首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A method is suggested to determine the most probable values of the angles Φ, Ψ of the protein backbone by the data on the availability and absence of d connectivities in the two-dimensional nuclear Overhauser enhancement spectra. In view of this, the dependences of the protonproton distances in dipeptide units of L-amino acid residues on the dihedral angles Φ, Ψ, χ, are considered and the conformational states of amino acid residues of the proteins with the known spatial structure are analysed statistically. The potentialities of the method are assessed with the aid of model spectral nuclear magnetic resonance (NMR) parameters obtained from the X-ray data for the bovine pancreatic trypsin inhibitor and avian pancreatic polypeptide.

It is shown that the developed procedure of structural interpretation of the NMR data allows one to correctly reproduce the local conformation of the protein backbone. The obtained backbone conformation may serve as a starting point to build and refine molecular three- dimensional structure.  相似文献   

2.
The molecular conformation of the monoclinic crystalline polymorph of prostaglandin A1 has been determined by X-ray diffraction techniques. The space group is P21 with a = 13.637 (2), b = 7.567 (1), I c = 10.576 (2) Å, β = 107.37 (3)°; Dc = 1.073 g·cm−3 for Z = 2. The molecular conformation is characterized by the nearly parallel arrangement of the C1–C7 and C13–C20 side chains, with a general flattening of the overall structure when compared with the orthorhombic polymorph. The cyclopentenone moiety assumes a C8 envelope conformation with C8 and O9 displaced +0.29 Å and −0.18 Å from the C9–C10=C11–C12 plane respectively. Concerted, small variations of the torsion angles, primarily about the C8–C12, C14–C15 and C16–C17 bonds, bring the monoclinic and orthorhombic conformations into coincidence.  相似文献   

3.
Summary The influence of the internal dynamics of two polypeptides comprising transmembrane -helix A or two -helices A and B of bacterioopsin on experimentally accessible 15N NMR relaxation rates was investigated by molecular dynamics (MD) simulations, combined with more simple mechanic considerations. Model-free order parameters and correlation times of internal motions [Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559] were calculated for these models. It was found that both peptides exhibit two types of internal motions of the amide bonds, on the pico- and nanosecond time scales, affecting 15N NMR relaxation. The fast fluctuations are local and correspond to the librational motions of the individual N–H vectors in an effective potential of atoms of the surrounding matrix. In contrast, the motions on the nanosecond time scale imply concerted collective vibrations of a large number of atoms and could be represented as bending oscillation of -helices, strongly overdamped by the ambient solvent. A few other molecular mechanisms of slow internal motion were found, such as local distortions of the -helices (e.g., -aneurysm), delocalized distortions of the -helical backbone, as well as oscillations of the tilt angle between the axes of the -helices A and B. The results are compared with 15N NMR relaxation data measured for the (1–36)bacterioopsin and (1–71)bacterioopsin polypeptides in chloroform-methanol (1:1) and in SDS micelles [Orekhov, V.Yu., Pervushin, K.V. and Arseniev, A.S. (1994) Eur. J. Biochem., 219, 887–896].Abbreviations C2 baeterioopsin-(7–63)-peptide - sA bacterioopsin-(7–32)-peptide - CPMG Carr-Purcell-Meiboom-Gill - MD molecular dynamics - rmsd root-mean-square deviation  相似文献   

