首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-Adrenergic receptors (betaAR) play an important role in vasodilation, but the mechanisms whereby adrenergic pathways regulate the endothelial isoform of nitric-oxide synthase (eNOS) are incompletely understood. We found that epinephrine significantly increases eNOS activity in cultured bovine aortic endothelial cells (BAEC). Epinephrine-dependent eNOS activation was accompanied by an increase in phosphorylation of eNOS at Ser(1179) and with decreased eNOS phosphorylation at the inhibitory phosphoresidues Ser(116) and Thr(497). Epinephrine promoted activation of the small G protein Rac1 and also led to the activation of protein kinase A. All of these responses to epinephrine in BAEC were blocked by the beta(3)AR blocker SR59230A. We transfected and validated duplex small interfering RNA (siRNA) constructs to selectively "knock down" specific signaling proteins in BAEC. siRNA-mediated knockdown of Rac1 completely blocked all beta(3)AR signaling to eNOS and also abrogated epinephrine-dependent cAMP-dependent protein kinase (PKA) and Akt activation. However, siRNA-mediated knockdown of PKA did not affect Rac1 activation by epinephrine but did attenuate Akt activation by epinephrine. These findings indicate that Rac1 is an upstream regulator of beta(3)AR signaling to PKA and to eNOS and identify a novel beta(3)AR --> Rac1 --> PKA --> Akt pathway in endothelium. We exploited the p21-activated kinase pulldown assay to identify proteins associated with activated Rac1 and found that epinephrine stimulated the association of eNOS with Rac1; epinephrine-stimulated eNOS-Rac1 interactions were blocked by the beta(3)AR antagonist SR59230A. Co-transfection of eNOS cDNA with constitutively active Rac1 enhanced beta(3)AR-promoted eNOS-Rac1 association; co-transfection of eNOS with dominant negative Rac1 completely blocked the eNOS-Rac1 association. We also found that epinephrine-induced Rac1 --> PKA --> Akt pathway mediates beta(3)AR-mediated endothelial cell migration. Taken together, our data establish that the small G protein Rac1 is a key regulator of beta(3)AR signaling in cultured aortic endothelial cells with potentially important implications for the pathways involved in adrenergic modulation of eNOS pathways in the vascular wall.  相似文献   

2.
Zheng M  Han QD  Xiao RP 《生理学报》2004,56(1):1-15
生理情况下,β肾上腺素受体(βAR)对心肌收缩和舒张活动起至关重要的作用;病理情况下,长期激动βAR可以诱发心肌细胞肥大、凋亡以及细胞坏死等心肌重塑性活动,从而参与了慢性心衰的发病过程。近十年以来,许多资料表明β1和β2肾上腺素受体亚型(β1AR和β2AR)共存于心脏中,且激动不同信号系统。短时间激动β1AR,使Gs蛋白-腺苷酸环化酶-环苷腺酸-蛋白激酶A(Gs-adenyly cyclase-cAMP-PKA)信号体系激活并广布于细胞内,而激动βAR则同时激活G1蛋白而产生空间及功能局限的cAMP信号;长时间激动β1AR和β2AR则对心肌细胞的命运产生不同影响:β1AR诱导细胞肥大和凋亡,β2AR促使细胞存活。β2AR的心肌保护作用是通过激活Gi蛋白-Gβγ-PI3K-Akt途径介导。但出乎意料,β1AR的心肌肥厚和凋亡效应并不依赖于经典的cAMP/PKA信号途径,而是激活钙,钙调素依赖性蛋白激酶Ⅱ(caMK Ⅱ)途径。用心肌特异性表达βAR亚型的转基因小鼠进行实验,进一步证实不同βAR亚型在调节心肌重塑和功能方面作用各异。βAR亚型作用不同的新观点不仅为β阻滞剂治疗慢性心衰提供了分子和细胞机制的依据,而且提出了选择性β1AR阻滞和β2AR激动联合治疗慢性心衰的新的治疗思路。  相似文献   

