首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The N-terminal RNA binding domain (RBD1) of the human U1A protein interacts specifically with a short RNA hairpin containing the U1 snRNA stem/loop II sequence. Previous RNA binding studies have suggested that the C-terminal tail of RBD1 contributes to RNA recognition in addition to interactions on the beta-sheet surface of the protein. To evaluate the contributions of these C-terminal residues in RBD1 to RNA binding affinity and specificity, as well as to study the thermodynamic stability of RBDs, a number of RBD1 mutants with truncated tails, with single amino acid substitutions, and with both a truncation and an amino acid substitution, have been constructed. The thermodynamic stabilities of these mutants have been measured and compared by GdnHCI unfolding experiments. The RNA binding affinity and specificity of these mutant proteins have been assessed by measuring the binding of each protein to the wild-type RNA hairpin and to selected RNA mutants with nucleotide substitutions in the RNA loop. The results demonstrate first that, although the C-terminal tail of RBD1 makes significant contributions to RNA binding affinity, it is not required for RNA binding, and second, its contributions to binding specificity are mediated only through selected nucleotides in the RNA loop, for in the absence of the tail, the protein continues to use other nucleotides to discriminate among RNAs. In these truncated proteins, the secondary structure intrinsic to the C-terminal tail is absent, yet their affinity and discrimination for RNAs are not lost. Thus, a structured tail is not required for RNA recognition.  相似文献   

7.
8.
9.
10.
11.
C Chen  C Zhang    P Guo 《RNA (New York, N.Y.)》1999,5(6):805-818
Translocation of DNA or RNA is a ubiquitous phenomenon. One intricate translocation process is viral DNA packaging. During maturation, the lengthy genome of dsDNA viruses is translocated with remarkable velocity into a limited space within the procapsid. We have revealed that phi29 DNA packaging is accomplished by a mechanism similar to driving a bolt with a hex nut, which consists of six DNA-packaging pRNAs. Four bases in each of the two pRNA loops are involved in RNA/RNA interactions to form a hexagonal complex that gears the DNA translocating machine. Without considering the tertiary interaction, in some cases only two G/C pairs between the interacting loops could provide certain pRNAs with activity. When all four bases were paired, at least one G/C pair was required for DNA packaging. The maximum number of base pairings between the two loops to allow pRNA to retain wild-type activity was five, whereas the minimum number was five for one loop and three for the other. The findings were supported by phylogenetic analysis of seven pRNAs from different phages. A 75-base RNA segment, bases 23-97, was able to form dimer, to interlock into the hexamer, to compete with full-length pRNA for procapsid binding, and therefore to inhibit phi29 assembly in vitro. Our result suggests that segment 23-97 is a self-folded, independent domain involved in procapsid binding and RNA/RNA interaction in dimer and hexamer formation, whereas bases 1-22 and 98-120 are involved in DNA translocation but dispensable for RNA/RNA interaction. Therefore, this 75-base RNA could be a model for structural studies in RNA dimerization.  相似文献   

12.
We isolated three Escherichia coli suppressor strains that reduce the copy number of a mutant ColE1 high-copy-number plasmid. These mutations lower the copy number of the mutant plasmid in vivo up to 15-fold; the wild-type plasmid copy number is reduced by two- to threefold. The suppressor strains do not affect the copy numbers of non-ColE1-type plasmids tested, suggesting that their effects are specific for ColE1-type plasmids. Two of the suppressor strains show ColE1 allele-specific suppression; i.e., certain plasmid copy number mutations are suppressed more efficiently than others, suggesting specificity in the interaction between the suppressor gene product and plasmid replication component(s). All of the mutations were genetically mapped to the chromosomal polA gene, which encodes DNA polymerase I. The suppressor mutational changes were identified by DNA sequencing and found to alter single nucleotides in the region encoding the Klenow fragment of DNA polymerase I. Two mutations map in the DNA-binding cleft of the polymerase region and are suggested to affect specific interactions of the enzyme with the replication primer RNA encoded by the plasmid. The third suppressor alters a residue in the 3'-5' exonuclease domain of the enzyme. Implications for the interaction of DNA polymerase I with the ColE1 primer RNA are discussed.  相似文献   

