首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influenza virus surface glycoprotein hemagglutinin (HA) is responsible for viral attachment to sialic acid-containing host cell receptors and it facilitates the initial stage of viral infection. In the present study, we isolated an RNA aptamer specific to the glycosylated receptor-binding domain of the HA protein (gHA1) after 12 cycles of the systematic evolution of ligands by exponential enrichment procedure (SELEX), and we then investigated if the selected aptamer suppresses viral infection in host cells. Nitrocellulose filter binding and enzyme-linked immunosorbent assay (ELISA) experiments revealed that 1 RNA aptamer, HA12-16, bound specifically to the gHA1 protein. Cell viability assay showed that the HA12-16 RNA aptamer suppressed viral infection in host cells by enhancing cell viability. Immunofluorescence microscopic analysis further demonstrated that the HA12-16 RNA aptamer suppresses viral attachment to host cells by neutralizing the receptor-binding site of influenza virus HA. These results indicate that the isolated RNA aptamer can be developed as an antiviral reagent against influenza through appropriate therapeutic formulation.  相似文献   

2.
The hemagglutinin (HA) spike glycoprotein of influenza virus catalyzes a low pH-induced membrane fusion event which releases the viral genome into the host cell cytoplasm. To study the fusion mechanism in more detail, we have prepared the ectodomain of HA in water-soluble form by treating virus particles with bromelain. Under mildly acidic conditions (pH less than or equal to 5.8), the ectodomain undergoes a conformational change which we found to be biochemically and immunologically equivalent to that in native viral HA. It became sensitive to proteinase K, it exposed new antigenic epitopes in its HA1 chain, and it acquired amphiphilic properties, notably the ability to bind to liposomes. The attachment to liposomes exhibited the same pH dependence and rapid kinetics as the conformational change and was mediated by HA2. The nature of the attachment resembled that of an integral membrane protein except that the bound HA was partially removed by base. As observed for virus fusion, attachment is independent of divalent cations and lipid composition. Temperature was found to be a critical parameter only with dimyristoylphosphatidycholine vesicles where attachment was partially blocked below the major phase transition. These and other results obtained indicated that the low pH-induced conformational change in the isolated ectodomain is equivalent to that occurring in intact viral HA, and that its attachment to liposomes can serve as a model for the initial stages in the HA-induced membrane fusion reaction.  相似文献   

3.
Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.  相似文献   

4.
The influenza surface glycoprotein hemagglutinin (HA) binds to sialylglycoproteins and sialylglycolipids on the surface of host cells. These sialyl‐glycans, usually linked to galactose in either α2,6 or α2,3 configurations, are the receptors for the viral HA, the binding to which promotes viral attachment, membrane fusion, and internalization of the virus. This review examines all of the available receptor binding data on the influenza B HA and provides a structure recognition perspective for the receptor binding preferences of influenza B virus HA regional and egg‐adapted variants. Overall, the review serves as an up‐to‐date compendium of the literature binding data, and the presented discussions assist the reader in reaching a consensus understanding of the receptor specificity determinants for the influenza B HA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Avian influenza is an acute viral respiratory disease caused by RNA viruses of the family Orthomyxoviridae. The influenza A virus subtype H5 can cause severe illness and results in almost 100% mortality rate among livestock. Hemagglutinin (HA) present in the virus envelope plays an essential role in the initiation of viral infection. In this study, we investigated the efficacy of using HA as a target for antiviral therapy through nucleic acid aptamers. After purification of the receptor binding domain (HA1) of HA protein, activity of recombinant HA1 was confirmed by using hemagglutination assay. We selected RNA aptamer candidates after 15 rounds of iterative Systematic Evolution of Ligands by EXponential enrichment (SELEX) targeting the biologically active HA protein. The selected RNA aptamer HAS15-5, which specifically binds to HA1, exhibited significant antiviral efficacy according to the results of a hemagglutination inhibition assay using egg allantoic fluids harboring the virus. Thus, the RNA aptamer HAS15-5, which acts by blocking and inhibiting the receptor-binding domain of viral HA, can be developed as a novel antiviral agent against type H5 avian influenza virus.  相似文献   

