首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the geographical distribution of genetic variation in 67 individuals of Triglochin maritima from 38 localities across Europe using AFLP markers. Analysis of genetic variation resulted in the recognition of two major genetic groups. Apart from few geographical outliers, these are distributed (1) along the Atlantic coasts of Portugal, Spain and France and (2) in the North Sea area, the Baltic Sea area, at central European inland localities, the northern Adriatic Sea coast and the Mediterranean coast of southwest France. Considering possible range shifts of T. maritima in reaction to Quaternary climatic changes as deduced from the present-day northern temperature limit of the species, Quaternary changes of coastline in the North Sea area and the very recent origin of the Baltic Sea, we conclude that the coastal populations of T. maritima in the North Sea and Baltic Sea areas originated from inland populations.  相似文献   

2.
Population genetic structure of mussels from the Baltic Sea   总被引:2,自引:0,他引:2  
In a macrogeographic survey, the population genetic structure of mussels from various regions of the Baltic Sea, a large semi-enclosed brackish-water basin, was examined with reference toMytilus edulis andM. galloprovincialis samples from the North Sea, Irish coast and southern Portugal. Electrophoretically detectable variation was analysed at 6 polymorphic enzyme loci (Ap, Est-D, Lap-2, Odh, Pgi andPgm). Evidence was provided of a remarkably large amount of biochemical genetic differentiation among ecologically and morphologically divergent mussel populations in the Baltic. Patterns of allele frequencies in low-salinity populations from the area of the Baltic Proper were demonstrated to be widely homogeneous but contrast strongly with those of the western Baltic, the latter resembling populations from marine habitats of the North Sea. Associated with a pronounced salinity gradient, the spatial heterogeneity in gene-pool structure is indicated by steep clines of allele frequency changes in the area of the eastern Danish isles. The adaptive significance of the observed allozymic variation is suggested. From genetic distance estimates, the subdivision of population structure is discussed in relation to the significant amount of differentiation detected withinMytilus populations to date and to the evolutionary time required for the divergence of Baltic mussel populations. The allozymic data provide evidence for the genetic distinctiveness of mussels from the low-salinity areas of the Baltic. Their position at the specific or subspecific level of classification requires further consideration.  相似文献   

3.
In the Baltic Sea, abiotic factors are often supposed to explain the distribution of the key species Fucus vesiculosus. Still, in many areas, decline of F. vesiculosus has coincided with mass occurrence of the herbivorous isopod Idotea baltica. The aim of this work was to examine whether, how and at what densities I. baltica can affect the distribution of F. vesiculosus in the central Baltic proper. Both large-scale field surveys and a two-week grazing experiment have been performed.In the field survey there was a correlation between density of I. baltica and reduction in depth penetration of F. vesiculosus. At 80 animals per 100 g F. vesiculosus wet weight, the depth penetration of the F. vesiculosus belt was reduced by 2.5 m within a year. In the grazing experiment there was a correlation between density of I. baltica and loss of F. vesiculosus biomass and meristems. In the controls biomass and number of meristems increased by 50%, while at 20 animals per 100 g of F. vesiculosus there was no net growth of F. vesiculosus. Intensity of grazing did not differ between isopod densities of 20, 40 and 60/100 g. At isopod densities of 80 and 100/100 g though, biomass and meristems decreased by 50%, indicating a threshold for the survival of F. vesiculosus in the experiment. At all densities the isopods preferred younger tissue to older.Our results indicate that grazing by Idotea baltica is an important structuring factor in the Baltic Fucus vesiculosus populations.  相似文献   

4.
Synopsis I combined neutral microsatellite markers with the major histocompatibility complex (MHC) class IIB to study genetic differentiation and colonization history in Atlantic salmon, Salmo salar, in the Baltic Sea and in the north-eastern Atlantic. Baltic salmon populations have lower levels of microsatellite genetic variation, in terms of heterozygosity and allelic richness than Atlantic populations, confirming earlier findings with other genetic markers, suggesting that the Baltic Sea populations have been exposed to genetic bottlenecks, most likely at a founding event. On the other hand, the level of MHC variation was similar in the Baltic and in the north-eastern Atlantic, indicating that positive balancing selection has increased the level of MHC-variation. Both microsatellite and MHC class IIB genetic variation give strong support to the hypothesis that the Baltic salmon are of a biphyletic origin, the southern population in this study is strongly differentiated from both the northern Baltic salmon populations and from the north-eastern Atlantic populations. Salmon may have colonized the northern Baltic Sea either from the south, via the so called “N?rke strait” or from the north, via a proposed historical connection between the White Sea and the northern Baltic. At microsatellites, no significant isolation-by distance was found at either colonization route. At the MHC, populations were significantly isolated by distance when assuming that colonization occurred via the “N?rke strait”.  相似文献   

