首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin‐dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35?/? (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell‐specific conditional Cdk5/p35 knockout (L7‐p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota‐rod test, and performed electrophysiological recordings to assess long‐term synaptic plasticity. Our analyses showed that Purkinje cell‐specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long‐term synaptic plasticity was observed at the parallel fiber‐Purkinje cell synapse in L7‐p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long‐term synaptic plasticity.

  相似文献   


2.
The serine/threonine protein phosphatase protein phosphatase 1 (PP1) is known to play an important role in learning and memory by mediating local and downstream aspects of synaptic signaling, but how PP1 activity is controlled in different forms of synaptic plasticity remains unknown. We find that synaptic N-methyl-d-aspartate (NMDA) receptor stimulation in neurons leads to activation of PP1 through a mechanism involving inhibitory phosphorylation at Thr320 by Cdk5. Synaptic stimulation led to proteasome-dependent degradation of the Cdk5 regulator p35, inactivation of Cdk5, and increased auto-dephosphorylation of Thr320 of PP1. We also found that neither inhibitor-1 nor calcineurin were involved in the control of PP1 activity in response to synaptic NMDA receptor stimulation. Rather, the PP1 regulatory protein, inhibitor-2, formed a complex with PP1 that was controlled by synaptic stimulation. Finally, we found that inhibitor-2 was critical for the induction of long-term depression in primary neurons. Our work fills a major gap regarding the regulation of PP1 in synaptic plasticity.  相似文献   

3.
Alzheimer's disease (AD) is one of the most common causes of neurodegenerative diseases in the elderly. The accumulation of amyloid‐β (Aβ) peptides is one of the pathological hallmarks of AD and leads to the impairments of synaptic plasticity and cognitive function. The transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel, is involved in synaptic plasticity and memory. However, the role of TRPV1 in AD pathogenesis remains largely elusive. Here, we reported that the expression of TRPV1 was decreased in the brain of APP23/PS45 double transgenic AD model mice. Genetic upregulation of TRPV1 by adeno‐associated virus (AAV) inhibited the APP processing and Aβ deposition in AD model mice. Meanwhile, upregulation of TRPV1 ameliorated the deficits of hippocampal CA1 long‐term potentiation (LTP) and spatial learning and memory through inhibiting GluA2‐containing α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) endocytosis. Furthermore, pharmacological activation of TRPV1 by capsaicin (1 mg/kg, i.p.), an agonist of TRPV1, dramatically reversed the impairments of hippocampal CA1 LTP and spatial learning and memory in AD model mice. Taken together, these results indicate that TRPV1 activation effectively ameliorates cognitive and synaptic functions through inhibiting AMPAR endocytosis in AD model mice and could be a novel molecule for AD treatment.  相似文献   

4.
Fischer A  Sananbenesi F  Pang PT  Lu B  Tsai LH 《Neuron》2005,48(5):825-838
While deregulation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neurodegenerative diseases, its precise role in synaptic plasticity and memory remains elusive. Proteolytic cleavage of p35, a regulatory subunit of Cdk5, by calpain results in the generation of the truncated p25 protein, which causes hyperactivation of Cdk5. Using region-specific and inducible transgenic mice, we show that transiently increased p25 expression in the hippocampus enhanced long-term potentiation (LTP) and facilitated hippocampus-dependent memory. Moreover, p25 expression increased the number of dendritic spines and synapses. Importantly, enhanced memory achieved by a transient expression of p25 followed by its repression did not cause neurodegeneration. In contrast, prolonged p25 production caused severe cognitive deficits, which were accompanied by synaptic and neuronal loss and impaired LTP. Our data suggest a role for p25 in synaptic plasticity, synaptogenesis, learning, and memory and provide a model whereby deregulation of a plasticity factor can contribute to neurodegeneration.  相似文献   