6.
Viral entry inhibitors are of great importance in current efforts to develop a new generation of anti-influenza drugs. Inspired by the discovery of a series of pentacyclic triterpene derivatives as entry inhibitors targeting the HA protein of influenza virus, we designed and synthesized 32 oleanolic acid (OA) analogues in this study by conjugating different amino acids to the 28-COOH of OA. The antiviral activity of these compounds was evaluated in vitro. Some of these compounds revealed impressive anti-influenza potencies against influenza A/WSN/33 (H1N1) virus. Among them, compound 15a exhibited robust potency and broad antiviral spectrum with IC50 values at the low-micromolar level against four different influenza strains. Hemagglutination inhibition (HI) assay and docking experiment indicated that these OA analogues may act in the same way as their parent compound by interrupting the interaction between HA protein of influenza virus and the host cell sialic acid receptor via binding to HA, thus blocking viral entry.  相似文献   

7.
Members of the pentraxin family, including PTX3 and serum amyloid P component (SAP), have been reported to play a role in innate host defence against a range of microbial pathogens, yet little is known regarding their antiviral activities. In this study, we demonstrate that human SAP binds to human influenza A virus (IAV) strains and mediates a range of antiviral activities, including inhibition of IAV-induced hemagglutination (HA), neutralization of virus infectivity and inhibition of the enzymatic activity of the viral neuraminidase (NA). Characterization of the anti-IAV activity of SAP after periodate or bacterial sialidase treatment demonstrated that α(2,6)-linked sialic acid residues on the glycosidic moiety of SAP are critical for recognition by the HA of susceptible IAV strains. Other proteins of the innate immune system, namely human surfactant protein A and porcine surfactant protein D, have been reported to express sialylated glycans which facilitate inhibition of particular IAV strains, yet the specific viral determinants for recognition of these inhibitors have not been defined. Herein, we have selected virus mutants in the presence of human SAP and identified specific residues in the receptor-binding pocket of the viral HA which are critical for recognition and therefore susceptibility to the antiviral activities of SAP. Given the widespread expression of α(2,6)-linked sialic acid in the human respiratory tract, we propose that SAP may act as an effective receptor mimic to limit IAV infection of airway epithelial cells.  相似文献   

8.
Influenza A virus glycoprotein hemagglutinin (HA) binds to host cell surface sialic acid (SA)-terminated sugars in glycoproteins to initiate viral entry. It is thought that avian influenza viruses preferentially bind to N-acetylneuraminic acid α3 (NeuAcα3) sugars, while human influenza viruses exhibit a preference for NeuAcα6-containing sugars. Thus, species-specific SA(s) is one of the determinants in viral host tropism. The SA binding pocket of the HA1 subunit has been extensively studied, and a number of residues important for receptor binding have been identified. In this study, we examined the potential roles of seven highly conserved HA surface-located amino acid residues in receptor binding and viral entry using an H5 subtype. Among them, mutant Y161A showed cell-type-dependent viral entry without obvious defects in HA protein expression or viral incorporation. This mutant also displayed dramatically different ability in agglutinating different animal erythrocytes. Oligosaccharide binding analysis showed that substituting alanine at Y161 of HA changed the SA binding preference from NeuAc to N-glycolylneuraminic acid (NeuGc). Rescued mutant Y161A viruses demonstrated a 5- to 10-fold growth defect, but they were robust in viral replication and plaque forming ability. Our results demonstrate that Y161 is a critical residue involved in recognition of different SA species. This residue may play a role in determining influenza virus host tropism.  相似文献   

