首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The use of the fungus Aspergillus niger for the bioleaching of heavy metals from spent catalyst was investigated, with fluid catalytic cracking (FCC) catalyst as a model. Bioleaching was examined in batch cultures with the spent catalysts at various pulp densities (1-12%). Chemical leaching was also performed using mineral acids (sulphuric and nitric acids) and organic acids (citric, oxalic and gluconic acids), as well as a mixture of organic acids at the same concentrations as that biogenically produced. It was shown that bioleaching realised higher metal extraction than chemical leaching, with A. niger mobilizing Ni (9%), Fe (23%), Al (30%), V (36%) and Sb (64%) at 1% pulp density. Extraction efficiency generally decreased with increased pulp density. Compared with abiotic controls, bioleaching gave rise to higher metal extractions than leaching using fresh medium and cell-free spent medium. pH decreased during bioleaching, but remained relatively constant in both leaching using fresh medium and cell-free spent medium, thus indicating that the fungus played a role in effecting metal extraction from the spent catalyst.  相似文献   

2.
A culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune has an activity to form protoplasts from S. commune mycelia. alpha-1,3-Glucanase and chitinase I, which were isolated from the filtrate, did not form the protoplast by itself while a mixture of them showed protoplast-forming activity. Streptomyces cyaneus SP-27 was isolated based on the productivity of chitinase. The culture filtrate of S. cyaneus SP-27 did not form S. commune protoplasts, but addition of it to alpha-1,3-glucanase of B. circulans KA-304 brought about protoplast-forming activity. Chitinase A isolated from the S. cyaneus SP-27 culture filtrate was more effective than chitinase I of B. circulans KA-304 for the protoplast formation in combination with alpha-1,3-glucanase. The N-terminal amino acid sequence of chitinase A (MW 29,000) has a sequential similarity to those of several Streptomycete family 19 chitinases. Chitinase A adsorbed to chitinous substrate and inhibited the growth of Trichoderma reesei mycelia. Anomer analysis of the reaction products also suggested that the enzyme is a family 19 chitinase.  相似文献   

3.
O kagbue , R.N. & L ewis , M.J. 1985. Influence of mixed culture conditions on yeast-wall hydrolytic activity of Bacillus circulans WL-12 and on extractability of astaxanthin from the yeast Phaffia rhodozyma. Journal of Applied Bacteriology 59 , 243–255.
In mixed culture Bacillus circulans WL-12 hydrolysed cell walls of Phaffia rhodozyma and rendered astaxanthin extractable from the yeast. pH control was critical to survival and lytic activity of the bacillus; the optimum range was 6.2–6.8. The optimum range of temperature was 20–24C. Glucose (1–2%) was efficient in minimizing catabolite repression of the lytic enzyme complex of the bacillus. Slow-feeding of glucose improved ultimate yields of lytic enzyme but did not acclerate yeast cell wall modification. A relatively high inoculum level of B. circulans accelerated modification of P. rhodozyma in the mixed culture: when the bacterial inoculum was four times that of the yeast, over 80% of total astaxanthin was extractable in 48 h. High bacterial inoculum size also stimulated yeast autolysis and necessitated early harvest of the mixed culture. Results obtained in shake flasks were duplicated in 5-litre fermentors and suggest that the mixed culture has potential industrial value for producing a biomass containing biologically-available astaxanthin. Extractability of astaxanthin was also achieved when mixed culture filtrate was incubated with pure cultured Phaffia cells. When suitably fortified with nutrients, the filtrate also supported simultaneous yeast growth and modification of the yeast cell walls. A scheme incorporating mixed culture with B. circulans WL-12 and re-use of culture filtrate has been proposed for enzymatic processing of Phaffia rhodozyma for inclusion in animal diets.  相似文献   

4.
Leaching of copper converter slag of M/s Hindustan Copper Ltd, Ghatshila (Bihar, India) was carried out usingAspergillus niger culture filtrate. The effects of the duration of leaching, temperature, pulp density and the addition of hydrochloric acid were studied.A. niger culture filtrate solubilized metals from the converter slag at levels of 18.70% copper, 7.40% nickel and 4.00% cobalt. Addition of hydrochloric acid was found to improve copper, nickel and cobalt solubilization to 46.52, 27.90 and 37.96%, respectively. HPLC analysis of the fungal culture filtrate revealed the presence of succinic and citric acids. Therefore, leaching of the slag was also carried out with matching concentrations of these organic acids individually as well as with both mixed together. Results are discussed.  相似文献   