5.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that has been implicated in learning, synaptic plasticity, neurotransmission, and numerous neurological disorders. We previously showed that conditional loss of Cdk5 in adult mice enhanced hippocampal learning and plasticity via modulation of calpain-mediated N-methyl-D-aspartic acid receptor (NMDAR) degradation. In the present study, we characterize the enhanced synaptic plasticity and examine the effects of long-term Cdk5 loss on hippocampal excitability in adult mice. Field excitatory post-synaptic potentials (fEPSPs) from the Schaffer collateral CA1 subregion of the hippocampus (SC/CA1) reveal that loss of Cdk5 altered theta burst topography and enhanced post-tetanic potentiation. Since Cdk5 governs NMDAR NR2B subunit levels, we investigated the effects of long-term Cdk5 knockout on hippocampal neuronal excitability by measuring NMDAR-mediated fEPSP magnitudes and population-spike thresholds. Long-term loss of Cdk5 led to increased Mg2+-sensitive potentials and a lower threshold for epileptiform activity and seizures. Biochemical analyses were performed to better understand the role of Cdk5 in seizures. Induced-seizures in wild-type animals led to elevated amounts of p25, the Cdk5-activating cofactor. Long-term, but not acute, loss of Cdk5 led to decreased p25 levels, suggesting that Cdk5/p25 may be activated as a homeostatic mechanism to attenuate epileptiform activity. These findings indicate that Cdk5 regulates synaptic plasticity, controls neuronal and behavioral stimulus-induced excitability and may be a novel pharmacological target for cognitive and anticonvulsant therapies.  相似文献   

6.
Although the roles of cyclin-dependent kinase 5 (Cdk5) in neurodevelopment and neurodegeneration have been studied extensively, regulation of Cdk5 activity has remained largely unexplored. We report here that glutamate, acting via NMDA or kainate receptors, can induce a transient Ca(2+)/calmodulin-dependent activation of Cdk5 that results in enhanced autophosphorylation and proteasome-dependent degradation of a Cdk5 activator p35, and thus ultimately down-regulation of Cdk5 activity. The relevance of this regulation to synaptic plasticity was examined in hippocampal slices using theta burst stimulation. p35(-/-) mice exhibited a lower threshold for induction of long-term potentiation. Thus excitatory glutamatergic neurotransmission regulates Cdk5 activity through p35 degradation, and this pathway may contribute to plasticity.  相似文献   

7.
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase with a multitude of functions. Although Cdk5 is widely expressed, it has been studied most extensively in neurons. Since its initial characterization, the fundamental contribution of Cdk5 to an impressive range of neuronal processes has become clear. These phenomena include neural development, dopaminergic function and neurodegeneration. Data from different fields have recently converged to provide evidence for the participation of Cdk5 in synaptic plasticity, learning and memory. In this review, we consider recent data implicating Cdk5 in molecular and cellular mechanisms underlying synaptic plasticity. We relate these findings to its emerging role in learning and memory. Particular attention is paid to the activation of Cdk5 by p25, which enhances hippocampal synaptic plasticity and memory, and suggests formation of p25 as a physiological process regulating synaptic plasticity and memory.  相似文献   

8.
Protease‐activated receptor‐1 (PAR1) is an unusual G‐protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1?/? mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1?/? mice have deficits in hippocampus‐dependent memory. We also show that while PAR1?/? mice have normal baseline synaptic transmission at Schaffer collateral‐CA1 synapses, they exhibit severe deficits in N‐methyl‐d ‐aspartate receptor (NMDAR)‐dependent long‐term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR‐mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR‐dependent processes subserving memory formation and synaptic plasticity.  相似文献   

9.
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The termination of GABA transmission is through the action of a family of membrane proteins, called GABA transporters (GAT1-4). It is well established that GABA system is involved in the modulation of memory. Our previous study showed that homozygous GAT1(-/-) mice exhibited impaired hippocampus-dependent learning and memory. To evaluate the impact of endogenous reduced GABA reuptake on mice cognitive behaviors, the ability of learning and memory of heterozygous GAT1(+/-) mice was detected by the passive avoidance paradigm and Morris water maze. The hole board paradigm was also used to measure changes in anxiety-related behavior or exploratory behavior in such mice. As one form of synaptic plasticity, long-term potentiation was recorded in the mouse hippocampal CA1 area. We found that GAT1(+/-) mice displayed increased learning and memory, decreased anxiety-like behaviors, and highest synaptic plasticity compared with wild-type and homozygous GAT1(-/-) mice. Our results suggest that a moderate reduction in GAT1 activity causes the enhancement of learning and memory in mice.  相似文献   

