首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
The quenching of fluorescence of n-(9-anthroyloxy)stearic acids and other probes by different ubiquinone homologues and analogues has been exploited to assess the localization and lateral mobility of the quinones in lipid bilayers of model and mitochondrial membranes. The true bimolecular collisional quenching constants in the lipids together with the lipid/water partition coefficients were obtained from Stern-Volmer plots at different membrane concentrations. A monomeric localization of the quinone in the phospholipid bilayer is suggested for the short side-chain ubiquinone homologues and for the longer derivatives when cosonicated with the phospholipids. The diffusion coefficients of the ubiquinones, calculated from the quenching constants either in three dimensions or in two dimensions, are in the range of (1-6) X 10(-6) cm2 s-1, both in phospholipid vesicles and in mitochondrial membranes. A careful analysis of different possible locations of ubiquinones in the phospholipid bilayer, accounting for the calculated diffusion coefficients and the viscosities derived therefrom, strongly suggests that the ubiquinone 10 molecule is located within the lipid bilayer with the quinone ring preferentially adjacent to the polar head groups of the phospholipids and the hydrophobic tail largely accommodated in the bilayer midplane. The steady-state rates of either ubiquinol 1-cytochrome c reductase or NADH:ubiquinone 1 reductase are proportional to the concentration of the quinol or quinone substrate in the membrane. The second-order rate constants appear to be at least 3 orders of magnitude lower than the second-order constants for quenching of the fluorescent probes; this is taken as a clear indication that ubiquinone diffusion is not the rate-determining step in the quinone-enzyme interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The lateral diffusion coefficients of some ubiquinone homologues have been measured in phospholipid vesicles exploiting the fluorescence quenching of the probe 12-(9-anthroyl)stearate by the quinones. Diffusion coefficients higher than 10(-6) cm2 X s-1 have been found at 25 degrees C, compatible with the localization of the ubiquinones in the low-viscosity midplane region of the bilayer.  相似文献   

3.
A method is described for determining the diffusion coefficients of small solutes in limited volumes (approximately equal to 4-9 ml) of fluid. Diffusion is measured in a three-chamber diffusion cell across a central unstirred compartment. Compartments are separated by nitrocellulose membranes. The instantaneous concentration gradient and the instantaneous flux of solute into the dilute end compartment are derived from changes in the concentration of solute in the two stirred end compartments through time. The diffusion coefficient is calculated from the slope of the least-squares regression line relating the magnitude of the instantaneous solute flux to that of the instantaneous concentration gradient. The apparatus is calibrated with a solute of known diffusivity (KCl). Diffusion coefficients thus determined in water at 25 degrees C for CaCl2 (7.54 X 10(-6) cm2.s-1), Na2-ATP (7.01 X 10(-6) cm2.s-1), 2-deoxyglucose (5.31 X 10(-6) cm2.s-1), and D-Na-lactate (5.62 X 10(-6) cm2.s-1) differed by an average of 3.7% from literature values. The method described results in accurate estimates of diffusion coefficients by a simple and relatively rapid procedure.  相似文献   

4.
Mobility in the mitochondrial electron transport chain   总被引:1,自引:0,他引:1  
The role of lateral diffusion in mitochondrial electron transport has been investigated by measuring the diffusion coefficients for lipid, cytochrome c, and cytochrome oxidase in membranes of giant mitoplasts from cuprizone-fed mice using the technique of fluorescence redistribution after photobleaching (FRAP). The diffusion coefficient of the phospholipid analogue N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine is dependent on the technique used to remove the outer mitochondrial membrane. A sonication technique yields mitoplasts with monophasic recovery of the lipid probe (D = 6 X 10(-9) cm2/s), while digitonin-treated mitochondria show biphasic recoveries (D1 = 5 X 10(-9) cm2/s; D2 = 1 X 10(-9) cm2/s). Digitonin appears to incorporate into mitoplasts, giving rise to decreased lipid mobility concomitant with increased rates of electron transfer from succinate to oxygen, in a manner reminiscent of the effects of cholesterol incorporation [Schneider, H., Lemasters, J. J., Hochli, M., & Hackenbrock, C. R. (1980) J. Biol. Chem. 255, 3748-3756]. FRAP measurements on tetramethylrhodamine cytochrome c modified at lysine-39 and on a mixture of active morpholinorhodamine derivatives of cytochrome c gave diffusion coefficients of (3.5-7) X 10(-10) cm2/s depending on the assay medium. With morpholinorhodamine-labeled antibodies purified on a cytochrome oxidase affinity column, the diffusion coefficient for cytochrome oxidase was determined to be 1.5 X 10(-10) cm2/s. The results are discussed in terms of a dynamic aggregate model in which an equilibrium exists between freely diffusing and associated electron-transfer components.  相似文献   