3.
Catecholamine stimulation of beta-adrenergic receptors (betaAR) in adipocytes activates the cAMP-dependent protein kinase to promote liberation of fatty acids as a fuel source. The adipocyte beta3AR also activates extracellular signal-regulated kinases (ERK)-1 and -2 through direct recruitment and activation of Src kinase. This pathway together with cAMP-dependent protein kinase contributes to maximal beta3AR-stimulated lipolysis. In a search for other molecules that might associate with beta3AR upon agonist stimulation, we identified vimentin using a proteomics approach. Immunoprecipitation of beta3AR from adipocytes in the absence or presence of the beta3AR agonist CL316,243, followed by Western blotting for vimentin confirmed this specific interaction. Since vimentin has also been identified on lipid droplets, the functional consequences of blocking the expression or structural integrity of vimentin intermediate filaments on beta3AR regulation of ERK activation and lipolysis was assessed. Following disruption of intermediate filaments with beta,beta'-iminodipropionitrile, as confirmed by confocal microscopy, beta3AR-stimulated ERK activation was blocked, and lipolysis was reduced by more than 40%. Independently, depletion of vimentin by small hairpin RNA (shRNA) completely inhibited beta3AR-mediated ERK activation and significantly reduced lipolysis. By contrast, disruption of actin-containing microfilaments by cytochalasin D or microtubules by nocodazole had no effect on either lipolysis or ERK activation. These results indicate that vimentin plays an essential role in the signal transduction pathway from beta3AR to the activation ERK and its contribution to lipolysis.  相似文献   

4.
Cardiovascular disease (CVD) is a leading determinant of mortality and morbidity in the world. Epidemiologic studies suggest that flavonoid intake plays a role in the prevention of CVD. Consumption of cocoa products rich in flavonoids lowers blood pressure and improves endothelial function in healthy subjects as well as in subjects with vascular dysfunction such as smokers and diabetics. The vascular actions of cocoa follow the stimulation of nitric oxide (NO). These actions can be reproduced by the administration of the cocoa flavanol (-)-epicatechin (EPI). Previously, using human endothelial cells cultured in calcium-free media, we documented EPI effects on eNOS independently of its translocation from the plasmalemma. To further define the mechanisms behind EPI-eNOS activation in Ca2+ -deprived endothelial cells, we evaluated the effects of EPI on the eNOS/AKT/HSP90 signaling pathway. Results document an EPI-induced phosphorylation/activation of eNOS, AKT, and HSP90. We also demonstrate that EPI induces a partial AKT/HSP90 migration from the cytoplasm to the caveolar membrane fraction. Immunoprecipitation assays of caveolar fractions demonstrate a physical association between HSP90, AKT, and eNOS. Thus, under Ca2+-free conditions, EPI stimulates NO synthesis via the formation of an active complex between eNOS, AKT, and HSP90.  相似文献   

5.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   

6.
Several cell types, including cardiac myocytes and vascular endothelial cells, produce nitric oxide (NO) via both constitutive and inducible isoforms of NO synthase. NO attenuates cardiac contractility and contributes to contractile dysfunction in heart failure, although the precise molecular mechanisms for these effects are poorly defined. Adenylyl cyclase (AC) isoforms type 5 and 6, which are preferentially expressed in cardiac myocytes, may be inhibited via a direct nitrosylation by NO. Because endothelial NO synthase (eNOS and NOS3), beta-adrenergic (betaAR) receptors, and AC6 all can localize in lipid raft/caveolin-rich microdomains, we sought to understand the role of lipid rafts in organizing components of betaAR-G(s)-AC signal transduction together with eNOS. Using neonatal rat cardiac myocytes, we found that disruption of lipid rafts with beta-cyclodextrin inhibited forskolin-stimulated AC activity and cAMP production, eliminated caveolin-3-eNOS interaction, and increased NO production. betaAR- and G(s)-mediated activation of AC activity were inhibited by beta-cyclodextrin treatment, but prostanoid receptor-stimulated AC activity, which appears to occur outside caveolin-rich microdomains, was unaffected unless eNOS was overexpressed and lipid rafts were disrupted. An NO donor, SNAP, inhibited basal and forskolin-stimulated cAMP production in both native cardiac myocytes and cardiac myocytes and pulmonary artery endothelial cells engineered to overexpress AC6. These effects of SNAP were independent of guanylyl cyclase activity and were mimicked by overexpression of eNOS. The juxtaposition of eNOS with betaAR and AC types 5 and 6 results in selective regulation of betaAR by eNOS activity in lipid raft domains over other G(s)-coupled receptors localized in nonraft domains. Thus co-localization of multiple signaling components in lipid rafts provides key spatial regulation of AC activity.  相似文献   

