共查询到20条相似文献,搜索用时 0 毫秒
1.
Singleton BK Torres-Arzayus MI Rottinghaus ST Taccioli GE Jeggo PA 《Molecular and cellular biology》1999,19(5):3267-3277
Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3' deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity. 相似文献
2.
3.
Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. 总被引:29,自引:5,他引:24 下载免费PDF全文
The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs. 相似文献
4.
《DNA Repair》2017
Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation induced DNA double strand breaks (DSBs) in human cells. Critical to NHEJ is the DNA-dependent interaction of the Ku70/80 heterodimer with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form the DNA-PK holoenzyme. However, precisely how Ku recruits DNA-PKcs to DSBs ends to enhance its kinase activity has remained enigmatic, with contradictory findings reported in the literature. Here we address the role of the Ku80 C-terminal region (CTR) in the DNA-dependent interaction of Ku70/80 with DNA-PKcs using purified components and defined DNA structures. Our results show that the Ku80 CTR is required for interaction with DNA-PKcs on short segments of blunt ended 25 bp dsDNA or 25 bp dsDNA with a 15-base poly dA single stranded (ss) DNA extension, but this requirement is less stringent on longer dsDNA molecules (35 bp blunt ended dsDNA) or 25 bp duplex DNA with either a 15-base poly dT or poly dC ssDNA extension. Moreover, the DNA-PKcs-Ku complex preferentially forms on 25 bp DNA with a poly-pyrimidine ssDNA extension.Our work clarifies the role of the Ku80 CTR and dsDNA ends on the interaction of DNA-PKcs with Ku and provides key information to guide assembly and biology of NHEJ complexes. 相似文献
5.
Proteolytic cleavage of the catalytic subunit of DNA-dependent protein kinase during poliovirus infection 下载免费PDF全文
Graham KL Gustin KE Rivera C Kuyumcu-Martinez NM Choe SS Lloyd RE Sarnow P Utz PJ 《Journal of virology》2004,78(12):6313-6321
DNA-dependent protein kinase (DNA-PK) is a serine/threonine kinase that has critical roles in DNA double-strand break repair, as well as B- and T-cell antigen receptor rearrangement. The DNA-PK enzyme consists of the Ku regulatory subunit and a 450-kDa catalytic subunit termed DNA-PK(CS). Both of these subunits are autoantigens associated with connective tissue diseases such as systemic lupus erythematosus (SLE) and scleroderma. In this report, we show that DNA-PK(CS) is cleaved during poliovirus infection of HeLa cells. Cleavage was visible as early as 1.5 h postinfection (hpi) and resulted in an approximately 40% reduction in the levels of native protein by 5.5 hpi. Consistent with this observation, the activity of the DNA-PK(CS) enzyme was also reduced during viral infection, as determined by immunoprecipitation kinase assays. Although it has previously been shown that DNA-PK(CS) is a substrate of caspase-3 in vitro, the protein was still cleaved during poliovirus infection of the caspase-3-deficient MCF-7 cell line. Cleavage was not prevented by infection in the presence of a soluble caspase inhibitor, suggesting that cleavage in vivo was independent of host caspase activation. DNA-PK(CS) is directly cleaved by a picornaviral 2A protease in vitro, producing a fragment similar in size to the cleavage product observed in vivo. Taken together, our results indicate that DNA-PK(CS) is cleaved by the 2A protease during poliovirus infection. Proteolytic cleavage of DNA-PK(CS) during poliovirus infection may contribute to inhibition of host immune responses. Furthermore, cleavage of autoantigens by viral proteases may target these proteins for the autoimmune response by generating novel, or "immunocryptic," protein fragments. 相似文献
6.