10.
Integrins are heterodimeric transmembrane cell adhesion receptors that are essential for a wide range of biological functions via cell–matrix and cell–cell interactions. Recent studies have provided evidence that some of the subunits in the integrin family are involved in synaptic and behavioral plasticity. To further understand the role of integrins in the mammalian central nervous system, we generated a postnatal forebrain and excitatory neuron‐specific knockout of α8‐integrin in the mouse. Behavioral studies showed that the mutant mice are normal in multiple hippocampal‐dependent learning tasks, including a T‐maze, non‐match‐to‐place working memory task for which other integrin subunits like α3‐ and β1‐integrin are required. In contrast, mice mutant for α8‐integrin exhibited a specific impairment of long‐term potentiation (LTP) at Schaffer collateral–CA1 synapses, whereas basal synaptic transmission, paired‐pulse facilitation and long‐term depression (LTD) remained unaffected. Because LTP is also impaired in the absence of α3‐integrin, our results indicate that multiple integrin molecules are required for the normal expression of LTP, and different integrins display distinct roles in behavioral and neurophysiological processes like synaptic plasticity.  相似文献   

11.
Hippocampal synaptic plasticity and learning are strongly regulated by metabotropic glutamate receptors (mGluRs) and particularly by mGluR5. Here, we investigated the mechanisms underlying mGluR5-modulation of these phenomena. Prolonged pharmacological blockade of mGluR5 with MPEP produced a profound impairment of spatial memory. Effects were associated with 1) a reduction of mGluR1a-expression in the dentate gyrus; 2) impaired dentate gyrus LTP; 3) enhanced CA1-LTP and 4) suppressed theta (5-10 Hz) and gamma (30-100 Hz) oscillations in the dentate gyrus. Allosteric potentiation of mGluR1 after mGluR5 blockade significantly ameliorated dentate gyrus LTP, as well as suppression of gamma oscillatory activity. CA3-lesioning prevented MPEP effects on CA1-LTP, suggesting that plasticity levels in CA1 are driven by mGluR5-dependent synaptic and network activity in the dentate gyrus. These data support the hypothesis that prolonged mGluR5-inactivation causes altered hippocampal LTP levels and network activity, which is mediated in part by impaired mGluR1-expression in the dentate gyrus. The consequence is impairment of long-term learning.  相似文献   

12.
LaFerla FM  Kitazawa M 《Neuron》2005,48(5):711-712
Elevated activity of the Cdk5/p25 complex has been implicated in the pathogenesis of Alzheimer's disease. The report by Fischer and colleagues in this issue of Neuron describes a dichotomous role for the activator protein p25 in synaptic plasticity, learning, and memory, whereby transient expression in transgenic mice produces beneficial effects, but prolonged expression is detrimental. This work demonstrates the complexity of Cdk5/p25 in neuronal function and shows that dysregulation of a factor involved in plasticity can cause neurodegeneration.  相似文献   

13.
14.
A major goal of learning and memory research is to correlate the function of molecules with the behaviour of organisms. The beautiful laminar structure of the cerebellar cortex lends itself to the study of synaptic plasticity, because its clearly defined patterns of neurons and their synapses form circuits that have been implicated in simple motor behaviour paradigms. The best understood in terms of molecular mechanism is the parallel fibre-Purkinje cell synapse, where presynaptic long-term potentiation and postsynaptic long-term depression and potentiation finely tune cerebellar output. Our understanding of these forms of plasticity has mostly come from the electrophysiological and behavioural analysis of knockout mutant mice, but more recently the knock-in of synaptic molecules with mutated phosphorylation sites and binding domains has provided more detailed insights into the signalling events. The present review details the major forms of plasticity in the cerebellar cortex, with particular attention to the membrane trafficking and intracellular signalling responsible. This overview of the current literature suggests it will not be long before the involvement of the cerebellum in certain motor behaviours is fully explained in molecular terms.  相似文献   

15.
Guan JS  Su SC  Gao J  Joseph N  Xie Z  Zhou Y  Durak O  Zhang L  Zhu JJ  Clauser KR  Carr SA  Tsai LH 《PloS one》2011,6(9):e25735
Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation.  相似文献   

16.
Age-associated deficits in learning and memory are closely correlated with impairments of synaptic plasticity. Analysis of N-methyl-D-aspartate receptor (NMDAr)-dependent long-term potentiation (LTP) in CA1 hippocampal slices indicates that the glial-derived neuromodulator D-serine is required for the induction of synaptic plasticity. During aging, the content of D-serine and the expression of its synthesizing enzyme serine racemase are significantly decreased in the hippocampus. Impaired LTP and NMDAr-mediated synaptic potentials in old rats are rescued by exogenous D-serine. These results highlight the critical role of glial cells and presumably astrocytes, through the availability of D-serine, in the deficits of synaptic mechanisms of learning and memory that occur in the course of aging.  相似文献   