7.
Estrogen causes rapid endothelial nitric oxide (NO) production because of the activation of plasma membrane-associated estrogen receptors (ER) coupled to endothelial NO synthase (eNOS). In the present study, we determined the role of G proteins in eNOS activation by estrogen. Estradiol-17beta (E(2), 10(-8) m) and acetylcholine (10(-5) m) caused comparable increases in NOS activity (15 min) in intact endothelial cells that were fully blocked by pertussis toxin (Ptox). In addition, exogenous guanosine 5'-O-(2- thiodiphosphate) inhibited E(2)-mediated eNOS stimulation in isolated endothelial plasma membranes, and Ptox prevented enzyme activation by E(2) in COS-7 cells expressing ERalpha and eNOS. Coimmunoprecipitation studies of plasma membranes from COS-7 cells transfected with ERalpha and specific Galpha proteins demonstrated E(2)-stimulated interaction between ERalpha and Galpha(i) but not between ERalpha and either Galpha(q) or Galpha(s); the observed ERalpha-Galpha(i) interaction was blocked by the ER antagonist ICI 182,780 and by Ptox. E(2)-stimulated ERalpha-Galpha(i) interaction was also demonstrable in endothelial cell plasma membranes. Cotransfection of Galpha(i) into COS-7 cells expressing ERalpha and eNOS yielded a 3-fold increase in E(2)-mediated eNOS stimulation, whereas cotransfection with a protein regulator of G protein signaling, RGS4, inhibited the E(2) response. These findings indicate that eNOS stimulation by E(2) requires plasma membrane ERalpha coupling to Galpha(i) and that activated Galpha(i) mediates the requisite downstream signaling events. Thus, novel G protein coupling enables a subpopulation of ERalpha to initiate signal transduction at the cell surface. Similar mechanisms may underly the nongenomic actions of other steroid hormones.  相似文献   

8.

Background

While evidence suggested that the activity states of Protein kinase B (AKT/PKB) and endothelial nitric oxide synthase (eNOS) play an important role in the progression of the Growth Hormone (GH) signal cascade, the implication of the activation of AKT/PKB and eNOS in terms of their function in the signaling pathway was not clear.

Results

Using a specific AKT/PKB inhibitor and a functional proteomic approach, we were able to detect the activities of multiple signal transduction pathway elements, the downstream targets of the AKT/PKB pathway and the modification of those responses by treatment with GH. Inhibiting the AKT/PKB activity reduced or eliminated the activation (phosphorylation) of eNOS. We demonstrated that the progression of the GH signal cascade is influenced by the activity status of AKT and eNOS, wherein the suppression of AKT activity appears to augment the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2) and to antagonize the deactivation (phosphorylation) of cyclin-dependent kinase 2 (CDC2/Cdk1) induced by GH. Phosphorylation of GSK3a/b (glycogen synthase kinase 3), the downstream target of AKT/PKB, was inhibited by the AKT/PKB inhibitor. GH did not increase phosphorylation of ribosomal S6 kinase 1 (RSK1) in normal cells but increases phosphorylation of RSK1 in cells pre-treated with the AKT and eNOS inhibitors.