Drouet J Frit P Delteil C de Villartay JP Salles B Calsou P 《The Journal of biological chemistry》2006,281(38):27784-27793
Repair of DNA double strand breaks (DSB) by the nonhomologous end-joining pathway in mammals requires at least seven proteins involved in a simplified two-step process: (i) recognition and synapsis of the DNA ends dependent on the DNA-dependent protein kinase (DNA-PK) formed by the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs in association with Artemis; (ii) ligation dependent on the DNA ligase IV.XRCC4.Cernunnos-XLF complex. The Artemis protein exhibits exonuclease and endonuclease activities that are believed to be involved in the processing of a subclass of DSB. Here, we have analyzed the interactions of Artemis and nonhomologous end-joining pathway proteins both in a context of human nuclear cell extracts and in cells. DSB-inducing agents specifically elicit the mobilization of Artemis to damaged chromatin together with DNA-PK and XRCC4/ligase IV proteins. DNA-PKcs is necessary for the loading of Artemis on damaged DNA and is the main kinase that phosphorylates Artemis in cells damaged with highly efficient DSB producers. Under kinase-preventive conditions, both in vitro and in cells, Ku-mediated assembly of DNA-PK on DNA ends is responsible for a dissociation of the DNA-PKcs.Artemis complex. Conversely, DNA-PKcs kinase activity prevents Artemis dissociation from the DNA-PK.DNA complex. Altogether, our data allow us to propose a model in which a DNA-PKcs-mediated phosphorylation is necessary both to activate Artemis endonuclease activity and to maintain its association with the DNA end site. This tight functional coupling between the activation of both DNA-PKcs and Artemis may avoid improper processing of DNA. 相似文献
7.
The DNA-dependent protein kinase (DNA-PK) was identified as an activity and as its three component polypeptides 25 and 15 years ago, respectively. It has been exhaustively characterized as being absolutely dependent on free double stranded DNA ends (to which it is directed by its regulatory subunit, Ku) for its activation as a robust nuclear serine/threonine protein kinase. Here, we report the unexpected finding of robust DNA-PKcs activation by N-terminal constraint, independent of either DNA or its regulatory subunit Ku. These data suggest that an N-terminal conformational change (likely induced by DNA binding) induces enzymatic activation. 相似文献
8.
Function of DNA-protein kinase catalytic subunit during the early meiotic prophase without Ku70 and Ku86 总被引:5,自引:0,他引:5
Hamer G Roepers-Gajadien HL van Duyn-Goedhart A Gademan IS Kal HB van Buul PP Ashley T de Rooij DG 《Biology of reproduction》2003,68(3):717-721
All components of the double-stranded DNA break (DSB) repair complex DNA-dependent protein kinase (DNA-PK), including Ku70, Ku86, and DNA-PK catalytic subunit (DNA-PKcs), were found in the radiosensitive spermatogonia. Although p53 induction was unaffected, spermatogonial apoptosis occurred faster in the irradiated DNA-PKcs-deficient scid testis. This finding suggests that spermatogonial DNA-PK functions in DNA damage repair rather than p53 induction. Despite the fact that early spermatocytes lack the Ku proteins, spontaneous apoptosis of these cells occurred in the scid testis. The majority of these apoptotic spermatocytes were found at stage IV of the cycle of the seminiferous epithelium where a meiotic checkpoint has been suggested to exist. Meiotic synapsis and recombination during the early meiotic prophase induce DSBs, which are apparently less accurately repaired in scid spermatocytes that then fail to pass the meiotic checkpoint. The role for DNA-PKcs during the meiotic prophase differs from that in mitotic cells; it is not influenced by ionizing radiation and is independent of the Ku heterodimer. 相似文献
9.
10.
DNA-dependent protein kinase (DNA-PK) is a DNA end-activated protein kinase composed of a catalytic subunit, DNA-PKcs, and a DNA binding subunit, Ku, that is involved in repair of DNA double-stranded breaks (DSBs). We have previously shown that DNA-PKcs interacts with single-stranded DNA (ssDNA) ends with a separate ssDNA binding site to be activated for its kinase activity. Here, the properties of the ssDNA binding site were examined by using DNA fragments with modified ssDNA extensions. DNA fragments with a wide range of ssDNA modifictations activated DNA-PKcs, indicating a relaxed specificity for the chemical structure of terminal nucleotides of a DSB. Methyl substitution of the phosphate backbone impaired kinase activation but not binding, indicating that interaction with the DNA backbone was involved in kinase activation. Experiments with RNA and RNA/DNA hybrid fragments suggested that the discrimination between RNA and DNA ends resides in the double-stranded DNA binding function of DNA-PKcs. DNA fragments exposing only one ssDNA end activated DNA-PKcs poorly, suggesting that DNA-PKcs distinguishes between DSBs and ssDNA breaks by simultaneous interaction with two ssDNA ends. These properties potentially explain how DNA-PKcs can be specifically activated by DSBs but still recognize the diverse chemical structures exposed when DSBs are introduced by ionizing radiation. 相似文献
11.