4.
GTPase activating protein (GAP) is a known regulator of ras-p21 activity and is a likely target of ras-induced mitogenic signaling. The domains of GAP that may be involved in this signaling are unknown. In order to infer which domains of GAP may be involved, we have performed molecular dynamics calculations of GAP complexed to wild-type and oncogenic (Val 12–containing) ras-p21, both bound to GTP. We have computed and superimposed the average structures for both complexes and find that there are four domains of GAP that undergo major changes in conformation: residues 821–851, 917–924, 943–953, and 1003–1020. With the exception of the 943–953 domain, none of these domains is involved in making contacts with ras-p21, and all of them occur on the surface of the protein, making them good candidates for effector domains. In addition, three ras-p21 domains undergo major structural changes in the oncogenic p21-GAP complex: 71–76 from the switch 2 domain; 100–108, which interacts with SOS, jun and jun kinase (JNK); and residues 122–138. The change in conformation of the 71–76 domain appears to be induced by changes in conformation in the switch 1 domain (residues 32–40) and in the adjacent domain involving residues 21–31. In an accompanying paper, we present results from microinjection of peptides corresponding to each of these domains into oocytes induced to undergo maturation by oncogenic ras-p21 and by insulin-activated wild-type cellular p21 to determine whether these domain peptides may be involved in ras signaling through GAP.  相似文献   

5.
Summary The spatial structure of a synthetic 32-residue polypeptide, an analog of the membrane-spanning segment B (residues 34–65) of bacterioopsin ofHalobacterium halobium, incorporated into perdeuterated sodium dodecyl sulfate micelles, was determined from1H NMR data. The structure determination included the following steps: (1) local sructure analysis; (2) structure calculations using the distance geometry program DIANA; (3) systematic search for energetically allowed side-chain rotamers consistent with NOESY crosspeak volumes; (4) random generation of peptide conformations in allowed conformational space. The obtained structure has a righ-handed -helicl region from Lys41 to Leu62 with a kink of 27 at Pro50. The C-cap Gly63 adopts a conformation with =87±6, =43±10o typical to a left-handed helix. The N-terminal part (residues 34–40) is exposed to the aqueous phase and lacks an ordered conformation. The secondary structure of segment B in micelles is consistent with the high-resolution electron cryomicroscopy model of bacteriorhodopsin (Henderson et al. (1990)J. Mol. Biol.,213, 899–929).  相似文献   

6.
Abstract

Native, general sequence B-form DNA in uniaxially oriented fibers is a ten-fold helix with identical antiparallel strands: this is to say the molecular symmetry is 2 2 101. The diffraction patterns indicate that local variations, however significant, must be modest. This is true also for the lithium salt of calf thymus DNA in fibers that are polycrystalline as well as oriented. The contents of its orthorhombic unit cells are arranged with P212121 symmetry which permits the molecular symmetry to be merely two-fold. The molecular structure of DNA in such conditions resembles, conformationally and molecularly, that of B-type DNA in oligonucleotide single crystals and in oriented polycrystalline fibers of polyoligonucleotides, and therefore provides a basis for evaluating the variations that may be due to sequence effects in polyoligonucleotides in fibers and oligonucleotides in single crystals.  相似文献   

7.
(1→3)-β-d-Glucan isolated from Poria cocos was phosphorylated to obtain a series of phosphorylated derivatives. Their structures, weight-average molecular weights (Mw), and chain conformation were studied by 13C NMR, 31P NMR, static laser light scattering and viscometry. The experimental results revealed that the phosphorylated glucan existed as relatively extended flexible chain in 0.15 M NaCl aqueous solution, and exhibited relatively strong inhibition against S-180 tumor cell in vitro and in vivo. In vivo, the fractions with relatively high molecular weight at low dosage exhibited stronger anti-tumor activities. The results revealed that the molecular weights and molecular conformation could influence the anti-tumor activities. The molecular weight ranging from 2.6 × 104 to 26.8 × 104 and the extended chain conformation were beneficial to enhance the anti-tumor activity, as a result of the increasing of the interaction between polysaccharide and immune system.  相似文献   