5.
Bio-leaching studies were carried out in a 2 L bioreactor- BIOSTAT-B® equipped with a PLC based controller at 20–40% (w/v) pulp density using enriched culture of A.ferrooxidans for Turamdih uranium ore (Jharkhand, India). With the enriched culture of A.ferrooxidans adapted on Fe(II) at pH 2.0, 35 °C and 20% (w/v) pulp density, a 98.3% uranium recovery was recorded in 14 days. The leaching of uranium in the bioreactor improved the dissolution rate by reducing the time from 40 days in shake flask as per our earlier studies to 14 days. While investigating the importance of biogenic Fe(III) in the bio-leaching process a maximum recovery of 84.7% U3O8 was observed at pH 2.0 and 20% (w/v) pulp density in 10 h as compared to the uranium leaching of 38.3% in the control experiments. On raising the pulp density to 30%, uranium bio-recovery increased to 87.6% in 10 h at pH 2.0 with <76 μm size material. This showed a distinct advantage because of better mixing of slurry in the bioreactor with auto-controlled conditions that improved the kinetics.  相似文献   

6.
A culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune has an activity to form protoplasts from S. commune mycelia, and a combination of alpha-1,3-glucanase and chitinase I, which were isolated from the filtrate, brings about the protoplast-forming activity. The gene of alpha-1,3-glucanase was cloned from B. circulans KA-304. It consists of 3,879 nucleotides, which encodes 1,293 amino acids including a putative signal peptide (31 amino acid residues), and the molecular weight of alpha-1,3-glucanase without the putative signal peptide was calculated to be 132,184. The deduced amino acid sequence of alpha-1,3-glucanase of B. circulans KA-304 showed approximately 80% similarity to that of mutanase (alpha-1,3-glucanase) of Bacillus sp. RM1, but no significant similarity to those of fungal mutanases.The recombinant alpha-1,3-glucanase was expressed in Escherichia coli Rosetta-gami B (DE 3), and significant alpha-1,3-glucanase activity was detected in the cell-free extract of the organism treated with isopropyl-beta-D-thiogalactopyranoside. The recombinant alpha-1,3-glucanase showed protoplast-forming activity when the enzyme was combined with chitinase I.  相似文献   

7.
The filamentous fungal strains Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, previously selected for the bioconversion of ferulic acid to vanillic acid and vanillin respectively, were grown on sugar beet pulp. A large spectrum of polysaccharide-degrading enzymes was produced by A. niger and very few levels of feruloyl esterases were found. In contrast, P. cinnabarinus culture filtrate contained low amount of polysaccharide-degrading enzymes and no feruloyl esterases. In order to enhance feruloyl esterases in A. niger cultures, feruloylated oligosaccharide-rich fractions were prepared from sugar beet pulp or cereal bran and used as carbon sources. Number of polysaccharide-degrading enzymes were induced. Feruloyl esterases were much higher in maize bran-based medium than in sugar beet pulp-based medium, demonstrating the ability of carbon sources originating from maize to induce the synthesis of feruloyl esterases. Thus, A. niger I-1472 could be interesting to release ferulic acid from sugar beet pulp or maize bran.  相似文献   

8.
More than 90% of initial pyritic sulfur was removed from bituminous coal samples (containing 2.1% pyritic sulfur) using the thermophilic organism Sulfolobus acidocaldarius. Microbial desulfurization rate was improved nearly ten fold by adjusting the N/P and N/Mg ratios in the nutrient medium. Environmental conditions were optimized. The optimal values of temperature and pH were 70 degrees C and 1.5, respectively. The influence of certain process variables (such as coal pulp density, particle size, and initial cell number density) on the rate of pyritic sulfur removal were determined. A pulp density of 20%, particle size of D (p) < 48 mum, and an initial cell number density of 10(12) cells/g pyrite in coal were found to be optimal. The carbon dioxide enriched air did not improve the rate of pyritic sulfur removal compared to pure air at 10% pulp density of coal samples containing 2.1% pyritic sulfur. The kinetics of microbial leaching of pyritic sulfur from coal was investigated. The rate of leaching was found to be first order with respect to pyritic sulfur concentration in the reaction medium.  相似文献   