Conclusion

The MAP kinase and CDC2 kinase-dependent intracellular mechanisms are involved in or are the targets of the GH's action processes, and these activities are probably directly or indirectly modulated by AKT/PKB pathways. We propose that the AKT/PKB-eNOS module likely functions as a negative feedback mediator of GH actions.  相似文献   

9.
Recent evidence suggests that many signaling molecules localize in microdomains of the plasma membrane, particularly caveolae. In this study, overexpression of adenylyl cyclase was used as a functional probe of G protein-coupled receptor (GPCR) compartmentation. We found that three endogenous receptors in neonatal rat cardiomyocytes couple with different levels of efficiency to the activation of adenylyl cyclase type 6 (AC6), which localizes to caveolin-rich membrane fractions. Overexpression of AC6 enhanced the maximal cAMP response to beta(1)-adrenergic receptor (beta(1)AR)-selective activation 3.7-fold, to beta(2)AR-selective activation only 1.6-fold and to prostaglandin E(2) (PGE(2)) not at all. Therefore, the rank order of efficacy in coupling to AC6 is beta(1)AR > beta(2)AR > prostaglandin E(2) receptor (EP(2)R). beta(2)AR coupling efficiency was greater when we overexpressed the receptor or blocked its desensitization by expressing betaARKct, an inhibitor of G protein-coupled receptor kinase activation, but was not significantly greater when cells were treated with pertussis toxin. Assessment of receptor and AC expression indicated co-localization of AC5/6, beta(1)AR, and beta(2)AR, but not EP(2)R, in caveolin-rich membranes and caveolin-3 immunoprecipitates, likely explaining the observed activation of AC6 by betaAR subtypes but lack thereof by PGE(2). When cardiomyocytes were stimulated with a betaAR agonist, beta(2)AR were no longer found in caveolin-3 immunoprecipitates; an effect that was blocked by expression of betaARKct. Thus, agonist-induced translocation of beta(2)AR out of caveolae causes a sequestration of receptor from effector and likely contributes to the lower efficacy of beta(2)AR coupling to AC6 as compared with beta(1)AR, which do not similarly translocate. Therefore, spatial co-localization is a key determinant of efficiency of coupling by particular extracellular signals to activation of GPCR-linked effectors.  相似文献   

10.
Erythrocytes are reported to release ATP in response to mechanical deformation and decreased oxygen tension. Previously we proposed that receptor-mediated activation of the heterotrimeric G protein G(s) resulted in ATP release from erythrocytes. Here we investigate the hypothesis that activation of heterotrimeric G proteins of the G(i) subtype are also involved in a signal transduction pathway for ATP release from rabbit erythrocytes. Heterotrimeric G proteins G(alphai1), G(alphai2), and G(alphai3) but not G(alphao) were identified in rabbit and human erythrocyte membranes. Pretreatment of rabbit erythrocytes with pertussis toxin (100 ng/ml, 2 h), which uncouples G(i/o) from their effector proteins, inhibited deformation-induced ATP release. Incubation of rabbit and human erythrocytes with mastoparan (Mas, 10 microM) or Mas-7 (1 microM), which are compounds that directly activate G(i) proteins, resulted in ATP release. However, rabbit erythrocytes did not release ATP when incubated with Mas-17 (10 microM), which is an inactive Mas analog. In separate experiments, Mas (10 microM) but not Mas-17 (10 microM) increased intracellular concentrations of cAMP when incubated with rabbit erythrocytes. Importantly, Mas-induced ATP release from rabbit erythrocytes was inhibited after treatment with pertussis toxin (100 ng/ml, 2 h). These data are consistent with the hypothesis that the heterotrimeric G protein G(i) is a component of a signal transduction pathway for ATP release from erythrocytes.  相似文献   