Requirement for the kinase activity of human DNA-dependent protein kinase catalytic subunit in DNA strand break rejoining 总被引:16,自引:0,他引:16 下载免费PDF全文
Kurimasa A Kumano S Boubnov NV Story MD Tung CS Peterson SR Chen DJ 《Molecular and cellular biology》1999,19(5):3877-3884
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an enormous, 470-kDa protein serine/threonine kinase that has homology with members of the phosphatidylinositol (PI) 3-kinase superfamily. This protein contributes to the repair of DNA double-strand breaks (DSBs) by assembling broken ends of DNA molecules in combination with the DNA-binding factors Ku70 and Ku80. It may also serve as a molecular scaffold for recruiting DNA repair factors to DNA strand breaks. This study attempts to better define the role of protein kinase activity in the repair of DNA DSBs. We constructed a contiguous 14-kb human DNA-PKcs cDNA and demonstrated that it can complement the DNA DSB repair defects of two mutant cell lines known to be deficient in DNA-PKcs (M059J and V3). We then created deletion and site-directed mutations within the conserved PI 3-kinase domain of the DNA-PKcs gene to test the importance of protein kinase activity for DSB rejoining. These DNA-PKcs mutant constructs are able to express the protein but fail to complement the DNA DSB or V(D)J recombination defects of DNA-PKcs mutant cells. These results indicate that the protein kinase activity of DNA-PKcs is essential for the rejoining of DNA DSBs in mammalian cells. We have also determined a model structure for the DNA-PKcs kinase domain based on comparisons to the crystallographic structure of a cyclic AMP-dependent protein kinase. This structure gives some insight into which amino acid residues are crucial for the kinase activity in DNA-PKcs. 相似文献
12.
Q Song S P Lees-Miller S Kumar Z Zhang D W Chan G C Smith S P Jackson E S Alnemri G Litwack K K Khanna M F Lavin 《The EMBO journal》1996,15(13):3238-3246
Radiosensitive cell lines derived from X-ray cross complementing group 5 (XRCC5), SCID mice and a human glioma cell line lack components of the DNA-dependent protein kinase, DNA-PK, suggesting that DNA-PK plays an important role in DNA double-strand break repair. Another enzyme implicated in DNA repair, poly(ADP-ribose) polymerase, is cleaved and inactivated during apoptosis, suggesting that some DNA repair proteins may be selectively targeted for destruction during apoptosis. Here we demonstrate that DNA-PKcs, the catalytic subunit of DNA-PK, is preferentially degraded after the exposure of different cell types to a variety of agents known to cause apoptosis. However, Ku, the DNA-binding component of the enzyme, remains intact. Degradation of DNA-PKcs was accompanied by loss of DNA-PK activity. One cell line resistant to etoposide-induced apoptosis failed to show degradation of DNA-PKcs. Protease inhibitor data implicated an ICE-like protease in the cleavage of DNA-PKcs, and it was subsequently shown that the cysteine protease CPP32, but not Mch2alpha, ICE or TX, cleaved purified DNA-PKcs into three fragments of comparable size with those observed in cells undergoing apoptosis. Cleavage sites in DNA-PKcs, determined by antibody mapping and microsequencing, were shown to be the same for CPP32 cleavage and for cleavage catalyzed by extracts from cells undergoing apoptosis. These observations suggest that DNA-PKcs is a critical target for proteolysis by an ICE-like protease during apoptosis. 相似文献
13.