5.
Quenching of pyrene fluorescence by oxygen was used to determine oxygen diffusion coefficients in phospholipid dispersions and erythrocyte plasma membranes. The fluorescence intensity and lifetime of pyrene in both artificial and natural membranes decreases about 80% in the presence of 1 atm O2, while the fluorescence excitation and emission spectra and the absorption spectrum are unaltered. Assuming the oxygen partition coefficient between membrane and aqueous phase to be 4.4, the diffusion coefficients for oxygen at 37 degrees C are 1.51 X 10(-5) cm2/s in dimyristoyl lecithin vesicles, 9.32 X 10(-6) cm2/s in dipalmitoyl lecithin vesicles, and 7.27 X 10(-6) cm2/s in erythrocyte plasma membranes. The heats of activation for oxygen diffusion are low (less than 3 kcal/degree-mol). A dramatic increase in the diffusion constant occurs at the phase transition of dimyristoyl and dipalmitoyl lecithin, which may result from an increase in either the oxygen diffusion coefficient, partition coefficient, or both. The significance of the change in oxygen diffusion below and above the phase transition for biological membranes is discussed.  相似文献   

6.
The Stern-Volmer theory, in which the quantum yield ratio (Io/I) depends linearly on the quencher concentration, will typically be inapplicable to fluorescence quenching in membranes. Numerical analysis shows that diffusion-controlled quenching results in a nonlinear concentration dependence for diffusion coefficients less than or of the order of 10(-6) cm2 s-1 and probe fluorescence lifetimes in the region of 10-100 ns. Lateral diffusion coefficients in membranes are typically overestimated an order of magnitude or more by the Stern-Volmer theory. An alternative empirical method is presented, which represents nonlinear concentration curves by a single parameter linear approximation determined by a least-squares analysis. The fitting parameter, P, depends on the interaction distance, the membrane thickness, the maximum extent of quenching and, in the case of biexponential probe fluorescence decay, the fluorescence kinetic parameters. P is presented in tabular form for a useful range of these parameters. The method is used to estimate diffusion coefficients for plastoquinone and plastoquinol from pyrene fluorescence quenching in soya bean phosphatidylcholine liposomes. It is found that the diffusion coefficients are nearly equal and in the region of 1.3-3.5 X 10(-7) cm2 s-1 for interaction radii of 1.5-0.5 nm, respectively.  相似文献   