5.
This study assessed the major histocompatibility complex (MHC) and neutral genetic variation and structure in two percid species, perch Perca fluviatilis and zander Sander lucioperca, in a unique brackish ecosystem, the Baltic Sea. In addition, to assess the importance of MHC diversity to disease susceptibility in these populations, comparisons were made to an introduced, disease susceptible, P. fluviatilis population in Australia. Eighty‐three MHC class II B exon 2 variants were amplified: 71 variants from 92 P. fluviatilis samples, and 12 variants from 82 S. lucioperca samples. Microsatellite and MHC data revealed strong spatial genetic structure in S. lucioperca, but not P. fluviatilis, across the Baltic Sea. Both microsatellite and MHC data showed higher levels of genetic diversity in P. fluviatilis from the Baltic Sea compared to Australia, which may have facilitated the spread of an endemic virus, EHNV in the Australian population. The relatively high levels of genetic variation in the Baltic Sea populations, together with spatial genetic structure, however, suggest that there currently seems to be little risk of disease epidemics in this system. To ensure this remains the case in the face of ongoing environmental changes, fisheries and habitat disturbance, the conservation of local‐scale genetic variation is recommended.  相似文献   

6.
Populations of the flounder, Platichthys flesus , were screened for electrophoretically detectable protein variation at up to 37 loci. Atlantic and North Sea populations (subspecies flesus ) were genetically very similar to one another ( I >0.99) but different from Adriatic (subspecies italicus ) and Black Sea (subspecies luscus ) populations. The values for genetic identity between subspecies were around 0.9. Diagnostic loci enabled specimens of flesus, italicus and luscus to be differentiated from one another. Samples of flesus showed two to three times the heterozygosity levels of italicus or luscus , consistent with the greater population size of flesus . Morphological comparisons enabled populations to be categorized to subspecies. Platichthys flesus italicus and luscus are valid subspecies: the terms are not synonyms. The genetic distance data provide an estimate of divergence time of the three subspecies at about 2 My ago, an estimate that seems reasonable in the light of present knowledge concerning the recent geological histories of the Mediterranean and Black Sea basins.  相似文献   

7.
The toxic dinoflagellate Alexandrium ostenfeldii is the only bioluminescent bloom-forming phytoplankton in coastal waters of the Baltic Sea. We analysed partial luciferase gene (lcf) sequences and bioluminescence production in Baltic A. ostenfeldii bloom populations to assess the distribution and consistency of the trait in the Baltic Sea, and to evaluate applications for early detection of toxic blooms. Lcf was consistently present in 61 Baltic Sea A. ostenfeldii strains isolated from six separate bloom sites. All Baltic Sea strains except one produced bioluminescence. In contrast, the presence of lcf and the ability to produce bioluminescence did vary among strains from other parts of Europe. In phylogenetic analyses, lcf sequences of Baltic Sea strains clustered separately from North Sea strains, but variation between Baltic Sea strains was not sufficient to distinguish between bloom populations. Clustering of the lcf marker was similar to internal transcribed spacer (ITS) sequences with differences being minor and limited to the lowest hierarchical clusters, indicating a similar rate of evolution of the two genes. In relation to monitoring, the consistent presence of lcf and close coupling of lcf with bioluminescence suggests that bioluminescence can be used to reliably monitor toxic bloom-forming A. ostenfeldii in the Baltic Sea.  相似文献   