11.
BACKGROUND: Arsenic has been considered as a carcinogen. Recently the issue of arsenic in drinking water raised an unprecedented social concern on human health, and yet the molecular mechanisms through which arsenic induces cancer remain unknown. Activation of cell survival pathway leading to the activation of eNOS has been associated with various types of cancer. The objective of this study was to investigate the pathway leading to the activation of eNOS in response to arsenite using human keratinocytes. MATERIALS AND METHODS: Cultured keratinocytes (HaCat cells) were exposed to arsenite with or without pretreatment of various inhibitors. Western blot analysis was performed to determine the activation of p38, AKT, eNOS. EGFR tyrosine phosphorylation was detected by immunoprecipitation and Western blot analysis. pNPP assay was used to measure phosphatase activity in cell lysate. FACS analysis was performed for the determination of generation of reactive oxygen species. RESULTS: Arsenite induced the activation of AKT at both Ser473 and Thr308, and its downstream effector eNOS in cultured human keratinocytes. Arsenite also induced phosphorylation of p38. PI-3-kinase inhibitors, Wortmannin and LY294002 inhibited arsenite-induced phosphorylation of AKT and eNOS but had no effect on phosphorylation of p38. Interestingly, however, SB203580, a known p38 inhibitor, completely inhibited arsenite-induced phosphorylation of AKT and eNOS. Arsenite induced generation of reactive oxygen species and inactivated phosphatase activity, but did not activate EGF receptor tyrosine phosphorylation. CONCLUSIONS: Collectively, our data indicate that arsenite induces activation of AKT and eNOS, via PI-3-kinase and p38 pathway, likely bypassing the activation of EGF receptor in cultured human keratinocytes.  相似文献   

12.
beta-arrestin-biased agonism at the beta2-adrenergic receptor   总被引:3,自引:0,他引:3  
Classically, the beta 2-adrenergic receptor (beta 2AR) and other members of the seven-transmembrane receptor (7TMR) superfamily activate G protein-dependent signaling pathways in response to ligand stimulus. It has recently been discovered, however, that a number of 7TMRs, including beta 2AR, can signal via beta-arrestin-dependent pathways independent of G protein activation. It is currently unclear if among beta 2AR agonists there exist ligands that disproportionately signal via G proteins or beta-arrestins and are hence "biased." Using a variety of approaches that include highly sensitive fluorescence resonance energy transfer-based methodologies, including a novel assay for receptor internalization, we show that the majority of known beta 2AR agonists exhibit relative efficacies for beta-arrestin-associated activities (beta-arrestin membrane translocation and beta 2AR internalization) identical to the irrelative efficacies for G protein-dependent signaling (cyclic AMP generation). However, for three betaAR ligands there is a marked bias toward beta-arrestin signaling; these ligands stimulate beta-arrestin-dependent receptor activities to a much greater extent than would be expected given their efficacy for G protein-dependent activity. Structural comparison of these biased ligands reveals that all three are catecholamines containing an ethyl substitution on the alpha-carbon, a motif absent on all of the other, unbiased ligands tested. Thus, these studies demonstrate the potential for developing a novel class of 7TMR ligands with a distinct bias for beta-arrestin-mediated signaling.  相似文献   

13.
The insulin-like growth factor-I receptor (IGF-IR) is a key regulator of cell proliferation and survival. Activation of the IGF-IR induces tyrosine autophosphorylation and the binding of a series of adaptor molecules, thereby leading to the activation of MAPK. It has been demonstrated that pertussis toxin, which inactivates the G(i) class of GTP-binding proteins, inhibits IGF-I-mediated activation of MAPK, and a specific role for G(betagamma) subunits in IGF-I signaling was shown. In the present study, we have investigated the role of heterotrimeric G(i) in IGF-IR signaling in neuronal cells. Pertussis toxin inhibited IGF-I-induced activation of MAPK in rat cerebellar granule neurons and NG-108 neuronal cells. G(alphai) and G(beta) subunits were associated with IGF-IR immunoprecipitates. Similarly, in IGF-IR-null mouse embryo fibroblasts transfected with the human IGF-IR, G(i) was complexed with the IGF-IR. G(alphas) was not associated with the IGF-IR in any cell type. IGF-I induced the release of the G(beta) subunits from the IGF-IR but had no effect on the association of G(alphai). These results demonstrate an association of heterotrimeric G(i) with the IGF-IR and identify a discrete pool of G(betagamma) subunits available for downstream signaling following stimulation with IGF-I.  相似文献   