13.
14.
15.
16.
Musashi1 is an RNA-binding protein abundantly expressed in the developing mouse central nervous system. Its restricted expression in neural precursor cells suggests that it is involved in the regulation of asymmetric cell division. Musashi1 contains two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2. Our previous studies showed that RBD1 alone binds to RNA, while the binding of RBD2 is not detected under the same conditions. Joining of RBD2 to RBD1, however, increases the affinity to greater than that of RBD1 alone, indicating that RBD2 contributes to RNA-binding. We have determined the three-dimensional solution structure of the C-terminal RBD (RBD2) of Musashi1 by NMR. It folds into a compact alpha beta structure comprising a four-stranded antiparallel beta-sheet packed against two alpha-helices, which is characteristic of RNP-type RBDs. Special structural features of RBD2 include a beta-bulge in beta2 and a shallow twist of the beta-sheet. The smaller 1H-15N nuclear Overhauser enhancement values for the residues of loop 3 between beta2 and beta3 suggest that this loop is flexible in the time-scale of nano- to picosecond order. The smaller 15N T2 values for the residues around the border between alpha2 and the following loop (loop 5) suggest this region undergoes conformational exchange in the milli- to microsecond time-scale. Chemical shift perturbation analysis indicated that RBD2 binds to an RNA oligomer obtained by in vitro selection under the conditions for NMR measurements, and thus the nature of the weak RNA-binding of RBD2 was successfully characterized by NMR, which is otherwise difficult to assess. Mainly the residues of the surface composed of the four-stranded beta-sheet, loops and C-terminal region are involved in the interaction. The appearance of side-chain NH proton resonances of arginine residues of loop 3 and imino proton resonances of RNA bases upon complex formation suggests the formation of intermolecular hydrogen bonds. The structural arrangement of the rings of the conserved aromatic residues of beta2 and beta3 is suitable for stacking interaction with RNA bases, known to be one of the major protein-RNA interactions, but a survey of the perturbation data suggested that the stacking interaction is not ideally achieved in the complex, which may be related to the weaker RNA-binding of RBD2.  相似文献   

17.
18.
19.
Y Eguchi  J Tomizawa 《Cell》1990,60(2):199-209
A small plasmid-specified RNA (RNA I) inhibits formation of the RNA primer for CoIE1 DNA replication by binding to its precursor (RNA II). Binding is modulated by the plasmid-specified Rom protein. Both in the presence and absence of Rom, binding starts with interaction between loops of RNAs. To understand the mechanism of binding, we examined the interactions of pairs of single stem-loops that are complementary fragments of RNA I and RNA II. We found that these complementary single stem-loops bind to each other at their loops, forming an RNAase V1-sensitive structure. Rom protects the complex from cleavage and from alkylation of phosphate groups by ethyinitrosourea. A single dimer of Rom binds to the complex by recognizing the structure rather than its exact nucleotide sequence. Rom enhances complex formation by decreasing the rate of dissociation of the complex. Structures of RNA complexes formed in the presence and absence of Rom are proposed.  相似文献   

20.
Ribonuclease P RNA is the catalytic moiety of the ribonucleoprotein enzyme that endonucleolytically cleaves precursor sequences from the 5' ends of pre-tRNAs. The bacterial RNase P RNA-tRNA complex was examined with a footprinting approach, utilizing chemical modification to determine RNase P RNA nucleotides that potentially contact tRNA. RNase P RNA was modified with dimethylsulfate or kethoxal in the presence or absence of tRNA, and sites of modification were detected by primer extension. Comparison of the results reveals RNase P bases that are protected from modification upon binding tRNA. Analyses were carried out with RNase P RNAs from three different bacteria: Escherichia coli, Chromatium vinosum and Bacillus subtilis. Discrete bases of these RNAs that lie within conserved, homologous portions of the secondary structures are similarly protected. One protection among all three RNAs was attributed to the precursor segment of pre-tRNA. Experiments using pre-tRNAs containing precursor segments of variable length demonstrate that a precursor segment of only 2-4 nucleotides is sufficient to confer this protection. Deletion of the 3'-terminal CCA sequence of tRNA correlates with loss of protection of a particular loop in the RNase P RNA secondary structure. Analysis of mutant tRNAs containing sequential 3'-terminal deletions suggests a relative orientation of the bound tRNA CCA to that loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号