7.
Several studies concerning the distribution of ubiquinone (UQ) in the cell report a preferential accumulation of this biogenic quinone in mitochondria, plasma membranes, Golgi vesicles, and lysosomes. Except for mitochondria, no recent comprehensive experimental evidence exists on the particular function of UQ in these subcellular organelles. The aim of a recent study was to elucidate whether UQ is an active part of an electron-transfer system in lysosomes. In the present work, a lysosomal fraction was prepared from a light mitochondrial fraction of rat liver by isopycnic centrifugation. The purity of our preparation was verified by estimation of the respective marker enzymes. Analysis of lysosomes for putative redox carriers and redox processes in lysosomes was carried out by optical spectroscopy, HPLC, oxymetry, and ESR techniques. UQ was detected in an amount of 2.2 nmol/mg of protein in lysosomes. Furthermore, a b-type cytochrome and a flavin-adenine dinucleotide (FAD) were identified as other potential electron carriers. Since NADH was reported to serve as a substrate of UQ redox chains in plasma membranes, we also tested this reductant in lysosomes. Our experiments demonstrate a NADH-dependent reduction of UQ by two subsequent one-electron-transfer steps giving rise to the presence of ubisemiquinone and an increase of the ubiquinol pool in lysosomes. Lysosomal NADH oxidation was accompanied by an approximately equimolar oxygen consumption, suggesting that O(2) acts as a terminal acceptor of this redox chain. DMPO/(*)OH spin adducts were detected by ESR in NADH-supplemented lysosomes, suggesting a univalent reduction of oxygen. The kinetic analysis of redox changes in lysosomes revealed that electron carriers operate in the sequence NADH > FAD > cytochrome b > ubiquinone > oxygen. By using the basic spin label TEMPAMINE, we showed that the NADH-related redox chain in lysosomes supports proton accumulation in lysosomes. In contrast to the hypothesis that UQ in lysosomes is simply a waste product of autophagy in the cell, we demonstrated that this lipophilic electron carrier is a native constituent of a lysosomal electron transport chain, which promotes proton translocation across the lysosomal membrane.  相似文献   

8.
Fluorescence quenching of 1-acyl-2-[6[(7 nitro-2,1,3-benzoxadiazol-4yl) amino]caproyl] phosphatidyl choline in small unilamellar vesicles consisting of phosphatidyl serine has been used to monitor the lipid phase separation induced by Zn2+ and Ca2+. Phase separation of vesicle membranes was observed with Zn2+ at concentrations as low as 125 microM. Low concentrations of Zn2+ required long incubation times to reach maximal quenching (120 minutes at 375 microM). When low concentrations of Ca2+ were added to the preparation during the developing phase of Zn2+-induced quenching, an explosive increase in fluorescence quenching was instantenously observed. Phase separation induced by sub-millimolar concentrations of Ca2+ could be increased at least 4 times when vesicles were pre-incubated with 250 microM of Zn2+.  相似文献   

9.
The interaction of Aluminum with phosphatidyl serine lipid vesicles containing variable amounts of phosphatidyl ethanolamine, phosphatidyl choline and cholesterol has been studied by lipid phase separation monitored by fluorescence quenching. The interaction of Al3+ with neutral phospholipid membranes has also been investigated. Maximal lipid phase separation can be demonstrated in mixed phosphatidyl ethanolamine-cholesterol vesicles when using concentrations of aluminum between 87.5 and 125 microM. Millimolar concentrations of Ca2+, Mn2+, Cd2+ and Zn2+ were without any effect. Aluminum also induced fusion of phospholipid membranes monitored by resonance energy transfer between N-(7-nitro-2,1,3, benzoxadiazol-4 yl) phosphatidyl ethanolamine and N-(lissamine Rhodamine B-sulfonyl) phosphatidyl ethanolamine, either when containing low amounts of phosphatidyl serine (12.5%) or without any negatively charged phospholipid. Aluminum-induced fusion of liposomes was also monitored by the fluorescence of the terbium-dipicolinic acid complex (Tb-DPA3-) formed during fusion of vesicles containing either Tb-(citrate)6- complex or sodium salt of dipicolinic acid.  相似文献   