8.
15N-1H 1J couplings were measured at 500 MHz and 800 MHz for 15N enriched oxidized cytochrome b 562 from E. coli. The magnetic field dependence of 70 1J values, which could be measured without signal overlap, shows that there is a molecular magnetic anisotropy which provides partial molecular orientation in the magnetic field and, consequently, residual dipolar couplings (rdc). The rdc were used as further constraints to improve the existing structure [Arnesano et al. (1999) Biochemistry, 38, 8657–8670] with a protocol which uses the rhombic anisotropy [Banci et al. (1998) J. Am. Chem. Soc., 120, 12903–12909]. The overall large molecular magnetic anisotropy has been found to be determined by both the low spin iron (III) and the four helix bundle structure magnetic susceptibility anisotropy contributions.  相似文献   

9.
The chaperone SecB, which is involved in protein export inEscherichia coli, is shown by circular dichroism measurements to contain a high content of-pleated sheets. Prediction of the secondary structure of SecB is in good agreement with the observed content of-sheet. In accordance with the previous studies in which changes in conformation were assessed indirectly [Randall (1992),Science 257, 241–245], here we show that the conformation of SecB changes with the concentration of salt in the milieu and also when SecB interacts with a peptide ligand.Abbreviations ANS 1-anilino-naphthalene-8-sulfonate - CD circular dichroism - NMR nuclear magnetic resonance - CCA convex constraint analysis  相似文献   

10.
A reliable automated approach for assignment of NOESY spectra would allow more rapid determination of protein structures by NMR. In this paper we describe a semi-automated procedure for complete NOESY assignment (SANE, Structure Assisted NOE Evaluation), coupled to an iterative procedure for NMR structure determination where the user is directly involved. Our method is similar to ARIA [Nilges et al. (1997) J. Mol. Biol., 269, 408–422], but is compatible with the molecular dynamics suites AMBER and DYANA. The method is ideal for systems where an initial model or crystal structure is available, but has also been used successfully for ab initio structure determination. Use of this semi-automated iterative approach assists in the identification of errors in the NOE assignments to short-cut the path to an NMR solution structure.  相似文献   

11.
By comparing the average structures, computed using molecular dynamics, of the ras-binding domain of raf (RBD) bound to activated wild-type ras-p21 and its homologous inhibitory protein, rap-1A, we formerly identified three domains of the RBD that changed conformation between the two complexes, residues 62–76, 97–110, and 111–121. We found that one synthetic peptide, corresponding to RBD residues 97–110, selectively inhibited oncogenic ras-p21-induced oocyte maturation. In this study, we performed molecular dynamics on the Val 12-ras-p21-RBD complex and compared its average structure with that for the wild-type protein. We find that there is a large displacement of a loop involving these residues when the structures of the two complexes are compared. This result corroborates our former finding that the RBD 97–110 peptide inhibits only signal transduction by oncogenic ras-p21 and suggests that oncogenic p21 uses this loop to interact with raf in a unique manner.  相似文献   

12.
Summary The conformation of the synthetic 32-residue polypeptide, an analog of the membrane spanning segment B (residues 34-65) ofHalobacterium halobium bacteriobpsin, incorporated into perdeuterated sodium dodecyl sulfate micelles in the presence of trifluoroethanol was investigated by1H NMR spectroscopy. The spectrum resonances were assigned by means of phase-sensitive DQF-COSY, TOCSY and NOESY techniques. Interproton nuclear Overhauser effects and deuterium exchange rates of individual NH groups were derived from two-dimensional NMR spectra. Analysis of the obtained data showed that segment B has a right-handed a-helical stretch from Lys41 to Leu62 with a kink at Pros50. The-helix in the C-terminal part is terminated at Gly63, which adopts a conformation typical of amino acid residues in a left-handed helix. The N-terminal part (residues 34–40) has no ordered conformation. NMR data are provided for comparison of the segment B conformation in the isotropic system of an organic solvent, in SDS micelles and in the purple membrane bacterioopsin. Factors affecting the conformation of membrane spanning segment B in various milieus are discussed.Dedicated to the memory of Professor V.F. Bystrov  相似文献   