14.
Recently, we identified a novel signaling pathway involving Epac, Rap, and phospholipase C (PLC)epsilon that plays a critical role in maximal beta-adrenergic receptor (betaAR) stimulation of Ca2+-induced Ca2+ release (CICR) in cardiac myocytes. Here we demonstrate that PLCepsilon phosphatidylinositol 4,5-bisphosphate hydrolytic activity and PLCepsilon-stimulated Rap1 GEF activity are both required for PLCepsilon-mediated enhancement of sarcoplasmic reticulum Ca2+ release and that PLCepsilon significantly enhances Rap activation in response to betaAR stimulation in the heart. Downstream of PLCepsilon hydrolytic activity, pharmacological inhibition of PKC significantly inhibited both betaAR- and Epac-stimulated increases in CICR in PLCepsilon+/+ myocytes but had no effect in PLCepsilon-/- myocytes. betaAR and Epac activation caused membrane translocation of PKCepsilon in PLCepsilon+/+ but not PLCepsilon-/- myocytes and small interfering RNA-mediated PKCepsilon knockdown significantly inhibited both betaAR and Epac-mediated CICR enhancement. Further downstream, the Ca2+/calmodulin-dependent protein kinase II (CamKII) inhibitor, KN93, inhibited betaAR- and Epac-mediated CICR in PLCepsilon+/+ but not PLCepsilon-/- myocytes. Epac activation increased CamKII Thr286 phosphorylation and enhanced phosphorylation at CamKII phosphorylation sites on the ryanodine receptor (RyR2) (Ser2815) and phospholamban (Thr17) in a PKC-dependent manner. Perforated patch clamp experiments revealed that basal and betaAR-stimulated peak L-type current density are similar in PLCepsilon+/+ and PLCepsilon-/- myocytes suggesting that control of sarcoplasmic reticulum Ca2+ release, rather than Ca2+ influx through L-type Ca2+ channels, is the target of regulation of a novel signal transduction pathway involving sequential activation of Epac, PLCepsilon, PKCepsilon, and CamKII downstream of betaAR activation.  相似文献   

15.
The beta-adrenoceptor (beta-AR) mediated signal transduction pathway in cardiomyocytes is known to involve beta1- and beta2-ARs, stimulatory (Gs) and inhibitory (Gi) guanine nucleotide binding proteins, adenylyl cyclase (AC) and cAMP-dependent protein kinase (PKA). The activation of beta1- and beta2-ARs has been shown to increase heart function by increasing Ca2+ -movements across the sarcolemmal membrane and sarcoplasmic reticulum through the stimulation of Gs-proteins, activation of AC and PKA enzymes and phosphorylation of the target sites. The activation of PKA has also been reported to increase phosphorylation of some myofibrillar proteins (for promoting cardiac relaxation) and nuclear proteins (for cardiac hypertrophy). The activation of beta2-AR has also been shown to affect Gi-proteins, stimulate mitogen activated protein kinase and increase protein synthesis by enhancing gene expression. Beta1- and beta2-ARs as well as AC are considered to be regulated by PKA- and protein kinase C (PKC)-mediated phosphorylations directly; both PKA and PKC also regulate beta-AR indirectly through the involvement of beta-AR kinase (betaARK), beta-arrestins and Gbeta gamma-protein subunits. Genetic manipulation of different components and regulators of beta-AR signal transduction pathway by employing transgenic and knockout mouse models has provided insight into their functional and regulatory characteristics in cardiomyocytes. The genetic studies have also helped in understanding the pathophysiological role of PARK in heart dysfunction and therapeutic role of betaARK inhibitors in the treatment of heart failure. Varying degrees of defects in the beta-AR signal transduction system have been identified in different types of heart failure to explain the attenuated response of the failing heart to sympathetic stimulation or catecholamine infusion. A decrease in beta1-AR density, an increase in the level of G1-proteins and overexpression of betaARK are usually associated with heart failure; however, these attenuations have been shown to be dependent upon the type and stage of heart failure as well as region of the heart. Both local and circulating renin-angiotensin systems, sympathetic nervous system and endothelial cell function appears to regulate the status of beta-AR signal transduction pathway in the failing heart. Thus different components and regulators of the beta-AR signal transduction pathway appears to represent important targets for the development of therapeutic interventions for the treatment of heart failure.  相似文献   