9.
Chitinase A of Streptomyces cyaneus SP-27 or chitinase I of Bacillus circulans KA-304 showed the protoplast-forming activity when combined with alpha-1,3-glucanase of B. circulans KA-304. The gene of chitinase A was cloned. It consisted of 903 nucleotides encoding 301 amino acid residues, including a putative signal peptide (35 amino acid residues). The deduced N-terminal moiety of chitinase A showed sequence homology with the chitin-binding domain of chitinase F from Streptomyces coelicolor and chitinase 30 from Streptomyces olivaceoviridisis. The C-terminal moiety also showed high sequence similarity to the catalytic domain of several Streptomyces family 19 chitinases as well as that of chitinase I of B. circulans KA-304. Recombinant chitinase A was expressed in Escherichia coli Rosetta-gami B (DE 3). The properties of the recombinant enzyme were almost the same as those of chitinase A purified from a culture filtrate of S. cyaneus SP-27. The recombinant enzyme was superior to B. circulans KA-304 chitinase I not only in respect to protoplast forming activity in a mixture containing alpha-1,3-glucanase, but also to antifungal activity and powder chitin-hydrolyzing activity.  相似文献   

10.
A spent refinery processing catalyst was physically and chemically characterized, and subjected to one-step and two-step bioleaching processes using Aspergillus niger. During bioleaching of the spent catalysts of various particle sizes ("as received", 100-150 microm, <37 microm, and x =2.97 (average) microm) and pulp densities, the biomass dry weight and pH were determined. The corresponding leach liquor was analysed for excreted organic acids along with heavy metal values extracted from the catalyst. Chemical characterization of the spent catalyst confirmed the presence of heavy metal including Al (33.3%), Ni (6.09%) and Mo (13.72%). In general, the presence of the spent catalyst caused a decrease in the biomass yield and an increase in oxalic acid secretion by A. niger. The increase in oxalic acid secretion with a decrease in the catalyst particle size (up to <37 microm) led to corresponding increase in the extraction of metal values. The highest extraction of metal values from the spent catalyst (at 1% w/v pulp density and particle size <37 microm) were found to be 54.5% Al, 58.2% Ni and 82.3% Mo in 60 days of bioleaching. Oxalic acid secretion by A. niger in the presence of the spent catalyst was stimulated using 2-[N-Morpholino]ethanesulfonic acid (MES) buffer (pH 6), which resulted in comparable metal extraction (58% Al, 62.8% Ni and 78.9% Mo) in half the time required by the fungus in the absence of the buffer. Spent medium of A. niger grown in the absence and in the presence of MES buffer were found to leach almost similar amounts of Al and Ni, except Mo for which the spent medium of buffered culture was significantly more effective than the non-buffered culture. Overall, this study shows the possible use of bioleaching for the extraction of metal resources from spent catalysts. It also demonstrated the advantages of buffer-stimulated excretion of organic acids by A. niger in bioleaching of the spent catalyst.  相似文献   

11.
Sourdough lactic acid bacteria were selected for antifungal activity by a conidial germination assay. The 10-fold-concentrated culture filtrate of Lactobacillus plantarum 21B grown in wheat flour hydrolysate almost completely inhibited Eurotium repens IBT18000, Eurotium rubrum FTDC3228, Penicillium corylophilum IBT6978, Penicillium roqueforti IBT18687, Penicillium expansum IDM/FS2, Endomyces fibuliger IBT605 and IDM3812, Aspergillus niger FTDC3227 and IDM1, Aspergillus flavus FTDC3226, Monilia sitophila IDM/FS5, and Fusarium graminearum IDM623. The nonconcentrated culture filtrate of L. plantarum 21B grown in whole wheat flour hydrolysate had similar inhibitory activity. The activity was fungicidal. Calcium propionate at 3 mg ml(-1) was not effective under the same assay conditions, while sodium benzoate caused inhibition similar to L. plantarum 21B. After extraction with ethyl acetate, preparative silica gel thin-layer chromatography, and chromatographic and spectroscopic analyses, novel antifungal compounds such as phenyllactic and 4-hydroxy-phenyllactic acids were identified in the culture filtrate of L. plantarum 21B. Phenyllactic acid was contained at the highest concentration in the bacterial culture filtrate and had the highest activity. It inhibited all the fungi tested at a concentration of 50 mg ml(-1) except for P. roqueforti IBT18687 and P. corylophilum IBT6978 (inhibitory concentration, 166 mg ml(-1)). L. plantarum 20B, which showed high antimold activity, was also selected. Preliminary studies showed that phenyllactic and 4-hydroxy-phenyllactic acids were also contained in the bacterial culture filtrate of strain 20B. Growth of A. niger FTDC3227 occurred after 2 days in breads started with Saccharomyces cerevisiae 141 alone or with S. cerevisiae and Lactobacillus brevis 1D, an unselected but acidifying lactic acid bacterium, while the onset of fungal growth was delayed for 7 days in bread started with S. cerevisiae and selected L. plantarum 21B.  相似文献   