10.
We originally identified StarD10 as a protein overexpressed in breast cancer that cooperates with the ErbB family of receptor tyrosine kinases in cellular transformation. StarD10 contains a steroidogenic acute regulatory protein (StAR/StarD1)-related lipid transfer (START) domain that is thought to mediate binding of lipids. We now provide evidence that StarD10 interacts with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by electron spin resonance measurement. Interaction with these phospholipids was verified in a fluorescence resonance energy transfer-based assay with 7-nitro-2,1,3-benzoxadiazol-4-yl-labeled lipids. Binding was not restricted to lipid analogs since StarD10 selectively extracted PC and PE from small unilamellar vesicles prepared with endogenous radiolabeled lipids from Vero monkey kidney cells. Mass spectrometry revealed that StarD10 preferentially selects lipid species containing a palmitoyl or stearoyl chain on the sn-1 and an unsaturated fatty acyl chain (18:1 or 18:2) on the sn-2 position. StarD10 was further shown to bind lipids in vivo by cross-linking of protein expressed in transfected HEK-293T cells with photoactivable phosphatidylcholine. In addition to a lipid binding function, StarD10 transferred PC and PE between membranes. Interestingly, these lipid binding and transfer specificities distinguish StarD10 from the related START domain proteins Pctp and CERT, suggesting a distinct biological function.  相似文献   

11.
The translational diffusion of bovine rhodopsin, the Ca2+-activated adenosinetriphosphatase of rabbit muscle sarcoplasmic reticulum, and the acetylcholine receptor monomer of Torpedo marmorata has been examined at a high dilution (molar ratios of lipid/protein greater than or equal to 3000/1) in liquid-crystalline phase phospholipid bilayer membranes by using the fluorescence recovery after photobleaching technique. These integral membrane proteins having molecular weights of about 37 000 for rhodopsin, about 100 000 for the adenosinetriphosphatase, and about 250 000 for the acetylcholine receptor were reconstituted into membranes of dimyristoylphosphatidylcholine (rhodopsin and acetylcholine receptor), soybean lipids (acetylcholine receptor), and a total lipid extract of rabbit muscle sarcoplasmic reticulum (adenosinetriphosphatase). The translational diffusion coefficients of all the proteins at 310 K were found to be in the range (1-3) X 10(-8) cm2/s. In consideration of the sizes of the membrane-bound portions of these proteins, this result is in agreement with the weak dependence of the translational diffusion coefficient upon diffusing particle size predicted by continuum fluid hydrodynamic models for the diffusion in membranes [Saffman, P. G., & Delbrück, M. (1975) Proc. Natl. Acad. Sci. U.S.A. 72, 3111-3113]. Lipid diffusion was also examined in th same lipid bilayers with the fluorescent lipid derivative N-(7-nitro-2,1,3-benzoxadiazol-4-yl)dimyristoylphosphatidylethanolamine. The translational diffusion coefficient for this lipid derivative was found to be in the range (9-14) X 10(-8) cm2/s at 310 K. In consideration of the dimensions of the lipid molecule, this value for the lipid diffusion coefficient is in agreement with the continuum fluid hydrodynamic model only if a near-complete slip boundary condition is assumed at the bilayer midplane. Alternatively, kinetic diffusion models [Tr?uble, H., & Sackmann. E. (1972) J. Am. Chem. Soc. 94, 4499-4510] may have to be invoked to explain the lipid diffusion behavior.  相似文献   

12.
The major feature of sickle cell anemia is the tendency of erythrocytes to sickle when exposed to decreased oxygen tension and to unsickle when reoxygenated. Irreversible sickle cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation. ISCs are believed to owe their biophysical abnormalities to acquired membrane alterations which decrease membrane deformability. While increased membrane surface viscosity has been measured in ISCs, the lateral dynamics of membrane lipids in these cells have not heretofore been examined. We have measured the lateral diffusion of the lipid analog 3,3'-dioctadecylindocyanine iodide (DiI) in the plasma membrane of intact normal erythrocytes, reversible sickle cells (RSCs), and irreversible sickle cells by fluorescence photobleaching recovery (FPR). The diffusion coefficients +/- standard errors of the mean of DiI in intact normal red blood cells (RBCs), RSCs, and ISCs at 37 degrees C are (8.06 +/- 0.29) X 10(-9) cm2 X s-1, (7.74 +/- 0.22) X 10(-9) cm2 X s-1, and (7.29 +/- 0.24) X 10(-9) cm2 X s-1, respectively. A similar decrease in the diffusion coefficient of DiI in the plasma membranes of the three cell types was observed at 4, 10, 17, 23, and 30 degrees C. ANOVA analysis of the changes in DiI diffusion showed significant differences between the RBC and ISC membranes at all temperatures examined. The characteristic breaks in Arrhenius plots of the diffusion coefficients for the RBCs, RSCs, and ISCs occurred at 20, 19, and 18.6 degrees C, respectively. Photobleaching recovery data were used to estimate (Boullier, J.A., Melnykovich, G. and Barisas, B.G. (1982) Biochim. Biophys. Acta 692, 278-286) the microviscosities of the plasma membranes of the three cell types at 25 degrees C. We find significant differences between our microviscosity values and those obtained in previous fluorescence depolarization studies. However, both methods indicate qualitatively similar differences in membrane microviscosity among the various cell types.  相似文献   