8.
9.
The redshank (Tringa totanus) is declining throughout Europe and to implement efficient conservation measures, it is important to obtain information about the population genetic structure. The aim of the present study was two-fold. First, we analysed the genetic variation within and between populations in the Baltic region in southern Scandinavia. Evidence of genetic structure would suggest that different populations might require separate management strategies. Second, in an attempt to study large-scale genetic structure we compared the Baltic populations with redshanks from northern Scandinavia and Iceland. This analysis could reveal insights into phylogeography and long-term population history. DNA samples were collected from six breeding sites in Scandinavia presumed to include two subspecies (totanus and britannica) and a further sample from Iceland (subspecies robusta). Two methods were used to study the population genetic structure. Domain II and III of the mitochondrial control region was analysed by DNA sequencing and nuclear DNA was analysed by screening amplified fragment length polymorphism (AFLP) markers. Mitochondrial DNA showed no variation between individuals in domain II. When analysing an 481 bp fragment of domain III seven haplotypes were found among birds. On the basis of mtDNA sequences, redshanks showed some evidence of a recent expansion from a bottlenecked refugial population. Bayesian analyses of AFLP data revealed a significant genetic differentiation between suggested subspecies but not between populations within the Baltic region. Our results indicate that populations of redshanks in Europe constitute at least three separate management units corresponding to the recognised subspecies.  相似文献   

10.
The macroalgal belt in the southern Baltic Sea may be partly structured by the interaction of physical and biological factors. A field study, spanning the 1990s, describes a rapid decline of the Fucus spp. stands along the wave-exposed Swedish southeast coast. During this period, a relative dominance of Fucus vesiculosus L. shifted to a relative dominance of Fucus serratus L. The decline of F. vesiculosus coincided with observations of large numbers of the grazing isopods Idotea baltica (Pallas) and Idotea granulosa Rathke, or with field observations of frequent grazing marks on Fucus fronds. I. baltica, but not I. granulosa, tended to aggregate in the declining Fucus spp. stands, indicating a strong preference for Fucus spp. In a mesocosm experiment I. baltica, when given a choice, grazed both Fucus species at weak water motion. At strong water motion grazing was concentrated on F. vesiculosus. It is hypothesized that one of the reasons I. baltica preferred F. vesiculosus to F. serratus at strong water motion may have been differences in habitat quality, like width of thallus, influencing the ability to cling to the plant. Smaller thallus, as in F. vesiculosus, thus is the preferred habitat for grazing of I. blatica. We postulate that the existence of F. serratus in the area may be favoured by strong wave action and moderate but not strong grazing by I. baltica, relaxing the interspecific competition from F. vesiculosus.  相似文献   

11.
The history of expansion of bloom-forming cold water dinoflagellates in the Northern Baltic Sea was studied using 100-year-old sediment archives of their resting cysts. Vertical cyst distributions of Biecheleria baltica and Apocalathium malmogiense, two dinoflagellates indistinguishable by light microscopy and not recognized as distinct species in monitoring, and chain-forming Peridiniella catenata were analysed in Pb210 and Cs137 dated layers of a sediment core from deep, hypoxic accumulation bottoms of the Gulf of Finland. Cyst profiles showed that B. baltica and A. malmogiense were already present in the Baltic spring phytoplankton community at the beginning of the 20th century. This confirms that B. baltica, which was only recognized in the late 1980s, is a native species in the area. A drastic increase in B. baltica cyst concentrations in the 1930s to 1960s coincided with the acceleration of anthropogenic eutrophication. Large cyst deposits accumulated over several decades in the sediment which, by the 1980s, amounted to the seed stock necessary to inoculate dominant blooms. In the cyst records A. malmogiense always contributed a minor fraction of the two species. P. catenata had a relatively short cyst record in Gulf of Finland sediments despite demonstrated long-term presence in the plankton, which emphasizes that cyst-based historic surveys are not suitable for all cyst-forming dinoflagellates. This was corroborated by correspondence analyses of long-term plankton and cyst records which validated the trends from the sediment archive for B. baltica and A. malmogiense, but failed to do so for P. catenata. Germination experiments with 100-year-old cysts revealed a remarkable long-term survival capacity of A. malmogiense, making this species a suitable model for resurrection studies testing adaptation in heavily impacted systems such as the Baltic Sea.  相似文献   