17.
The anterior cingulate cortex (ACC) is critical for brain functions including learning, memory, fear and pain. Long-term synaptic potentiation (LTP), a cellular model for learning and memory, has been reported in the ACC neurons. Unlike LTP in the hippocampus and amygdala, two key structures for memory and fear, little is known about the synaptic mechanism for the expression of LTP in the ACC. Here we use whole-cell patch clamp recordings to demonstrate that cingulate LTP requires the functional recruitment of GluR1 AMPA receptors; and such events are rapid and completed within 5-10 min after LTP induction. Our results demonstrate that the GluR1 subunit is essential for synaptic plasticity in the ACC and may play critical roles under physiological and pathological conditions.  相似文献   

18.
Selenium is an essential micronutrient that function through selenoproteins. Selenium deficiency results in lower concentrations of selenium and selenoproteins. The brain maintains it's selenium better than other tissues under low-selenium conditions. Recently, the selenium-containing protein selenoprotein P (Sepp) has been identified as a possible transporter of selenium. The targeted disruption of the selenoprotein P gene (Sepp1) results in decreased brain selenium concentration and neurological dysfunction, unless selenium intake is excessive However, the effect of selenoprotein P deficiency on the processes of memory formation and synaptic plasticity is unknown. In the present studies Sepp1(-/-) mice and wild type littermate controls (Sepp1(+/+)) fed a high-selenium diet (1 mg Se/kg) were used to characterize activity, motor coordination, and anxiety as well as hippocampus-dependent learning and memory. Normal associative learning, but disrupted spatial learning was observed in Sepp1(-/-) mice. In addition, severe alterations were observed in synaptic transmission, short-term plasticity and long-term potentiation in hippocampus area CA1 synapses of Sepp1(-/-) mice on a 1 mg Se/kg diet and Sepp1(+/+) mice fed a selenium-deficient (0 mg Se/kg) diet. Taken together, these data suggest that selenoprotein P is required for normal synaptic function, either through presence of the protein or delivery of required selenium to the CNS.  相似文献   

19.
Ataxia has been associated with abnormalities in neuronal differentiation and migration, which are regulated by Cyclin-dependent kinase 5 (Cdk5). The cerebellum of mice lacking Cdk5 or its activator, p35, resembles those of ataxic reeler and scrambler mice, suggesting that Cdk5 may contribute to ataxic pathology. As with other ataxic mice, the pogo/pogo mouse shows aberrant cerebellar tyrosine hydroxylase (TH) expression. Since Cdk5 phosphorylates and upregulates TH expression, we sought to analyze (i) Cdk5 activity in the pogo cerebellum, which exhibits abnormal TH expression, and (ii) TH expression in the cerebellum of p35-/- and p39-/- mice, which display reduced Cdk5 activity. Interestingly, we found that increased TH expression in the pogo cerebellum coincided with reduced Cdk5 activity. However, reduced Cdk5 activity in both p35-/- and p39-/- cerebellum did not correspond to defects in TH expression. Together, these suggest that abnormal TH expression in the cerebellum might be regulated by mechanisms other than Cdk5 activity.  相似文献   

20.
The importance of long-term synaptic plasticity as a cellular substrate for learning and memory is well established. By contrast, little is known about how learning and memory are regulated by voltage-gated ion channels that integrate synaptic information. We investigated this question using mice with general or forebrain-restricted knockout of the HCN1 gene, which we find encodes a major component of the hyperpolarization-activated inward current (Ih) and is an important determinant of dendritic integration in hippocampal CA1 pyramidal cells. Deletion of HCN1 from forebrain neurons enhances hippocampal-dependent learning and memory, augments the power of theta oscillations, and enhances long-term potentiation (LTP) at the direct perforant path input to the distal dendrites of CA1 pyramidal neurons, but has little effect on LTP at the more proximal Schaffer collateral inputs. We suggest that HCN1 channels constrain learning and memory by regulating dendritic integration of distal synaptic inputs to pyramidal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号