首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have identified a novel galactose 3-O-sulfotransferase, termed Gal3ST-4, by analysis of an expression sequence tag using the amino acid sequence of human cerebroside 3'-sulfotransferase (Gal3ST-1). The isolated cDNA contains a single open reading frame coding for a protein of 486 amino acids with a type II transmembrane topology. The amino acid sequence of Gal3ST-4 revealed 33%, 39%, and 30% identity to human Gal3ST-1, Gal beta 1-->3/4GlcNAc:-->3'-sulfotransferase (Gal3ST-2) and Gal beta 1-->4GlcNAc:-->3'-sulfotransferase (Gal3ST-3), respectively. The Gal3ST-4 gene comprised at least four exons and was located on human chromosome 7q22. Expression of Gal3ST-4 in COS-7 cells produced a sulfotransferase activity that catalyzes the transfer of [(35)S]sulfate to the C-3' position of Gal beta 1-->3GalNAc alpha 1-O-Bn. Gal3ST-4 recognizes Gal beta 1-->3GalNAc and Gal beta 1-->3(GlcNAc beta 1-->6)GalNAc as good substrates, but not Gal beta 1-->3GalNAc(OH) or Gal beta 1-->3/4GlcNAc. Asialofetuin is also a good substrate, and the sulfation was found exclusively in O-linked glycans that consist of the Gal beta 1-->3GalNAc moiety, suggesting that the enzyme is specific for O-linked glycans. Northern blot analysis revealed that 2.5-kilobase mRNA for the enzyme is expressed extensively in various tissues. These results suggest that Gal3ST-4 is the fourth member of a Gal:-->3-sulfotransferase family and that the four members, Gal3ST-1, Gal3ST-2, Gal3ST-3, and Gal3ST-4, are responsible for sulfation of different acceptor substrates.  相似文献   

4.
5.
6.
Based on sequence homology with a previously cloned human GlcNAc 6-O-sulfotransferase, we have identified an open reading frame (ORF) encoding a novel member of the Gal/GalNAc/GlcNAc 6-O-sulfotransferase (GST) family termed GST-5 on the human X chromosome (band Xp11). GST-5 has recently been characterized as a novel GalNAc 6-O-sulfotransferase termed chondroitin 6-sulfotransferase-2 (Kitagawa, H., Fujita, M., Itio, N., and Sugahara K. (2000) J. Biol. Chem. 275, 21075-21080). We have coexpressed a human GST-5 cDNA with a GlyCAM-1/IgG fusion protein in COS-7 cells and observed four-fold enhanced [(35)S]sulfate incorporation into this mucin acceptor. All mucin-associated [(35)S]sulfate was incorporated as GlcNAc-6-sulfate or Galbeta1-->4GlcNAc-6-sulfate. GST-5 was also expressed in soluble epitope-tagged form and found to catalyze 6-O-sulfation of GlcNAc residues in synthetic acceptor structures. In particular, GST-5 was found to catalyze 6-O-sulfation of beta-benzyl GlcNAc but not alpha- or beta-benzyl GalNAc. In the mouse genome we have found a homologous ORF that predicts a novel murine GlcNAc 6-O-sulfotransferase with 88% identity to the human enzyme. This gene was mapped to mouse chromosome X at band XA3.1-3.2. GST-5 is the newest member of an emerging family of carbohydrate 6-O-sulfotransferases that includes chondroitin 6-sulfotransferase (GST-0), keratan-sulfate galactose 6-O-sulfotransferase (GST-1), the ubiquitously expressed GlcNAc 6-O-sulfotransferase (GST-2), high endothelial cell GlcNAc 6-O-sulfotransferase (GST-3), and intestinal GlcNAc 6-O-sulfotransferase (GST-4).  相似文献   