12.
Genetic variation was examined within and among North Atlantic, North Sea and Baltic populations of the benthic red alga Phycodrys rubens using allozymes and random amplified polymorphic DNA (RAPD) markers. On western and eastern North Atlantic coasts distinct allozyme types were found, with the exception of western Newfoundland where East and West Atlantic types co-occur. Along the European coasts, two genetic groups were distinguished by fixed allelic differences: an outer oceanic group and a North Sea/Baltic group. The two genetic types co-occur in the Skagerrak and Kattegat region. Reproductive isolation between the two types is suggested by the lack of hybrids in the overlap zones, and they may therefore represent sibling species. Unexpectedly, an analysis of RAPD variation was unable to recover the two cryptic species identified using allozymes. Within-population RAPD variation was similar to or greater than between-population variation. The lack of structure in the RAPD data cannot be attributed solely to technical artefacts of the method but appears to reflect real biological variability. Within-population genomic polymorphisms caused by frequent mutational events are discussed, as are high amounts of genetic drift and possible disruptive selection brought about by stressed habitats. Finally, Baltic and extra-Baltic salinity ecotypes are known to exist in P. rubens. However, no correlation between ecotypic variation and allozyme groups was detected.  相似文献   

13.
Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea ‘mainland’ and two the ‘aquatic islands’ composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control‐region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post‐colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.  相似文献   

14.
Pinna nobilis is the largest endemic Mediterranean marine bivalve. During past centuries, various human activities have promoted the regression of its populations. As a consequence of stringent standards of protection, demographic expansions are currently reported in many sites. The aim of this study was to provide the first large broad-scale insight into the genetic variability of P. nobilis in the area that encompasses the western Mediterranean, Ionian Sea, and Adriatic Sea marine ecoregions. To accomplish this objective twenty-five populations from this area were surveyed using two mitochondrial DNA markers (COI and 16S). Our dataset was then merged with those obtained in other studies for the Aegean and Tunisian populations (eastern Mediterranean), and statistical analyses (Bayesian model-based clustering, median-joining network, AMOVA, mismatch distribution, Tajima’s and Fu’s neutrality tests and Bayesian skyline plots) were performed. The results revealed genetic divergence among three distinguishable areas: (1) western Mediterranean and Ionian Sea; (2) Adriatic Sea; and (3) Aegean Sea and Tunisian coastal areas. From a conservational point of view, populations from the three genetically divergent groups found may be considered as different management units.  相似文献   

15.
The diet of whiting Merlangius merlangus in the western Baltic Sea was investigated and compared to the diet in the southern North Sea. Clupeids were important prey in both areas, but especially in the western Baltic Sea where they constituted up to 90% of the diet of larger individuals. Gobies, brown shrimps and polychaetes were the main prey of juveniles in the western Baltic Sea, while a wider range of species were consumed in the North Sea. The shift to piscivory occurred at smaller sizes in the western Baltic Sea and the fish prey consumed was proportionately larger than in the southern North Sea. Estimates of prey abundance and food intake of M. merlangus are required to evaluate its predatory significance in the western Baltic Sea, but its diet suggests that it could be just as significant a fish predator here as in the southern North Sea.  相似文献   

16.
Since 1985, the nonindigenous polychaete species Marenzelleria neglecta has been found in the Baltic Sea. The species, which was introduced by ship ballast water, spreads rapidly and dominates in many habitats today. Using three gene segments of the mitochondrial DNA (16S rDNA, Cytochrom oxidase I, Cytochrom b), we investigated four populations of the western and northern Baltic Sea in a preliminary survey and compared them with four other populations from the North Sea, the Baltic Sea and from the Arctic. First, we could demonstrate the applicability of the markers to discriminate the species with certainty. Second, with M. viridis and M. arctia, we could detect two more species of the same genus, which have recently been introduced into the Baltic Sea. One of these, M. arctia, was hitherto known as an exclusive arctic member of the genus. The impact of these two recently invaded Marenzelleria species onto the autochthonous fauna needs to be evaluated in the future. The Baltic Sea as a ‘natural aquarium’ now offers the possibility to investigate sibling species simultaneously. However, correct identification and denomination of Marenzelleria species are indispensable prerequisites for all future studies. Molecular markers allow the exact identification of all Marenzelleria species and must be used whenever a classical taxonomic identification is uncertain.  相似文献   

