinations of heat and gamma irradiation at the temperatures and dose rates tested may have very few practical applications in sterilization of medical equipment.  相似文献   

5.
In the quest for effective control of mosquitoes, attention has turned increasingly to strains of the bacteria Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis, which produce potent toxins with specific mosquitocidal activities. However, sedimentation of the bacterial spores limits the duration of effective control after field application of these bacilli. We describe here the cloning of genes encoding the 51.4- and 41.9-kDa toxins from B. sphaericus 2297, the 100-kDa toxin from B. sphaericus SSII-1, and the 130-kDa toxin from B. thuringiensis subsp. israelensis into the broad-host-range plasmid pRK248 and the transfer of these genes for expression in Caulobacter crescentus CB15. The recombinant C. crescentus cells were shown to be toxic to mosquito larvae. Caulobacter species are ubiquitous microorganisms residing in the upper regions of aquatic environments and therefore provide the potential for prolonged control by maintaining mosquitocidal toxins in larval feeding zones.  相似文献   

6.
Elimination of Bacillus sphaericus spores ingested by midge larvae, snails, and oysters was most rapid among midge larvae. Spores remained in oysters up to 21 days and in snails up to 49 days. Viable spores were recovered in snail and oyster feces for these same periods. There was no indication of actively growing B. sphaericus in the animals. Passage through oyster gut detoxified the B. sphaericus mosquito larval toxin, but there was a 33% retention of toxicity following snail gut passage. Midge larvae reared to adults in spore-containing water carried spores in/on the adult body. This suggests that these animals could carry the bacteria to sites beyond the application area.  相似文献   

7.
Toxin was extracted from spores of the mosquito pathogen Bacillus sphaericus strain 1593 using 0.05 M NaOH. The molecular weight of this toxin was 35000-54000. Toxic activity of this extract was resistant to a variety of enzymes including subtilisin, but was degraded by pronase. Antiserum produced to 1593 spore toxin neutralized spore toxin and cytoplasmic toxin activity, but did not react with Bacillus thuringiensis var. israelensis crystal toxin, nor did var. israelensis toxin antiserum react with B. sphaericus toxin. Crystal like parasporal inclusions accompanying the B. sphaericus 1593 spores were removed by NaOH extraction.  相似文献   

8.
The low heat resistance (D100 = 0.554 min, z = 13.4 degrees C) of dormant lysozyme-sensitized spores of Bacillus sphaericus 9602 was correlated with a low protoplast wet density (1.305 g/ml) equivalent to a high protoplast water content (61.0%, wet weight basis). These values for these unusual spores were consistent with those correlated previously in 28 spore types of seven other species.  相似文献   

9.
Summary A flowable concentrate of Bacillus sphaericus strain 2362 was applied at 10 g/m2 against Culex quinquefasciatus mosquito larvae in cesspools. Complete control of larvae was maintained during 5 to 6 weeks, due to a very low settling of B. sphaericus spores, and was related to the presence of at least 100 to 500 spores per ml in upper water layers. Larval cadavers sedimented within 48 h after treatment. B. sphaericus was shown to recycle in dead larvae but not in mud. Spore persistence exceeded 5 months in bottom mud and the concentration of persistent spores was higher in cesspools, the bottom of which was cemented. Depth, temperature, pH, dissolved oxygen and suspended matter content of the water remained relatively constant throughout 4 months. In laboratory experiments, the final amounts of spores recycled in larvae was not influenced by spore concentration in water or by detergent, but it was affected by organic matter. Projected costs of B. sphaericus formulation indicates that its use even at high dosages, would be more cost effective than the use of chemical insecticides, especially where c. quinquefasciatus is resistant to these latter. A new strategy for controlling this vector could be deployed, using B. sphaericus and insect growth regulators in alternation.  相似文献   

10.
Mass production and storage methods were evaluated for maximization of spores of Vairimorpha necatrix, a promising protozoan for microbial control due to its virulence and prolificity in lepidopterous pests. In vivo spore production was at a maximum when 3rd instar Heliothis zea were exposed to 6.6 spores/mm2 of artificial diet surface and reared for 15 days. Approximately 1.67 × 1010 spores/larva were produced, or ca. 1 × 1010 spores/larva after partial purification of the spores by homogenization of the larvae in water, filtration, and centrifugation. The spores were inactivated by relatively short exposures to several chemicals which were tested to counteract contamination of the diet surface by fungi in the spore inoculum. Spores of V. necatrix were stored at refrigerated and freezing temperatures for up to 2 years and bioassayed periodically with 2nd instar H. zea. Spores lost little infectivity after 23 months at 6°C if they were stored in a purified water suspension plus antibiotic, but they were noninfective after 18 months at 6°C if stored in host tissue. Storage at ?15°C caused little loss of infectivity whether the spores were stored in water and glycerine, in host tissue, or after lyophilization. The spores withstood lyophilization in host cadavers better than in purified water suspension. Samples of a dry V. necatrix-corn meal formulation, which was prepared for field efficacy tests and stored at ?15° and 6°C, were highly infective after 9 months. Large numbers of V. necatrix spores can thus be produced and later made available for microbial control field trials with little loss of infectivity.  相似文献   