13.
Summary A protocol for distance geometry calculation is shown to have excellent sampling properties in the determination of three-dimensional structures of proteins from nuclear magnetic resonance (NMR) data. This protocol uses a simulated annealing optimization employing mass-weighted molecular dynamics in four-dimensional space (Havel, T.F. (1991) Prog. Biophys. Mol. Biol., 56, 43–78). It attains an extremely large radius of convergence, allowing a random coil conformation to be used as the initial estimate for the succeeding optimization process. Computations are performed with four systems of simulated distance data as tests of the protocol, using an unconstrained l-alanine 30mer and three different types of proteins, bovine pancreatic trypsin inhibitor, the -amylase inhibitor Tendamistat, and the N-terminal domain of the 434-repressor. The test of the unconstrained polypeptide confirms that the sampled conformational space is that of the statistical random coil. In the larger and more complicated systems of the three proteins, the protocol gives complete convergence of the optimization without any trace of initial structure dependence. As a result of an exhaustive conformational sampling by the protocol, the intrinsic nature of the structures generated with distance restraints derived from NMR data has been revealed. When the sampled structures are compared with the corresponding X-ray structures, we find that the averages of the sampled structures always show a certain pattern of discrepancy from the X-ray structure. This discrepancy is due to the short distance nature of the distance restraints, and correlates with the characteristic shape of the protein molecule.Abbreviations r.m.s.d. root-mean-square deviation - MD molecular dynamics - NMR nuclear magnetic resonance - NOE nuclear Overhauser enhancement - BPTI bovine pancreatic trypsin inhibitor  相似文献   

14.
Although comparatively little research has been undertaken into the secondary metabolites of bryozoans as compared with those of other marine invertebrates, bryozoans have proven to be an excellent source of novel and/or biologically active compounds. The majority of bryozoan metabolites isolated to date have been alkaloids. In our continuing search for bioactive and/or novel compounds from New Zealand marine bryozoans, we undertook an investigation of an extract of Pterocella vesiculosa (order Cheilostomatida, suborder Ascophorina, family Catenicellidae) which possessed activity against P388 murine leukaemia cells. Two alkaloids, pterocellins A–B (1–2) have been isolated from the bryozoan. The biological activity of these alkaloids was examined including their activities in the in vitro 60 cell line panel and in vivo hollow fibre assays at the National Cancer Institute (NCI). The isolation and characterisation of further pterocellin analogues is currently in progress and tentative structures for two new members of this series, pterocellins C–D (3–4) are proposed, based on NMR and mass spectral data.  相似文献   

15.
Summary We address the question how well proteins can be modelled on the basis of NMR data, when these data are incorporated into the protein model using distance restraints in a molecular dynamics simulation. We found, using HPr as a model protein, that distance restraining freezes the essential motion of proteins, as defined by Amadei et al. [Amadei, A., Linssen, A.B.M. and Berendsen, H.J.C. (1993) Protein Struct. Funct. Genet., 17, 412–425]. We discuss how modelling protocols can be improved in order to solve this problem.  相似文献   

16.
Local molecular properties and their use in predicting reactivity   总被引:1,自引:0,他引:1  
Expressions for the local electron affinity, electronegativity and hardness are derived in analogy to the local ionization energy introduced by Sjoberg, Murray and Politzer. The local polarizability is also defined based on an additive atomic orbital polarizability model that uses Rivail's variational technique. The characteristics of these local properties at molecular surfaces and their relevance to electrophilic aromatic substitution, to SN2 reactivity and to the nucleophilicity of enolate ions are discussed.Figure The local ionization energy at the SES surfaces of methyl benzoate. The color scale ranges from 375 (blue) to 550 kcal mol–1 (red). The blue areas are those for which interaction with an acceptor is most favorable.  相似文献   