7.
We previously cloned heparan sulfate 6-O-sulfotransferase (HS6ST) (Habuchi, H., Kobayashi, M., and Kimata, K. (1998) J. Biol. Chem. 273, 9208-9213). In this study, we report the cloning and characterization of three mouse isoforms of HS6ST, a mouse homologue to the original human HS6ST (HS6ST-1) and two novel HS6STs (HS6ST-2 and HS6ST-3). The cDNAs have been obtained from mouse brain cDNA library by cross-hybridization with human HS6ST cDNA. The three cDNAs contained single open reading frames that predicted type II transmembrane proteins composed of 401, 506, and 470 amino acid residues, respectively. Amino acid sequence of HS6ST-1 was 51 and 57% identical to those of HS6ST-2 and HS6ST-3, respectively. HS6ST-2 and HS6ST-3 had the 50% identity. Overexpression of each isoform in COS-7 cells resulted in about 10-fold increase of HS6ST activity. The three isoforms purified with anti-FLAG antibody affinity column transferred sulfate to heparan sulfate and heparin but not to other glycosaminoglycans. Each isoform showed different specificity toward the isomeric hexuronic acid adjacent to the targeted N-sulfoglucosamine; HS6ST-1 appeared to prefer the iduronosyl N-sulfoglucosamine while HS6ST-2 had a different preference, depending upon the substrate concentrations, and HS6ST-3 acted on either substrate. Northern analysis showed that the expression of each message in various tissues was characteristic to the respective isoform. HS6ST-1 was expressed strongly in liver, and HS6ST-2 was expressed mainly in brain and spleen. In contrast, HS6ST-3 was expressed rather ubiquitously. These results suggest that the expression of these isoforms may be regulated in tissue-specific manners and that each isoform may be involved in the synthesis of heparan sulfates with tissue-specific structures and functions.  相似文献   

8.
Based on sequence homology with the recently cloned human chondroitin synthase, we identified a novel beta1,4-N-acetylgalactosaminyltransferase, which consisted of 532 amino acids with a type II transmembrane protein topology. The amino acid sequence displayed 27% identity to that of human chondroitin synthase. The expression of a soluble form of the protein in COS-1 cells produced an active enzyme, which transferred beta1,4-N-acetylgalactosamine (GalNAc) from UDP-[(3)H]GalNAc not only to a polymer chondroitin representing growing chondroitin chains (beta-GalNAc transferase II activity) but also to GlcUAbeta1--3Galbeta1-O-C(2)H(4)NH-benzyloxycarbonyl, a synthetic substrate for beta-GalNAc transferase I that transfers the first GalNAc to the core tetrasaccharide in the protein linkage region of chondroitin sulfate. Hence, the enzyme is involved in the biosynthetic initiation and elongation of chondroitin sulfate and is the key enzyme responsible for the selective chain assembly of chondroitin/dermatan sulfate on the linkage region tetrasaccharide common to various proteoglycans containing chondroitin/dermatan sulfate or heparin/heparan sulfate chains. The coding region of this enzyme was divided into seven discrete exons and localized to chromosome 8. Northern blot analysis revealed that the chondroitin GalNAc transferase gene exhibited a ubiquitous but markedly differential expression in human tissues and that the expression pattern was similar to that of chondroitin synthase. Thus, more than two distinct enzymes forming the novel gene family are required for chain initiation and elongation in chondroitin/dermatan sulfate as in the biosynthesis of heparin/heparan sulfate.  相似文献   

9.
10.
We identified a novel human chondroitin N-acetylgalactosaminyltransferase, designated chondroitin GalNAcT-2 after a BLAST analysis of the GenBank(TM) data base using the sequence of a previously described human chondroitin N-acetylgalactosaminyltransferase (chondroitin GalNAcT-1) as a probe. The new cDNA sequence contained an open reading frame encoding a protein of 542 amino acids with a type II transmembrane protein topology. The amino acid sequence displayed 60% identity to that of human chondroitin GalNAcT-1. Like chondroitin GalNAcT-1, the expression of a soluble form of the protein in COS-1 cells produced an active enzyme, which not only transferred beta1,4-N-acetylgalactosamine (GalNAc) from UDP-[(3)H]GalNAc to a polymer chondroitin representing growing chondroitin chains (beta-GalNAc transferase II activity) but also to GlcUA beta 1-3Gal beta 1-O-C(2)H(4)NHCbz, a synthetic substrate for beta-GalNAc transferase I that transfers the first GalNAc to the core tetrasaccharide in the protein-linkage region of chondroitin sulfate. In contrast, the tetrasaccharide serine (GlcUA beta 1-3Gal beta 1-3Gal beta 1-4Xyl beta 1-O-Ser) derived from the linkage region, which is an inert acceptor substrate for chondroitin GalNAcT-1, served as an acceptor substrate. The coding region of this enzyme was divided into seven discrete exons, which is similar to the genomic organization of the chondroitin GalNAcT-1 gene, and was localized to chromosome 10q11.22. Northern blot analysis revealed that the chondroitin GalNAcT-2 gene exhibited a ubiquitous but differing expression in human tissues, and the expression pattern differed from that of chondroitin GalNAcT-1. Thus, we demonstrated redundancy in the chondroitin GalNAc transferases involved in the biosynthetic initiation and elongation of chondroitin sulfate, which is important for understanding the biosynthetic mechanisms leading to the selective chain assembly of chondroitin/dermatan sulfate on the linkage region tetrasaccharide common to various proteoglycans containing chondroitin/dermatan sulfate and heparin/heparan sulfate chains.  相似文献   