11.
Two major low-molecular weight, acid-soluble proteins (termed A and B proteins) were purified from Bacillus sphaericus spores and had properties similar to those of the analogous proteins from spores of other Bacillus species. These proteins were accumulated late in sporulation, when the developing spores became resistant to UV light, and were degraded during spore germination by a spore protease. A mutant of B. sphaericus unable to make spore cortex because of a block in diaminopimelic acid (DAP) biosynthesis accumulated and maintained levels of the A and B proteins similar to those in the DAP+ parent or the DAP- strain in which cortex formation was restored by growth with DAP. In addition, the DAP- strain grown without DAP acquired a level of UV light resistance identical to that of wild-type spores and at the time of appearance of the A and B proteins. These findings indicate that formation of little, if any, spore cortex is required for acquisition of UV light resistance or maintenance of high levels of A and B proteins. The data provide further support for a role of the A and B proteins in the spore's UV light resistance.  相似文献   

12.
球形芽抱杆菌C3-41菌株(Bacillussphaericus C3-41)对致倦库蚊(Culexquinquefa-sciatus)幼虫有很高毒效,对2龄和3—4龄幼虫的半致死剂量(LD50)分别为63.1和89.7芽孢/蚊幼虫。处理浓度越高,取食时间越长,蚊幼虫取食到的杀蚊活性物质量越多,死亡率越高。当蚊幼虫取食互致死剂量杀蚊活性物质后,球形芽孢杆菌在感染的活幼虫体内不增殖;但当蚊幼虫取食致死剂量杀蚊活性物质后,蚊幼死亡,球形芽抱杆菌在死蚊幼虫体内增殖明显,6天内芽抱从感染初期的1.86×102/蚊幼虫增加到1.59×106/蚊幼虫。芽抱在死蚊幼虫体内能正常荫发、生长、产孢和形成毒素。增殖的芽抱同样对致倦库蚊幼虫有较高毒力。  相似文献   

13.
Larvae of Culex quinquefasciatus are much more susceptible to the toxin of Bacillus sphaericus than are larvae of Aedes aegypti. In the present study, the rate of ingestion, dissolution, and the cleavage by midgut proteases of the B. sphaericus toxin were compared in larvae of these species to determine whether these factors account for the differences in susceptibility. During filter feeding, larvae of both species removed significant quantities of B. sphaericus toxin from suspensions. Filtration rates for 1 hr, the time at which C. quinquefasciatus exhibited marked intoxication, were higher for A. aegypti (576-713 microliters/larva/hr) than for C. quinquefasciatus (446-544 microliters/larva/hr). Within 24 hr of exposure, A. aegypti larvae ingested 97-99% of the toxin particulates and suffered not more than 10% mortality in suspensions which induced complete mortality in C. quinquefasciatus within 2 hr of exposure. Quantification of the particulate toxin present in larvae after exposure to B. sphaericus suspensions revealed that larvae of both species contained only minor amounts of the toxin, suggesting the larvae had been able to solubilize the toxin after ingestion. Proteases recovered from the feces of larvae cleaved at 43-kDa protein isolated from B. sphaericus toxin extract to 40 kDa in both species. Thus, differences in susceptibility to the B. sphaericus toxin between A. aegypti and C. quinquefasciatus are not due to differences in rates of ingestion, dissolution, or the specificity of proteases.  相似文献   