13.
The interaction of an RGD-containing epitope from the hepatitis A virus VP3 capsid protein and its RGA-analogue with lipid membranes was studied by biophysical methods. Two types of model membrane were used: vesicles and monolayers spread at the air/water interface, with a composition that closely resembles the lipid moiety of hepatocyte membranes: PC/SM/PE/PC (40:33:12:15; PC: 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine; SM: sphingomyelin from chicken egg yolk; PE, 1,2-dipalmitoyl-phosphatidylethanolamine; PS: L-alpha-phosphatidyl-L-serine from bovine brain). In addition, zwitterionic PC/SM/PE (47:39:14) and cationic PC/SM/PE/DOTAP (40:33:12:15; DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane) membranes were also prepared in order to dissect the electrostatic and hydrophobic components in the interaction. Changes in tryptophan fluorescence, acrylamide quenching, and resonance energy transfer experiments in the presence of vesicles, as well as the kinetics of insertion in monolayers, indicate that both peptides bind to the three types of membrane at neutral and acidic pH; however, binding is irreversible only at low pH. Membrane-destabilizing and fusogenic activities are triggered by acidification at pH 4-6, characteristic of the endosome. Fluorescence experiments show that VP3-RGD and VP3-RGA induce mixing of lipids and leakage or mixing of aqueous contents in anionic and cationic vesicles at pH 4-6, indicating leaky fusion. Interaction with zwitterionic vesicles (PC/SM/PE) results in leakage without lipid mixing, indicating pore formation. Replacement of aspartic acid in the RGD motif by alanine maintains the membrane-destabilizing properties of the peptide at low pH, but not its antigenicity. Since the RGD tripeptide is related to receptor-mediated cell adhesion and antigenicity, results suggest that receptor binding is not a molecular requirement for fusion. The possible involvement of peptide-induced membrane destabilization in the mechanism of hepatitis A virus infection of hepatocytes by the endosomal route is discussed.  相似文献   

14.
The flux of calcium through an aqueous compartment was determined in a flow-dialysis cell in which two dialysis membranes separated the middle aqueous compartment from two outer compartments. The contribution of convection to the total calcium flux was large but could be removed by addition of 1% agar. The flux of calcium through the gelled aqueous compartment agreed with theoretical expectations. The self-diffusion coefficient for calcium from these results was calculated to be 0.81 X 10(-5) cm2 X s-1. Carp parvalbumin significantly enhanced the calcium flux at 2.3 X 10(-6)M free calcium. The calcium flux increased linearly with parvalbumin concentration. These observations are consistent with the hypothesis that the overall unidirectional calcium flux J is the sum of free calcium diffusion and protein-calcium diffusion: J = D[Ca] + D'[CaPr]. The value of D', the self-diffusion coefficient for parvalbumin, was calculated from the flux data to be 13.7 X 10(-7) cm2 X s-1.  相似文献   