11.
A novel sulfotransferase activity was discovered in fetal bovine serum using pig skin dermatan sulfate as an acceptor and [35S]3'-phosphoadenosine 5'-phosphosulfate as a sulfate donor. The enzyme was separated from chondroitin:GalNAc 6-O-sulfotransferase by chromatographic techniques. Enzymatic analysis of the reaction products demonstrated that the enzyme transferred sulfate to the C6 position of the GalNAc residue in the sequence -iduronic acid alpha1-3GalNAc beta1-4iduronic acid-. Thus, the enzyme has been identified as a hitherto unreported dermatan sulfate:GalNAc 6-O-sulfotransferase. The finding is in sharp contrast to the current concept that in dermatan sulfate biosynthesis GalNAc 4-O-sulfation is a prerequisite for iduronic acid formation by C5 epimerase.  相似文献   

12.
13.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate (GalNAc(4SO(4))) in chondroitin sulfate and dermatan sulfate. We have previously purified the enzyme to apparent homogeneity from the squid cartilage. We report here cloning and characterization of human GalNAc4S-6ST. The strategy for identification of human GalNAc4S-6ST consisted of: 1) determination of the amino acid sequences of peptides derived from the purified squid GalNAc4S-6ST, 2) amplification of squid DNA by polymerase chain reaction, and 3) homology search using the amino acid sequence deduced from the squid DNA. The human GalNAc4S-6ST cDNA contains a single open reading frame that predicts a type II transmembrane protein composed of 561 amino acid residues. The recombinant protein expressed from the human GalNAc4S-6ST cDNA transferred sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of the nonreducing terminal and internal GalNAc(4SO(4)) residues contained in chondroitin sulfate A and dermatan sulfate. When a trisaccharide and a pentasaccharide having sulfate groups at position 4 of N-acetylgalactosamine residues were used as acceptors, only nonreducing terminal GalNAc(4SO(4)) residues were sulfated. The nucleotide sequence of the human GalNAc4S-6ST cDNA was nearly identical to the sequence of human B cell recombination activating gene-associated gene.  相似文献   

14.
We recently cloned human chondroitin synthase (ChSy) exhibiting the glucuronyltransferase-II (GlcATII) and N-acetylgalactosaminyltransferase-II (GalNAcTII) activities responsible for the biosynthesis of repeating disaccharide units of chondroitin sulfate, but chondroitin polymerization was not demonstrated in vitro using the recombinant ChSy. We report here that the chondroitin polymerizing activity requires concomitant expression of a novel protein designated chondroitin polymerizing factor (ChPF) with ChSy. The human ChPF consists of 775 amino acids with a type II transmembrane protein topology. The amino acid sequence displayed 23% identity to that of human ChSy. The expression of a soluble recombinant form of the protein in COS-1 cells produced a protein with little GlcAT-II or GalNAcT-II activity. In contrast, coexpression of the ChPF and ChSy yielded markedly augmented glycosyltransferase activities, whereas simple mixing of the two separately expressed proteins did not. Moreover, using both UDP-glucuronic acid (GlcUA) and UDP-N-acetylgalactosamine (GalNAc) as sugar donors, chondroitin polymerization was demonstrated on the so-called glycosaminoglycan-protein linkage region tetrasaccharide sequence of alpha-thrombomodulin. These results suggested that the ChPF acts as a specific activating factor for ChSy in chondroitin polymerization. The coding region of the ChPF was divided into four discrete exons and localized to chromosome 2q35-q36. Northern blot analysis revealed that the ChPF gene exhibited a markedly different expression pattern among various human tissues, which was similar to that of ChSy. Thus, the ChPF is required for chondroitin polymerizing activity of mammalian ChSy.  相似文献   