12.
In the present study the relationship between oxidative stress and elevated culture temperature was examined in an industrially relevant fungal culture, Aspergillus niger B1-D. For the first time, both the intracellular levels of the main stressor species (superoxide radical [O(2) (.-)]) and activities of cellular defensive enzymes (superoxide dismutase [SOD], catalase [CAT], and glutathione peroxide [GPx]) were quantified at varying temperature (25, 30, 35, 40 degrees C) to more fully characterize culture response in different growth phases. Elevated culture temperature led to increased O(2) (.-) levels in various culture phases. In the exponential phase this was due to an enhanced generation of O(2) (.-), whereas in stationary phase a decreased dismutation rate may also have contributed. CAT activities generally increased with culture temperature, whereas GPx activity changed little as temperature rose, indicating that GPx played only a minor role in destroying H(2)O(2) in this A. niger. The combination of elevated temperature (35 degrees C) and increased O(2) supply (50% enrichment) led to decreased levels of O(2) (.-) compared to the cultivation at 35 degrees C gassed with air, probably due to enhanced activity of the alternative fungal respiratory pathway. Our findings indicate that while elevated cultivation temperature does clearly induce oxidative stress events, mechanistically, it does so by a rather more complex route than previous studies indicate. Elevated temperature caused a marked disparity in the activities of SOD and CAT, very distinct from the integrated increase in activity of these enzymes in response to oxidative stress.  相似文献   

13.
A chitinase was purified from the culture filtrate of Streptomyces thermoviolaceus OPC-520. The enzyme showed a high optimum temperature (70 to 80 degrees C), a high optimum pH level (8.0 to 10.0), and heat stability. This enzyme showed high sequence homology with chitinases from Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

14.
An enzyme that has both beta-1,4-glucanase and chitosanase activities was found in the culture medium of the soil bacterium Lysobacter sp. IB-9374, a high lysyl endopeptidase-producing strain. The enzyme was purified to homogeneity from the culture filtrate using five purification steps and designated Cel8A. The purified Cel8A had a molecular mass of 41 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A pH optimum of 5.0 was found for the beta-1,4-glucanase activity, and pH optima of 5.0 and 7.0 were found for the chitosanase activity. Nucleotide sequencing of the Cel8A gene yielded a deduced amino acid sequence that comprises a 33-amino acid, N-terminal signal peptide and a mature enzyme consisting of a 381-residue polypeptide with a predicted molecular mass of 41,241 Da. The amino acid sequence of the Cel8A, which contains the catalytic module of glycosyl hydrolase family 8, is homologous to beta-1,3-1,4-D-glucanase from Bacillus circulans WL-12 and endoglucanase N-257 from B. circulans KSM-N257.  相似文献   

15.
The xylanase gene of Bacillus circulans Teri-42 was cloned in both B. subtilis and Escherichia coli. The enzyme activity was almost 87% higher in B. subtilis (pBA7) than in E. coli (pAQ4). No cellulase activity was detected in the clones, B. subtilis (pBA7) and E. coli (pAQ4). Approximately 1120 U (80%) of the xylanase was secreted extracellularly by the clone B. subtilis (pBA7) as compared to 79 U (88%) excreted in E. coli (pAQ4). In B. subtilis (pBA7) the optimal xylanase activity was at pH 7.0 and 50 degrees C, which was the same as that of the parent B. circulans Teri-42. The recombinant xylanase in B. subtilis was more stable at higher temperatures than the parent B. circulans Teri-42. Purification of xylanase from the clone B. subtilis (pBA7) showed a 71 kDa polypeptide similar to that observed in B. circulans Teri-42.  相似文献   