15.
Cucurbitacin delta 23-reductase from Cucurbita maxima var. Green Hubbard fruit displays an apparent Mr of 32,000, a Stokes radius of 263 nm and a diffusion coefficient of 8.93 X 10(-7) cm2 X s-1. The enzyme appears to possess a homogeneous dimeric quaternary structure with a subunit Mr of 15,000. Two tryptophan and fourteen tyrosine residues per dimer were found. Emission spectral properties of the enzyme and fluorescence quenching by iodide indicate the tryptophan residues to be buried within the protein molecule. In the pH range 5-7, where no conformational changes were detected, protonation of a sterically related ionizable group with a pK of approx. 6.0 markedly influenced the fluorescence of the tryptophan residues. Protein fluorescence quenching was employed to determine the dissociation constants for binding of NADPH (Kd 17 microM), NADP+ (Kd 30 microM) and elaterinide (Kd 227 microM). Fluorescence energy transfer between the tryptophan residues and enzyme-bound NADPH was observed.  相似文献   

16.
Mclk1 (also known as Coq7) and Coq3 code for mitochondrial enzymes implicated in the biosynthetic pathway of ubiquinone (coenzyme Q or UQ). Mclk1+/− mice are long-lived but have dysfunctional mitochondria. This phenotype remains unexplained, as no changes in UQ content were observed in these mutants. By producing highly purified submitochondrial fractions, we report here that Mclk1+/− mice present a unique mitochondrial UQ profile that was characterized by decreased UQ levels in the inner membrane coupled with increased UQ in the outer membrane. Dietary-supplemented UQ10 was actively incorporated in both mitochondrial membranes, and this was sufficient to reverse mutant mitochondrial phenotypes. Further, although homozygous Coq3 mutants die as embryos like Mclk1 homozygous null mice, Coq3+/− mice had a normal lifespan and were free of detectable defects in mitochondrial function or ubiquinone distribution. These findings indicate that MCLK1 regulates both UQ synthesis and distribution within mitochondrial membranes.  相似文献   

17.
Human low-density lipoprotein (LDL) was labelled with the excimeric fluorescent phospholipid analogue 1-palmitoyl-2-(1'-pyreneoctanoyl)-sn-glycero-3-phosphocholine by using phosphatidylcholine-specific transfer protein for the probe insertion. The lateral diffusivity of the probe in the phospholipid/cholesterol surface monolayer of LDL was determined from the measured dependence of the pyrene monomer fluorescence yield on probe concentration. The data were analyzed by the milling-crowd model (J. Eisinger et al. (1986) Biophys. J. 49, 987-1001] to obtain the short-range lateral diffusivity of the probe. The lateral mobility of the probe in LDL was compared to that in model lipid systems, i.e. in protein-free LDL-like lipid particles and in small unilamellar vesicles, with a phospholipid/cholesterol composition characteristic of LDL. This analysis with the probability PE = 1 for excimer production between nearest-neighbour probes gives the lower limits for f, the frequency of translational lipid--lipid exchanges of the probe of 0.62 x 10(8), 0.19 x 10(8) and 0.19 x 10(8)s-1 in LDL, LDL-like lipid particles, and small unilamellar vesicles, respectively. The lower limits for the corresponding lateral diffusion constants are 16, 5 and 5 microns 2 s-1. The results suggest that the translational mobility of phospholipid molecules in the lipid--protein surface of LDL is not constrained by the apolipoprotein B-100 moiety or the neutral lipid core of the lipoprotein. Instead, the protein moiety may perturb the lipid order with the lipid--associating peptide domains and thus fluidize the amphiphilic surface monolayer of LDL relative to the protein-free model systems. In general, lateral diffusivity of the pyrenyl phospholipid probe in LDL and the model lipid systems is comparable to the lateral mobility of lipid analogue probes in a variety of model and biological membranes.  相似文献   