9.
Influenza A viruses are enveloped, segmented negative single-stranded RNA viruses, capable of causing severe human respiratory infections. Currently, only two types of drugs are used to treat influenza A infections, the M2 H+ ion channel blockers (amantadine and rimantadine) and the neuraminidase inhibitors (NAI) (oseltamivir and zanamivir). Moreover, the emergence of drug-resistant influenza A virus strains has emphasized the need to develop new antiviral agents to complement or replace the existing drugs. Influenza A virus has on the surface a glycoprotein named hemagglutinin (HA) which due to its important role in the initial stage of infection: receptor binding and fusion activities of viral and endosomal membranes, is a potential target for new antiviral drugs. In this work we designed nine peptides using several bioinformatics tools. These peptides were derived from the HA1 and HA2 subunits of influenza A HA with the aim to inhibit influenza A virus infection. The peptides were synthetized and their antiviral activity was tested in vitro against several influenza A viral strains: Puerto Rico/916/34 (H1N1), (H1N1)pdm09, swine (H1N1) and avian (H5N2). We found these peptides were able to inhibit the influenza A viral strains tested, without showing any cytotoxic effect. By docking studies we found evidence that all the peptides were capable to bind to the viral HA, principally to important regions on the viral HA stalk, thus could prevent the HA conformational changes required to carry out its membranes fusion activity.  相似文献   

10.
Annual influenza epidemics and occasional pandemics pose a severe threat to human health. Host cell factors required for viral spread but not for cellular survival are attractive targets for novel approaches to antiviral intervention. The cleavage activation of the influenza virus hemagglutinin (HA) by host cell proteases is essential for viral infectivity. However, it is unknown which proteases activate influenza viruses in mammals. Several candidates have been identified in cell culture studies, leading to the concept that influenza viruses can employ multiple enzymes to ensure their cleavage activation in the host. Here, we show that deletion of a single HA-activating protease gene, Tmprss2, in mice inhibits spread of mono-basic H1N1 influenza viruses, including the pandemic 2009 swine influenza virus. Lung pathology was strongly reduced and mutant mice were protected from weight loss, death and impairment of lung function. Also, after infection with mono-basic H3N2 influenza A virus body weight loss and survival was less severe in Tmprss2 mutant compared to wild type mice. As expected, Tmprss2-deficient mice were not protected from viral spread and pathology after infection with multi-basic H7N7 influenza A virus. In conclusion, these results identify TMPRSS2 as a host cell factor essential for viral spread and pathogenesis of mono-basic H1N1 and H3N2 influenza A viruses.  相似文献   

11.
A wide range of host cellular signal transduction pathways can be stimulated by influenza virus infection. Some of these signal transduction pathways induce the host cell’s innate immune response against influenza virus, while others are essential for efficient influenza virus replication. This review examines the cellular signaling induced by influenza virus infection in host cells, including host pattern recognition receptor (PRR)-related signaling, protein kinase C (PKC), Raf/MEK/ERK and phosphatidylinositol- 3-kinase (PI3K)/Akt signaling, and the corresponding effects on the host cell and/or virus, such as recognition of virus by the host cell, viral absorption and entry, viral ribonucleoprotein (vRNP) export, translation control of cellular and viral proteins, and virus-induced cell apoptosis. Research into influenza virus-induced cell signaling promotes a clearer understanding of influenza virus-host interactions and assists in the identification of novel antiviral targets and antiviral strategies.  相似文献   

12.
Staufen1 (Stau1), a host cellular protein, along with non-structural protein 1 (NS1), an influenza viral protein, associate with each other during influenza viral infection and down-regulation of Stau1 by RNA interference reduces the yield of influenza A virus, suggesting a role for Stau1 in viral replication. In order to develop a new tool to control influenza A virus, we determined the specific regions of Staufen1 protein involved in the interaction with NS1. The linker between RBD3 and 4 was isolated as the binding regions. Expression of RBD3L, the linker including RBD3, inhibited the interaction between Stau1 and NS1, reducing the colocalization of the two proteins in the cytosol and nucleus regions. In addition, yield of influenza A virus in RBD3L-expressing cells was significantly reduced 36 h after infection. These results suggest that disruption of the Stau1-NS1 interaction can be used to control replication of influenza A virus, thereby providing a target for the development of antiviral drugs.  相似文献   