14.
The fungal pathogen, Entomophaga maimaiga causes epizootics in populations of the important North American forest defoliator gypsy moth ( Lymantria dispar ). Increasing use of this fungus for biological control is dependent on our ability to produce and manipulate the long-lived overwintering resting spores (azygospores). E. maimaiga resting spores undergo obligate dormancy before germination so we investigated conditions required for survival during dormancy as well as the dynamics of subsequent germination. After formation in the field during summer, resting spores were stored under various moisture levels, temperatures, and with and without soil in the laboratory and field. The following spring, for samples maintained in the field, germination was greatest among resting spores stored in plastic bags containing either moistened paper towels or sterile soil. Resting spores did not require light during storage to subsequently germinate. In the laboratory, only resting spores maintained with either sterile or unsterilized soil at 4°C (but not at 20 or -20°C) germinated the following spring, but at a much lower percentage than most field treatments. To further investigate the effects of relative humidity (RH) during storage, field-collected resting spores were placed at a range of humidities at 4°C. After 9.5 months, resting spore germination was highest at 58% RH and no resting spores stored at 88 or 100% RH germinated. To evaluate the dynamics of infections initiated by resting spores after storage, gypsy moth larvae were exposed to soil containing resting spores that had been collected in the field and stored at 4°C for varying lengths of time. No differences in infection occurred among larvae exposed to fall-collected soil samples stored at 4oC over the winter, versus soil samples collected from the same location the following spring. Springcollected resting spores stored at 4°C did not go into secondary dormancy. At the time that cold storage of soil containing resting spores began in spring, infection among exposed larvae was initiated within a few days after bringing the soil to 15°C. This same pattern was also found for spring-collected resting spore-bearing soil that was assayed after cold storage for 2-7 months. However, after 31-32 months in cold storage, infections started 14-18 days after soil was brought to 15°C, indicating a delay in resting spore activity after prolonged cold storage.  相似文献   

15.
The lower leaf surface of Hevea brasiliensis was more susceptible to infection by Colletotrichum gloeosporioides than the upper. Few lesions were produced if spore drops on susceptible leaves were allowed to dry. Lesion development after 72 h was quickest at 21 oC, slower at 26.5 oC and was stopped at 32 oC, probably because of bacteria in the inoculation drop. On leaflets aged 7 days from bud-burst, the effective spore dose for 50% of leaflets infected (ED50) after 16 h incubation, was 260 spores and after 46 h, 120 spores/infection droplet; the minimum ED50 for the upper leaf surface was about 4 spores/mm2. Leaflets 15 days old, which are normally resistant, were rendered susceptible by abrading the surface with carborundum powder. Spores caught in a Hirst spore trap reached a daily maximum at 23 h, at rates of up to 440 spores/m3 air/h, but fell to low concentrations as the humidity dropped during the daytime, and also during rain. There was some correlation between disease severity and duration of 97–100% relative humidity, and moderate to severe defoliation of clone PB 86 occurred when this reached 13.5 h/day. Rainfall increases infection by prolonging the period of atmospheric saturation and leaf wetness.  相似文献   

16.
Laboratory bioassays (48h duration, 25+/-1 degrees C) were used to determine the toxicity of Bacillus thuringiensis var. israelensis (B.t.i.) and Bacillus sphaericus to fourth instar larvae of Chironomus tepperi, a major pest of rice in southern Australia. Bioassays were conducted using different combinations of larval ages and densities to determine if these factors affected toxicity. The effects of temperature and substrate type on B.t.i. toxicity were also investigated. Tests were conducted using a commercial B.t.i. formulation (VectoBac WDG, 3000ITU/mg), a spore/crystal mixture derived from the VectoBac WDG strain, and VectoLex WDG, a commercial B. sphaericus formulation (650ITU/mg). VectoBac WDG was highly toxic to fourth instar C. tepperi in bioassays using a sand substrate (LC(50) 0.46mg/L, older larvae); younger fourth instar larvae were more susceptible (LC(50) 0.20mg/L). Increasing larval densities (from 10 to 30 per bioassay cup) increased LC(50) values for both age groups, significantly so in the case of older larvae (higher density LC(50) 0.80mg/L). Use of a soil substrate increased the LC(50) value (older larvae, 10 per cup) to 0.99mg/L. Similar differences in toxicity relative to larval age and substrate type were found in bioassays using the B.t.i. spore/crystal mixture. VectoBac WDG and the spore/crystal mixture both showed similar (approximately 6-fold) declines in activity between 30 and 17.5 degrees C. At lower temperatures (between 17.5 and 15 degrees C), activity of the spore/crystal mixture declined much more rapidly than that of VectoBac WDG. VectoLex WDG showed very low toxicity to C. tepperi larvae, and the overall impact of larval age and density was relatively minor (LC(50) values 1062-1340mg/L). Autoclaving VectoLex WDG did not substantially reduce its toxicity (LC(50) 1426mg/L), suggesting that formulation additives (i.e., surfactants and other adjuvants) are responsible for much of the toxicity occurring at the high product concentrations required to cause C. tepperi mortality. Whilst VectoLex WDG was ineffective against C. tepperi, VectoBac WDG has the potential to provide selective control of this rice pest at economically viable application rates.  相似文献   