17.
Abstract

Ab initio techniques were used to determine the effects of protonation and methylation on cytosine's molecular geometry, molecular affinities, relative stability, and structural rigidity. The geometries of local minima were fully optimized by the gradient procedure at DFT and MP2 levels of theory with the medium size 6–31G(d,p) basis set. The results of energetic analysis indicate that N(3)-methyl-cytosine and C(5)-methyl-cytosine are the most stable derivatives for monocationic and neutral species, respectively. The structural rigidity of each species was assessed by an analysis of normal out-of-plane frequencies, the amplitudes, and by the contribution of internal coordinates to the potential energy distributions. The obtained evidence suggests that methylation increases the overall structural flexibility of cytosine and that all molecules in this study populate a non-planar conformation 50% of the time.  相似文献   

18.
Primary sequences for the remaining two members (GMH2, GMH3) of the group of three major monomeric hemoglobins from the marine annelid Glycera dibranchiata have been obtained. Full sequences of each 147-amino acid globin were achieved with a high degree of confidence using standard Edman technology in combination with molecular mass determinations of the intact globins and of the cyanogen bromide cleavage fragments using electrospray ionization mass spectrometry. When minor assumptions concerning Q/E identities are made these new results indicate the likely correspondence of GMG2 with the protein represented by the first Glycera dibranchiata monomer hemoglobin complete sequence [Imamura et al., (1972), J. Biol. Chem. 247, 2785–2797]. When these new sequences are combined with the previously determined primary sequence for the third major monomer hemoglobin, GMH4 [Alam et al., J. Protein Chem. (1994), 13, 151–164], it becomes clear that these three (GMG2–4) are truly distinct proteins, contrary to previous suggestions. Surprisingly, our results show that none of these three primary sequences is identical to the published sequence of the refined monomer hemoglobin crystal structure protein; however, there is a strong correspondence to the GMG2 sequence. The present sequencing results, in combination with the published GMH4 sequence, confirm the presence of a distal Leu in place of the more commonly encountered distal His in all three of the major monomer hemoglobins isolated in this laboratory and indicate that the unusual B10 Phe occurs only in GMH4. Analysis of the sequences presented here, along with comparison of amino acid content for Glycera dibranchiata monomer hemoglobins isolated from three different laboratories, and comparison of NMR results from two laboratories suggest further correspondences which unify disparate published isolations.  相似文献   

19.
Abstract

X-ray, NMR and molecular modeling studies on cyanonaphthridinomycin (C22 H26N4O5), a DNA binding antibiotic, have been carried out to study the structure, conformation and interactions with DNA. The crystals belong to the space group P21 with the cell dimensions of a = 5.934(1), b = 20.684(4), c = 16.866(3)A γ = 90.9° and Z = 4(two molecules/asymmetric unit). The structure was solved by direct methods and difference Fourier methods and refined to an R value of 0.087 for 4061 reflections. The conformation of the molecule is compared with that of naphthridinomycin. There are differences in the orientation of the methoxyl group and the saturated oxazole ring. 1 and 2D NMR studies have been carried out and the dihedral angles obtained from coupling constants have been compared with those obtained from the crystal structure. Molecular mechanics studies were carried out to obtain the energy minimized structure and its comparison with X-ray and NMR results. Molecular modelling studies were performed to propose models for drug-DNA interactions. Both partial intercalation and groove-binding models have been proposed.  相似文献   

20.
Summary A13C NMR study is reported of the hinge region of an intact mouse monoclonal antibody with a molecular weight of 150 K. Cys, Ile, and Pro analogs of the antibody labeled with13C at the carbonyl carbon were prepared by growing hybridoma cells in the serum-free media. Resonance assignments have been performed as described previously [Kato, K., Matsunaga, C., Igarashi, T., Kim, H., Odaka, A., Shimada, I. and Arata, Y. (1991)Biochemistry,30, 270–278]. The spectral data obtained show that13C NMR can give detailed information about the structure of the hinge region of the intact antibody molecule. Prospects for the future role of13C NMR in the structural analyses of larger proteins are briefly discussed.Dedicated to the memory of Professor V.F. Bystrov  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号