13.
Broadly neutralizing antibodies targeting a highly conserved region in the hemagglutinin (HA) stem protect against influenza infection. Here, we investigate the protective efficacy of a protein (HB36.6) computationally designed to bind with high affinity to the same region in the HA stem. We show that intranasal delivery of HB36.6 affords protection in mice lethally challenged with diverse strains of influenza independent of Fc-mediated effector functions or a host antiviral immune response. This designed protein prevents infection when given as a single dose of 6.0 mg/kg up to 48 hours before viral challenge and significantly reduces disease when administered as a daily therapeutic after challenge. A single dose of 10.0 mg/kg HB36.6 administered 1-day post-challenge resulted in substantially better protection than 10 doses of oseltamivir administered twice daily for 5 days. Thus, binding of HB36.6 to the influenza HA stem region alone, independent of a host response, is sufficient to reduce viral infection and replication in vivo. These studies demonstrate the potential of computationally designed binding proteins as a new class of antivirals for influenza.  相似文献   

14.
Currently, entry inhibitors contribute immensely in developing a new generation of anti-influenza virus drugs. Our earlier studies have identified that 3-O-β-chacotriosyl ursolic acid (1) could inhibit H5N1 pseudovirus by targeting hemagglutinin (HA). In the present study, a series of C-28 modified pentacyclic triterpene saponins via conjugation with a series of amide derivatives were synthesized and their antiviral activities against influenza A/Duck/Guangdong/99 virus (H5N1) in MDCK cells were evaluated. The SARs analysis of these compounds revealed that introduction of certain amide structures at the 17-COOH of ursolic acid could significantly enhance both their antiviral activity and selective index. This study indicated that the attachment of the methoxy group or Cl atom to the phenyl ring at the ortho- or para-position was crucial to improve inhibitory activity. Mechanism studies demonstrated that these title triterpenoids could bind tightly to the viral envelope HA to block the attachment of viruses to host cells, which was consistent with docking studies.  相似文献   

15.
The HA protein is responsible for influenza virus attachment and the subsequent fusion of viral and cellular membranes. Antigenic drift is driven by an accumulation of point mutations in the HA. And, the receptor-binding specificity of HA is responsible for the host range restriction of the virus. In April 2009, large outbreaks of novel H1N1 influenza in human population were reported from North America. The pandemic H1N1 virus originated from swine influenza virus. Evolutionary process of the pandemic virus after its introduction to human population remains to be clarified. We conducted phylogenetic analyses constructing a phylogenetic tree for and calculating site-by-site selective pressures in the HA gene. Phylogenetic tree showed that pandemic viruses were not clustered clearly by their geographical location or isolation time in the phylogenetic tree. The virus has been circulating the globe extensively with multiple introductions into most geographical areas. We found 3 sites positively selected in the HA gene for pandemic H1N1 virus. Among them, position 206 is located in an antigenic site. We did not find significant negative selection on any of the receptor binding sites. The virus has been evolving under unique selective pressure.  相似文献   

16.
近年来,由于流感病毒(influenza virus)不可预测的局部流行和有可能引发全球大流行,其一直是研究的热点课题之一.流感病毒表面糖蛋白血凝素(hemagglutinin,HA)特异识别宿主细胞表面的糖链受体是流感病毒感染宿主、进而复制并继续传播的生物学基础.影响流感病毒宿主特异性的两个主要因素是HA自身的变化(包括基因突变、重组、糖基化位点数量和糖基化位置的变化)和宿主细胞表面糖链受体的变化(包括糖链受体的类型、分布和分子构象的改变)等.因此准确掌握这些信息有助于人们进一步加强对流感病毒的防控.本文主要从糖组学角度概述了流感病毒识别糖链受体的分子机制,重点介绍流感病毒宿主细胞表面糖链受体的研究进展.  相似文献   