18.
We investigated the effect of short-term changes in temperature on alternative (Alt) and cytochrome (Cyt) pathway respiration, both in intact tissues and isolated mitochondria of 14-d-old cotyledons of soybean (Glycine max L. cv Stevens). We also established the extent to which temperature alters the interaction between the oxidizing pathways and the level of ubiquinone (UQ) reduction (UQ(r)/UQ(t)). No difference was found between the temperature coefficient of respiration (Q(10); proportional change per 10 degrees C) of Alt and Cyt pathway respiration in cotyledon slices (Q(10) = 1.92 and 1.86, respectively). In isolated mitochondria, the Q(10) of the fully activated Alt pathway (Q(10) = 2.24-2.61) was always equal to, or higher than, that of Cyt c oxidase (COX) alone (Q(10) = 2.08) and the complete Cyt pathway (Q(10) = 2.40-2.55). This was true regardless of substrate or whether ADP was present. There was little difference in the Q(10) of the Cyt pathway with or without ADP; however, the Q(10) of COX was substantially lower in the presence of an uncoupler (Q(10) = 1.61) than its absence (Q(10) = 2.08). The kinetics of Alt and Cyt pathway activity in relation to UQ(r)/UQ(t) were not affected by temperature. For a given UQ(r)/UQ(t) value, the proportion of maximum flux taking place was similar at all temperatures for both pathways (+/-ADP). However, the Q(10) of the Alt and the Cyt pathways (+ADP) increased with increasing UQ(r)/UQ(t). We conclude that the Alt pathway is not less temperature sensitive than the Cyt pathway or COX per se and that changes in the degree of control exerted by individual steps in the respiratory apparatus could result in changes in the Q(10) of mitochondrial O(2) uptake.  相似文献   

19.
H. Nohl  L. Gille 《Protoplasma》2001,217(1-3):9-14
Summary Ubiquinone is inhomogeneously distributed in subcellular biomembranes. Apart from mitochondria, where ubiquinone was demonstrated to exert bioenergetic and pathophysiological functions, unusually high levels of ubiquinone were also reported to exist in Golgi vesicles and lysosomes. In lysosomes the interior differs from other organelles by the low pH value which is important not only to arrest proteins but also to ensure optimal activity of proteases. Since redox cycling of ubiquinone is associated with the acceptance and release of protons, we assumed that ubiquinone is a part of a redox chain contributing to unilateral proton distribution. A similar function of ubiquinone was earlier reported to exist in Golgi vesicles. Support for the involvement of ubiquinone in a presumed couple of redox carriers came from our observation that almost 70% of total lysosomal ubiquinone was in the divalently reduced state. Further reduction was seen in the presence of external NADH. Analysis of the components involved in the transfer of reducing equivalents from cytosolic NADH to ubiquinone revealed the existence of a flavin adenine dinucleotide-containing NADH dehydrogenase. The latter was found to reduce ubiquinone by means of ab-type cytochrome. Proton translocation into the interior was linked to the activity of the novel lysosomal redox chain. Oxygen was found to be the terminal electron acceptor thereby also regulating acidification of the lysosomal matrix. The role of the proton-pumping redox chain has to be elucidated.Abbreviations DMPO 5,5-dimethyl-1-pyrroline N-oxide - ESR electron spin resonance - FAD flavin adenine dinucleotide - UQ ubiquinone  相似文献   

20.
Simultaneous diffusion of inositol and mannitol in the rat brain   总被引:1,自引:0,他引:1  
The diffusion of both inositol and mannitol has been determined simultaneously by the integral bolus method in rat brain. The permeability constant (Kin) of inositol averaged 0.27 +/- 0.02 ml X (100 g)-1 X min-1 or 4 X 10(-7) cm X s-1 at a cerebral capillary surface area of 100 cm2 x g-1. The permeability of mannitol was 0.08 +/- 0.01 ml X (100 g)-1. min-1 or 1 X 10(-7) cm X s-1. Neither glucose nor galactose affected the inositol permeability. Hypoglycemia increased somewhat the Km value for mannitol. The basal ganglia showed an increase Km for both substrates as compared with those obtained for cortex, temporal and parietal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号