16.
17.
Three acidophilic enrichment consortium were developed from mine water sample of copper mine site at Khetri, India were compared for their copper leaching efficiency. Out of these one was mesophilic (35 degrees C) and two were moderately thermophilic (50 degrees C). Consortia were named as mesophilic acidophilic chemolithotrophic consortia (MACC), thermophilic acidophilic chemolithotrophic consortia (TACC), and Sulfobacillus acidophilic consortia (SAC). Copper extraction ability of both the thermophilic consortia (77-78% extraction) was almost double to that of mesophilic consortia (40% extraction) at 10% pulp density after 55 days. Both the thermophilic consortia were equally effective in leaching of other metals like Ni, Co, Zn, Mn. After 55 days, the percentage of extractions of copper by TACC was 76, 74, 67, 48 and 45 at 5%, 10%, 15%, 20% and 30% pulp density, respectively. Total number of bacteria was maximum at 5% pulp density which decreases with increase in pulp density. Sulfobacillus-like bacteria were seen in the Sulfobacillus enrichment cultures. Moderately thermophilic consortia proved to be better in leaching performance than the mesophilic counterpart.  相似文献   

18.
X-ray diffraction analysis revealed that pentlandite and chalcopyrite were the prominent mineral phases in a South African sulfidic nickel ore concentrate that hosted nickel and copper. Cobalt was found to be closely associated with the nickel-bearing pentlandite phase of the ore sample. Microbial batch leaching experiments designed according to a central composite design model were run for 15 days in a shaking incubator (150 rpm) at a constant temperature (30°C) with variations in experimental parameters like ore pulp density, particle size, bacterial inoculum, pH of the culture medium, and residence time. Quadratic mathematical models were developed to predict the rate of metal extractions. The suitability of the model of the microbial leaching process was confirmed from normal probability curves. An analysis of variance indicated that the residence time, pulp density of the ore, and particle size were the most significant factors. Bacterial inoculum size hardly showed any effect on the total metal extractions. Maximum nickel (82%), cobalt (76%) and copper (25.6%) extractions were achieved under optimum conditions, operated for 15 days at pulp density of 2% and particle size of ?75 µm at pH 1.5.  相似文献   

19.
In the present study, we used a recombinant filamentous fungus strain, Aspergillus niger B1-D, as a model system, and investigated the antioxidant defences in this organism. Our findings indicate that pretreatment with low concentrations of H(2)O(2) completely prevents killing by this oxidant at high concentrations. It shows that A. niger adapts to exposure to H(2)O(2) by reducing growth and inducing a number of antioxidant enzyme activities, including superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, of which the induction of catalase is the most pronounced. Moreover the decline of these antioxidant enzymes activities after H(2)O(2) detoxification, coincides with recommencement of growth. Results from monitoring the extracellular H(2)O(2) concentration clearly indicate a very rapid detoxification rate for H(2)O(2) in adapted A. niger cultures. A mathematical model predicts only very low concentrations of intracellular H(2)O(2) accumulating in such cultures. Our results also show that glutathione plays a role in the oxidative defence against H(2)O(2) in A. niger. On addition of H(2)O(2), the intracellular pool of glutathione increases while the redox state of glutathione becomes more oxidized.  相似文献   

20.
A photoautotrophic cultivation of green algae Scenedesmus cells was used for the removal of nitric oxide (NO) from a model flue gas mixture. In an attempt to improve the solubility of NO in the culture broth, the addition of Fe(II)EDTA to the cultivation was investigated. The addition of Fe(II)EDTA greatly enhanced NO-dissolution in the culture broth and subsequently increased the algal-uptake of NO. NO was assimilated as a source of nitrogen for the growth of Scenedesmus cells since there was a steady increase in cell density with no other nitrogen source in the culture except the incoming NO. 40–45% of NO removal was maintained for more than 12 days with the addition of 5 mM Fe(II)EDTA in a 1-L air-lift type photobioreactor system fed with 300 ppm of NO gas at a rate of 0.3 wm. However, the NO-dissolution-enhancing capacity of Fe(II)EDTA did not reach its full potential due to its oxidation to Fe(III)EDTA, possibly induced by molecular oxygen that evolved from algal photosynthesis, and subsequent loss of chelating capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号