17.
18.
Cao Z  Meng J  Li X  Wu R  Huang Y  He Y 《PloS one》2012,7(5):e38126
The continued spread of highly pathogenic avian influenza (HPAI) H5N1 virus underscores the importance of effective antiviral approaches. AVFluIgG01 is a potent and broad-reactive H5N1-neutralizing human monoclonal antibody (mAb) showing great potential for use either for therapeutic purposes or as a basis of vaccine development, but its antigenic epitope and neutralization mechanism have not been finely characterized. In this study, we first demonstrated that AVFluIgG01 targets a novel conformation-dependent epitope in the globular head region of H5N1 hemagglutinin (HA). By selecting mimotopes from a random peptide library in combination with computational algorithms and site-directed mutagenesis, the epitope was mapped to three conserved discontinuous sites (I-III) that are located closely at the three-dimensional structure of HA. Further, we found that this HA1-specific human mAb can efficiently block both virus-receptor binding and post-attachment steps, while its Fab fragment exerts the post-attachment inhibition only. Consistently, AVFluIgG01 could inhibit HA-mediated cell-cell membrane fusion at a dose-dependent manner and block the acquisition of pH-induced protease sensitivity. These results suggest a neutralization mechanism of AVFluIgG01 by simultaneously blocking viral attachment to the receptors on host cells and interfering with HA conformational rearrangements associated with membrane fusion. The presented data provide critical information for developing novel antiviral therapeutics and vaccines against HPAI H5N1 virus.  相似文献   

19.
Avian influenza viruses (AIV), the causative agent of avian flu or bird flu, cause widespread morbidity and mortality in poultry. The symptoms of the disease range from mild flu like symptoms to death. These viruses possess two important surface glycoproteins, namely hemagglutinin (HA) and neuraminidase (NA) against which neutralizing antibodies are produced. Due to the highly mutative nature of the genes which encode these proteins, the viruses often confer resistance to the current anti-viral drugs making the prevention and treatment of infection challenging. In our laboratory, we have recently identified a novel anti-viral peptide (P1) against the AIV H9N2 from a phage displayed peptide library. This peptide inhibits the replication of the virus in ovo and in vitro by its binding to the HA glycoprotein. In the current study, we demonstrate that the peptide inhibits the virus replication by preventing the attachment to the host cell but it does not have any effect on the viral fusion. The reduction in the viral nucleoprotein (NP) expression inside the host cell has also been observed during the peptide (P1) treatment. This novel peptide may have the potential to be developed as a therapeutic agent for the treatment and control of avian influenza virus H9N2 infections.  相似文献   

20.
Seasonal influenza virus infections cause annual epidemics and sporadic pandemics. These present a global health concern, resulting in substantial morbidity, mortality and economic burdens. Prevention and treatment of influenza illness is difficult due to the high mutation rate of the virus, the emergence of new virus strains and increasing antiviral resistance. Animal models of influenza infection are crucial to our gaining a better understanding of the pathogenesis of and host response to influenza infection, and for screening antiviral compounds. However, the current animal models used for influenza research are not amenable to visualization of host-pathogen interactions or high-throughput drug screening. The zebrafish is widely recognized as a valuable model system for infectious disease research and therapeutic drug testing. Here, we describe a zebrafish model for human influenza A virus (IAV) infection and show that zebrafish embryos are susceptible to challenge with both influenza A strains APR8 and X-31 (Aichi). Influenza-infected zebrafish show an increase in viral burden and mortality over time. The expression of innate antiviral genes, the gross pathology and the histopathology in infected zebrafish recapitulate clinical symptoms of influenza infections in humans. This is the first time that zebrafish embryos have been infected with a fluorescent IAV in order to visualize infection in a live vertebrate host, revealing a pattern of vascular endothelial infection. Treatment of infected zebrafish with a known anti-influenza compound, Zanamivir, reduced mortality and the expression of a fluorescent viral gene product, demonstrating the validity of this model to screen for potential antiviral drugs. The zebrafish model system has provided invaluable insights into host-pathogen interactions for a range of infectious diseases. Here, we demonstrate a novel use of this species for IAV research. This model has great potential to advance our understanding of influenza infection and the associated host innate immune response.KEY WORDS: Influenza, Zebrafish, Virus, Innate immunity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号