16.
Physiological effects of beta adrenergic receptor (beta2AR) stimulation have been classically shown to result from G(s)-dependent adenylyl cyclase activation. Here we demonstrate a novel signaling mechanism wherein beta-arrestins mediate beta2AR signaling to extracellular-signal regulated kinases 1/2 (ERK 1/2) independent of G protein activation. Activation of ERK1/2 by the beta2AR expressed in HEK-293 cells was resolved into two components dependent, respectively, on G(s)-G(i)/protein kinase A (PKA) or beta-arrestins. G protein-dependent activity was rapid, peaking within 2-5 min, was quite transient, was blocked by pertussis toxin (G(i) inhibitor) and H-89 (PKA inhibitor), and was insensitive to depletion of endogenous beta-arrestins by siRNA. beta-Arrestin-dependent activation was slower in onset (peak 5-10 min), less robust, but more sustained and showed little decrement over 30 min. It was insensitive to pertussis toxin and H-89 and sensitive to depletion of either beta-arrestin1 or -2 by small interfering RNA. In G(s) knock-out mouse embryonic fibroblasts, wild-type beta2AR recruited beta-arrestin2-green fluorescent protein and activated pertussis toxin-insensitive ERK1/2. Furthermore, a novel beta2AR mutant (beta2AR(T68F,Y132G,Y219A) or beta2AR(TYY)), rationally designed based on Evolutionary Trace analysis, was incapable of G protein activation but could recruit beta-arrestins, undergo beta-arrestin-dependent internalization, and activate beta-arrestin-dependent ERK. Interestingly, overexpression of GRK5 or -6 increased mutant receptor phosphorylation and beta-arrestin recruitment, led to the formation of stable receptor-beta-arrestin complexes on endosomes, and increased agonist-stimulated phospho-ERK1/2. In contrast, GRK2, membrane translocation of which requires Gbetagamma release upon G protein activation, was ineffective unless it was constitutively targeted to the plasma membrane by a prenylation signal (CAAX). These findings demonstrate that the beta2AR can signal to ERK via a GRK5/6-beta-arrestin-dependent pathway, which is independent of G protein coupling.  相似文献   

17.
Gao H  Sun Y  Wu Y  Luan B  Wang Y  Qu B  Pei G 《Molecular cell》2004,14(3):303-317
Norepinephrine released by the sympathetic nerve terminals regulates the immune system primarily via its stimulation of beta(2)-adrenergic receptor (beta(2)AR), but the underlying molecular mechanisms remain to be elicited. Beta(2)AR, a well-studied G protein-coupled receptor (GPCR), is functionally regulated by beta-arrestin2, which not only causes receptor desensitization and internalization but also serves as a signaling molecule in GPCR signal transduction. Here we show that beta-arrestin2 directly interacts with IkappaBalpha (inhibitor of NF-kappaB, the key molecule in innate and adaptive immunity) and thus prevents the phosphorylation and degradation of IkappaBalpha. Consequently, beta-arrestin2 effectively modulates activation of NF-kappaB and expression of NF-kappaB target genes. Moreover, stimulation of beta(2)AR significantly enhances beta-arrestin2-IkappaBalpha interaction and greatly promotes beta-arrestin2 stabilization of IkappaBalpha, indicating that beta-arrestin2 mediates a crosstalk between beta(2)AR and NF-kappaB signaling pathways. Taken together, the current study may present a novel mechanism for regulation of the immune system by the sympathetic nervous system.  相似文献   