17.
Bacillus popilliae spores were stored for about 7 years under three separate conditions: frozen in sterile distilled water, smeared on glass microscope slides, and stored in loam soil at room temperature. In separate experiments, each of the 7-year-old preparations was fed to Popilla japonica larvae at concentrations of 103, 105, 107, and 109 spores/g of soil. A significant decrease in the percentage of larvae infected occurred in all of the aged spore tests. B. popilliae spores stored in soil, for the extended period, produced 3% larval infection only at the 109 spores concentration; similar results were obtained from frozen spores. When P. japonica larvae were fed spores stored dried on slides, about 20% of the larvae developed milky disease. When aged frozen spores were artificially injected into larvae, 12% became infected at concentrations of 1 × 106 spores/larvae; dried spores at the same concentration infected about 38% of the insect larvae. We conclude from these data that aged B. popilliae spores are significantly less infective against P. japonica larvae than young spores.  相似文献   

18.
Weekly estimates of numbers of Pseudocercosporella herpotrichoides conidia on naturally infected wheat straw, made from February to July 1982, showed there were most conidia (8.1 × 106 per straw) in February and least (1.9 × 104 per straw) at the end of June. The viability of these spores remained high throughout this period, with an average of 85 % germination after 24 h.
After removal of spores produced in the field, straws were incubated at 5, 10, 15, 20 or 25°C and subsequent sporulation assessed after 3 or 5 weeks. The optimum temperature for spore production was 5°C and very few spores were produced at 25°C. There was no difference in viability between spores produced at different temperatures.
Wheat seedlings placed amongst infected straw collected and retained spores on the upper and lower surfaces of all leaf blades and on outer leaf sheaths. Both naturally dispersed spores and spores sprayed on to plants were not removed by subsequent rainfall.
When wheat seedlings were inoculated between the coleoptile and outer leaf sheath with different numbers of P. herpotrichoides spores, lesion development was most rapid in seedlings inoculated with the greatest numbers of spores. However, after incubation for 12 weeks visible lesions were present on all plants inoculated with > c. 10 spores.  相似文献   

19.
Two morphological types of Bacillus popilliae, causal agent of the milky disease, have been isolated from taro beetles (Papuana spp, Coleoptera: Scarabaeidae). B. popilliae from P. woodlarkiana woodlarkiana (Papua New Guinea) was a type A1 with a small sporangium (4.1 x 1.6 microm) and a large spore (2.1 x 1.4 microm) and parasporal body (1.8 x 1.2 microm) that sometimes overlap. B. popilliae from P. uninodis and P. woodlarkiana laevipennis (Solomon Islands) was a type B2 with a small sporangium (2.8 x 1.3 microm), a small eccentric spore (1.1 x 0.7 microm), and no parasporal body. The infectivity of these B. popilliae to Papuana uninodis larvae was compared with two B. popilliae samples from Popillia japonica in injection tests. The hemolymph of P. uninodis supported the germination and growth of isolates from Papuana and P. japonica. Results were similar in third instars and adults. Highest infection (spores present) and mortality was caused by the isolates from Papuana: mortality reached almost 100% 4 weeks after injection of the B2 type B. popilliae with 40% of larvae and 52% of adults infected. Injection of type A1 caused lower mortality but a similar percentage infected. Of two A1 B. popilliae from P. japonica, one caused a mortality comparable to type A1 from Papuana but lower infection; an older isolate resulted in low mortality and only one infected larva. B. popilliae type A1 from P. woodlarkiana was produced in the Solomon Islands by injection of spores in P. uninodis. Thirty four percent of the injected larvae and 31% of the adults produced spores with an average yield of 3.2 and 0.8 x 10(9) spores/insect, respectively. Oral application of a single dose of 10(7) spores of the B. popilliae isolates from P. uninodis or P. japonica did not cause infection and similarly inoculation of the food with spores of B. popilliae type B2 did not result in infections. However, when different rates were applied to the food of second- and third-instar P. uninodis, the B. popilliae type A1 from P. woodlarkiana caused up to 15% infection and concentration-related mortality.  相似文献   

20.
The effect of various factors on the yield of Bacillus popilliae var. rhopaea spores formed in Rhopaea verreauxi larvae have been studied. Lack of adequate food, temperatures above and below 23°C, and infecting doses above 106 spore larva, all significantly lowered spore yield per larva. Larval age had a pronounced effect; second-instar and young third-instar larvae produ ed about 1 × 1010 spores while old third-instar larvae produced about 4 × 1010 spores. Incubation of larvae for longer than 4 weeks did not increase spore yield per larva. Yields were similar whether larvae were infected by injection or per os. Three other host species could be used to mass-produce B. popilliae var. rhopaea spores but all were less efficient than R. verreauxi. Milky third-instar R. verreauxi larvae, which were field collected, yielded 1.57 × 1010 spores per larva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号