17.
The Fucus populations on rocky shores along 300 km of the coastal waters of southeast Sweden in the Baltic proper have been studied since 1984 at a number of fixed sites as part of monitoring programmes. This paper describes changes in distribution and abundance of F. vesiculosus and F. serratus during the period 1984–2001. Sheltered sites showed a consistent temporal and spatial pattern of Fucus spp. distribution over a coastline of 300 kilometres. The depth penetration and abundance of Fucus spp. increased during the 1980s. Around 1990 the development reversed as a consequence of grazing and in 1997 many sites were almost devoid of Fucus spp. Since 1998 both abundance and depth penetration have increased again, possibly as a result of local measures against eutrophication. Exposed sites, on the other hand, lost their Fucus populations at the beginning of the 1990s, and they have not recovered. Extended field studies lead us to deduce that the fixed sites referred to above were representative of the Fucus populations in the area investigated. Major declines, both at sheltered and exposed sites, are attributed to grazing by the isopod Idotea baltica. The populations of I. baltica may have been favoured by the continuing eutrophication of the Baltic, a series of mild winters in the 1990s, and a contemporary decline in some potential predators.  相似文献   

18.
Charophytes are a highly endangered group of algae. In the Baltic Sea, the number of species, distribution area and biomass of charophytes have significantly decreased in recent decades. Although eutrophication triggers their initial decline, the mechanism of the final extinction of charophyte populations is not fully understood. An in situ experiment was performed to study the role of the mesoherbivores Idotea baltica, Gammarus oceanicus and Palaemon adspersus in the decline of charophytes in the north-eastern Baltic Sea. Invertebrate grazing showed a clear seasonality: grazing pressure was low in April, moderate in July, and high in October. Grazing on charophytes by P. adspersus was negligible, whereas I. baltica and G. oceanicus significantly reduced the biomass of charophytes in the field. Low photosynthetic activity (high decomposition rate) of the charophytes favoured grazing. The invertebrates studied preferred Chara tomentosa to C. connivens. Low consumption of C. connivens may reflect its non-native origin. The experiment suggests that, under moderately eutrophic conditions, grazers are not likely to control charophyte populations. However, grazers have the potential to eliminate charophytes in severely eutrophic systems under the stress of filamentous algae.Communicated by H.D. Franke  相似文献   

19.
The red coral Corallium rubrum (Cnidaria, Octocorallia) is an exploited, long-lived sessile species from the Mediterranean Sea and the adjacent coastline in the Atlantic Ocean. Surveys of genetic variation using microsatellites have shown that populations of C. rubrum are characterized by strong differentiation at the local scale but a study of the phylogeography of this species was still lacking. Here, we used seven polymorphic microsatellite loci, together with sequence data from an intron of the elongation factor 1 (EF1) gene, to investigate the genetic structure of C. rubrum across its geographical range in the western Mediterranean Sea and in the Adriatic Sea. The EF1 sequences were also used to analyse the consequences of demographic fluctuations linked with past environmental change. Clustering analysis with microsatellite loci highlighted three to seven genetic groups with the distinction of North African and Adriatic populations; this distinction appeared significant with AMOVA and differentiation tests. Microsatellite and EF1 data extended the isolation by distance pattern previously observed for this species at the western Mediterranean scale. EF1 sequences confirmed the genetic differentiation observed between most samples with microsatellites. A statistical parsimony network of EF1 haplotypes provided no evidence of high sequence divergence among regions, suggesting no long-term isolation. Selective neutrality tests on microsatellites and EF1 were not significant but should be interpreted with caution in the case of EF1 because of the low sample sizes for this locus. Our results suggest that recent Quaternary environmental fluctuations had a limited impact on the genetic structure of C. rubrum.  相似文献   

20.
The distribution pattern of mtDNA haplotypes in distinct populations of the glacial relict crustacean Saduria entomon was examined to assess phylogeographic relationships among them. Populations from the Baltic, the White Sea and the Barents Sea were screened for mtDNA variation using PCR‐based RFLP analysis of a 1150 bp fragment containing part of the CO I and CO II genes. Five mtDNA haplotypes were recorded. An analysis of geographical heterogeneity in haplotype frequency distributions revealed significant differences among populations. The isolated populations of S. entomon have diverged since the retreat of the last glaciation. The geographical pattern of variation is most likely the result of stochastic (founder effect, genetic drift) mechanisms and suggests that the haplotype differentiation observed is probably older than the isolation of the Baltic and Arctic seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号