18.
The central function of heterotrimeric GTP-binding proteins (G proteins) is the transduction of extracellular signals, via membrane receptors, leading to the activation of intracellular effectors. In addition to being associated with the plasma membrane, the alpha subunits of some of these proteins have also been localized in intracellular compartments. The mRNA of the G-protein inhibitory alpha subunit 2 (G(alphai2)) encodes two proteins, G(alphai2) and sG(i2), by an alternative splicing mechanism. sG(i2) differs from G(alphai2) in the C-terminal region and localizes in the Golgi in contrast to the plasma membrane localization of G(alphai2). In this paper we show that the sequence specific to sG(i2) can direct the Golgi localization of other G(alphai) subunits, but not of the stimulatory subunit G(alphas) or of a secreted protein. This indicates that, in addition to the sG(i2) C-terminus, sequences located elsewhere in the protein are required to determine the Golgi localization. Inside the sG(i2) C-terminal region we have identified a 14-amino-acid proline-rich motif which specifies the Golgi localization. Finally, we show that the sG(i2) subunit, once activated, leaves the Golgi to be localized in the endoplasmic reticulum.  相似文献   

19.
《Cellular signalling》2014,26(10):2167-2174
CaMKs are a widely distributed family of kinases with multiple and often cell specific effects on intracellular signal transduction pathway. In endothelial cells, it has been recognized a role for CamKII in several pathways such as eNOS activation and nitric oxide production. It is not clear though, whether CaMKII interfere with other endothelial cell functions such as ERK activation and cell proliferation. We explored this issue in primary cultured rat endothelial cells and we evaluated the effect on endothelial cell proliferation and DNA synthesis. CaMKII inhibition through Cantide, conducted into the cell through Antoennapedia (ANT-CN), showed positive effects on proliferation and H3-thimdine incorporation similar to insulin stimulation. Accordingly, both CaMKII pharmacological inhibition and silencing through shRNA produced activation of the p44/42 MAPK. These observations leaded to the hypothesis that CamKII could regulate p44/p42 by interfering with specific ERK phosphatases. Indeed, we found that CaMKII interacts and protect the dual specific phosphatase MKP-1 from proteasome mediated degradation while this complex is disrupted by CaMKII inhibitors. This study reveals that CaMKII, besides phosphorylation through the known ras-raf-mek pathway, can regulate also dephosphorylation of p44/p42 by modulation of MKP-1 level. This novel finding opens to a novel scenario in regulation of endothelial cell functions.  相似文献   

20.
High density lipoprotein (HDL) activates endothelial nitric-oxide synthase (eNOS), leading to increased production of the antiatherogenic molecule NO. A variety of stimuli regulate eNOS activity through signaling pathways involving Akt kinase and/or mitogen-activated protein (MAP) kinase. In the present study, we investigated the role of kinase cascades in HDL-induced eNOS stimulation in cultured endothelial cells and COS M6 cells transfected with eNOS and the HDL receptor, scavenger receptor B-I. HDL (10-50 microg/ml, 20 min) caused eNOS phosphorylation at Ser-1179, and dominant negative Akt inhibited both HDL-mediated phosphorylation and activation of the enzyme. Phosphoinositide 3-kinase (PI3 kinase) inhibition or dominant negative PI3 kinase also blocked the phosphorylation and activation of eNOS by HDL. Studies with genistein and PP2 showed that the nonreceptor tyrosine kinase, Src, is an upstream stimulator of the PI3 kinase-Akt pathway in this paradigm. In addition, HDL activated MAP kinase through PI3 kinase, and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibition fully attenuated eNOS stimulation by HDL without affecting Akt or eNOS Ser-1179 phosphorylation. Conversely, dominant negative Akt did not alter HDL-induced MAP kinase activation. These results indicate that HDL stimulates eNOS through common upstream, Src-mediated signaling, which leads to parallel activation of Akt and MAP kinases and their resultant independent modulation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号