Rivera-Calzada A Maman JD Maman JP Spagnolo L Pearl LH Llorca O 《Structure (London, England : 1993)》2005,13(2):243-255
DNA-PKcs is a large PI3-kinase-related protein kinase (PIKK) that plays a central role in DNA double-strand break (DSB) repair via nonhomologous end joining. Using cryo-electron microscopy we have now generated an approximately 13 A three-dimensional map of DNA-PKcs, revealing the overall architecture and topology of the 4128 residue polypeptide chain and allowing location of domains. The highly conserved C-terminal PIKK catalytic domain forms a central structure from which FAT and FATC domains protrude. Conformational changes observed in these domains on DNA binding suggest that they transduce DNA-induced conformational changes to the catalytic core and regulate kinase activity. The N-terminal segments form long curved tubular-shaped domains based on helical repeats to create interacting surfaces required for macromolecular assembly. Comparison of DNA-PKcs with another PIKK DNA repair factor, ATM, defines a common architecture for this important protein family. 相似文献
14.
Autophosphorylation-dependent remodeling of the DNA-dependent protein kinase catalytic subunit regulates ligation of DNA ends 总被引:10,自引:3,他引:10 下载免费PDF全文
Block WD Yu Y Merkle D Gifford JL Ding Q Meek K Lees-Miller SP 《Nucleic acids research》2004,32(14):4351-4357
Non-homologous end joining (NHEJ) is one of the primary pathways for the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) in mammalian cells. Proteins required for NHEJ include the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku, XRCC4 and DNA ligase IV. Current models predict that DNA-PKcs, Ku, XRCC4 and DNA ligase IV assemble at DSBs and that the protein kinase activity of DNA-PKcs is essential for NHEJ-mediated repair of DSBs in vivo. We previously identified a cluster of autophosphorylation sites between amino acids 2609 and 2647 of DNA-PKcs. Cells expressing DNA-PKcs in which these autophosphorylation sites have been mutated to alanine are highly radiosensitive and defective in their ability to repair DSBs in the context of extrachromosomal assays. Here, we show that cells expressing DNA-PKcs with mutated autophosphorylation sites are also defective in the repair of IR-induced DSBs in the context of chromatin. Purified DNA-PKcs proteins containing serine/threonine to alanine or aspartate mutations at this cluster of autophosphorylation sites were indistinguishable from wild-type (wt) protein with respect to protein kinase activity. However, mutant DNA-PKcs proteins were defective relative to wt DNA-PKcs with respect to their ability to support T4 DNA ligase-mediated intermolecular ligation of DNA ends. We propose that autophosphorylation of DNA-PKcs at this cluster of sites is important for remodeling of DNA-PK complexes at DNA ends prior to DNA end joining. 相似文献
15.
Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii 总被引:4,自引:0,他引:4
Rickettsia conorii, a strictly intracellular and category C priority bacterial pathogen (NIAID), invades different mammalian cells. Although some signaling events involved in bacterial entry have been documented, the bacterial and host proteins mediating entry were not known. We report the identification of the Ku70 subunit of DNA-dependent protein kinase (DNA-PK) as a receptor involved in R. conorii internalization. Ku70 is recruited to R. conorii entry sites, and inhibition of Ku70 expression impairs R. conorii internalization. Bacterial invasion is dependent on the presence of cholesterol-enriched microdomains containing Ku70. R. conorii infection stimulates the ubiquitination of Ku70. In addition, the ubiquitin ligase c-Cbl is recruited to R. conorii entry foci, and downregulation of endogenous c-Cbl blocks bacterial invasion and Ku70 ubiquitination. An affinity chromatography approach identified the rickettsial protein rOmpB as a ligand for Ku70. This is the first report of a receptor-ligand interaction involved in the internalization of any rickettsial species. 相似文献
16.
ATR-dependent phosphorylation of DNA-dependent protein kinase catalytic subunit in response to UV-induced replication stress 下载免费PDF全文
Phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) upon ionizing radiation (IR) is essential for cellular radioresistance and nonhomologous-end-joining-mediated DNA double-strand break repair. In addition to IR induction, we have previously shown that DNA-PKcs phosphorylation is increased upon camptothecin treatment, which induces replication stress and replication-associated double-strand breaks. To clarify the involvement of DNA-PKcs in this process, we analyzed DNA-PKcs phosphorylation in response to UV irradiation, which causes replication stress and activates ATR (ATM-Rad3-related)/ATM (ataxia-telangiectasia mutated) kinases in a replication-dependent manner. Upon UV irradiation, we observed a rapid DNA-PKcs phosphorylation at T2609 and T2647, but not at S2056, distinct from that induced by IR. UV-induced DNA-PKcs phosphorylation occurs specifically only in replicating cells and is dependent on ATR kinase. Inhibition of ATR activity via caffeine, a dominant-negative kinase-dead mutant, or RNA interference led to the attenuation of UV-induced DNA-PKcs phosphorylation. Furthermore, DNA-PKcs associates with ATR in vivo and is phosphorylated by ATR in vitro, suggesting that DNA-PKcs could be the direct downstream target of ATR. Taken together, these results strongly suggest that DNA-PKcs is required for the cellular response to replication stress and might play an important role in the repair of stalled replication forks. 相似文献
17.
Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair 总被引:1,自引:0,他引:1
DNA-PKcs is a large (approximately 470 kDa) kinase that plays an essential role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). DNA-PKcs is recruited to DSBs by the Ku70/Ku80 heterodimer, with which it forms the core of a multiprotein complex that promotes synapsis of the broken DNA ends. We have purified the human DNA-PKcs/Ku70/Ku80 holoenzyme assembled on a DNA molecule. Its three-dimensional (3D) structure at approximately 25 Angstroms resolution was determined by single-particle electron microscopy. Binding of Ku and DNA elicits conformational changes in the FAT and FATC domains of DNA-PKcs. Dimeric particles are observed in which two DNA-PKcs/Ku70/Ku80 holoenzymes interact through the N-terminal HEAT repeats. The proximity of the dimer contacts to the likely positions of the DNA ends suggests that these represent synaptic complexes that maintain broken DNA ends in proximity and provide a platform for access of the various enzymes required for end processing and ligation. 相似文献
18.
19.
Calsou P Frit P Humbert O Muller C Chen DJ Salles B 《The Journal of biological chemistry》1999,274(12):7848-7856
The DNA-dependent protein kinase (DNA-PK) is required for double-strand break repair in mammalian cells. DNA-PK contains the heterodimer Ku and a 460-kDa serine/threonine kinase catalytic subunit (p460). Ku binds in vitro to DNA termini or other discontinuities in the DNA helix and is able to enter the DNA molecule by an ATP-independent process. It is clear from in vitro experiments that Ku stimulates the recruitment to DNA of p460 and activates the kinase activity toward DNA-binding protein substrates in the vicinity. Here, we have examined in human nuclear cell extracts the influence of the kinase catalytic activity on Ku binding to DNA. We demonstrate that, although Ku can enter DNA from free ends in the absence of p460 subunit, the kinase activity is required for Ku translocation along the DNA helix when the whole Ku/p460 assembles on DNA termini. When the kinase activity is impaired, DNA-PK including Ku and p460 is blocked at DNA ends and prevents their processing by either DNA polymerization, degradation, or ligation. The control of Ku entry into DNA by DNA-PK catalytic activity potentially represents an important regulation of DNA transactions at DNA termini. 相似文献
20.
Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase 总被引:5,自引:0,他引:5
Romero F Multon MC Ramos-Morales F Domínguez A Bernal JA Pintor-Toro JA Tortolero M 《Nucleic acids research》2001,29(6):1300-1307
We have previously isolated the hpttg proto-oncogene, which is expressed in normal tissues containing proliferating cells and in several kinds of tumors. In fact, expression of hPTTG correlates with cell proliferation in a cell cycle-dependent manner. Recently it was reported that PTTG is a vertebrate analog of the yeast securins Pds1 and Cut2, which are involved in sister chromatid separation. Here we show that hPTTG binds to Ku, the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). hPTTG and Ku associate both in vitro and in vivo and the DNA-PK catalytic subunit phosphorylates hPTTG in vitro. Furthermore, DNA double-strand breaks prevent hPTTG–Ku association and disrupt the hPTTG–Ku complexes, indicating that genome damaging events, which result in the induction of pathways that activate DNA repair mechanisms and halt cell cycle progression, might inhibit hPTTG–Ku interaction in vivo. We propose that hPTTG might connect DNA damage-response pathways with sister chromatid separation, delaying the onset of mitosis while DNA repair occurs. 相似文献