15.
16.
17.
Previously, we demonstrated that sog9 cells, a murine L cell mutant, are deficient in the expression of C4ST (chondroitin 4-O-sulfotransferase)-1 and that they synthesize fewer and shorter CS (chondroitin sulfate) chains. These results suggested that C4ST-1 regulates not only 4-O-sulfation of CS, but also the length and amount of CS chains; however, the mechanism remains unclear. In the present study, we have demonstrated that C4ST-1 regulates the chain length and amount of CS in co-operation with ChGn-2 (chondroitin N-acetylgalactosaminyltransferase 2). Overexpression of ChGn-2 increased the length and amount of CS chains in L cells, but not in sog9 mutant cells. Knockdown of ChGn-2 resulted in a decrease in the amount of CS in L cells in a manner proportional to ChGn-2 expression levels, whereas the introduction of mutated C4ST-1 or ChGn-2 lacking enzyme activity failed to increase the amount of CS. Furthermore, the non-reducing terminal 4-O-sulfation of N-acetylgalactosamine residues facilitated the elongation of CS chains by chondroitin polymerase consisting of chondroitin synthase-1 and chondroitin-polymerizing factor. Overall, these results suggest that the chain length of CS is regulated by C4ST-1 and ChGn-2 and that the enzymatic activities of these proteins play a critical role in CS elongation.  相似文献   

18.
4-O-Sulfation of GalNAc is a high frequency modification of chondroitin sulfate and dermatan sulfate (DS), and three major GalNAc 4-O-sulfotransferases including dermatan 4-O-sulfotransferase-1 (D4ST-1) and chondroitin 4-O-sulfotransferases-1 and -2 (C4ST-1 and -2) have been identified. 4-O-Sulfation of GalNAc during DS biosynthesis had long been postulated to be a prerequisite for iduronic acid (IdoUA) formation by C5-epimerization of GlcUA. This hypothesis has recently been argued based on enzymological studies using microsomes that C5-epimerization precedes 4-O-sulfation, which was further supported by the specificity of the cloned D4ST-1 with predominant preference for IdoUA-GalNAc flanked by GlcUA-GalNAc over IdoUA-GalNAc flanked by IdoUA-GalNAc in exhaustively desulfated dermatan. Whereas the counterproposal explains the initial reactions, apparently it cannot rationalize the synthetic mechanism of IdoUA-GalNAc(4-O-sulfate)-rich clusters typical of mature DS chains. In this study, we examined detailed specificities of the three recombinant human 4-O-sulfotransferases using partially desulfated DS as an acceptor. Enzymatic analysis of the transferase reaction products showed that D4ST-1 far more efficiently transferred sulfate to GalNAc residues in -IdoUA-Gal-NAc-IdoUA-than in -GlcUA-GalNAc-GlcUA-sequences. In contrast, C4ST-1 showed the opposite preference, and C4ST-2 used GalNAc residues in both sequences to comparable degrees, being consistent with its phylogenetic relations to D4ST-1 and C4ST-1. Structural analysis of the oligosaccharides, which were isolated after chondroitinase AC-I digestion of the 35S-labeled transferase reaction products, revealed for the first time that D4ST-1, as compared with C4ST-1 and C4ST-2, most efficiently utilized GalNAc residues located not only in the sequence -IdoUA-GalNAc-IdoUA- but also in -GlcUA-Gal-NAc-IdoUA- and -IdoUA-GalNAc-GlcUA-. The isolated oligosaccharide structures also suggest that 4-O-sulfation promotes subsequent 4-O-sulfation of GalNAc in the neighboring disaccharide unit.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号