首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on an extensive sampling regime from both nesting populations and bycatch, frequency analyses of mitochondrial (mt) DNA control region haplotypes in the Mediterranean were used to assess the genetic structure and stock composition of the loggerhead sea turtle, Caretta caretta, in different marine fisheries. The analyses show the following. (i) In drifting longline fisheries working in Mediterranean pelagic habitats 53–55% of turtles caught originated from the Mediterranean stock; (ii) In bottom-trawl fisheries all turtle bycatch is derived from this regional stock; (iii) This regional stock contribution to fishery bycatch suggests that the population size of the Mediterranean loggerhead nesting population is significantly larger than previously thought. This is consistent with a recent holistic estimate based on the discovery of a large rookery in Libya. (iv) Present impact of fishery-related mortality on the Mediterranean nesting population is probably incompatible with its long-term conservation. Sea turtle conservation regulations are urgently needed for the Mediterranean fisheries. (v) The significant divergence of mtDNA haplotype frequencies of the Turkish loggerhead colonies define this nesting population as a particularly important management unit. Large immature and adult stages from this management unit seem to be harvested predominantly by Egyptian fisheries. (vi) Combined with other data, our findings suggest that all the nesting populations in the Mediterranean should be considered as management units sharing immature pelagic habitats throughout the Mediterranean (and possibly the eastern Atlantic), with distinct and more localized benthic feeding habitats in the eastern basin used by large immatures and adults. (vii) Between the strict oceanic pelagic and the benthic stages, immature turtles appear to live through an intermediate neritic stage, in which they switch between pelagic and benthic foods.  相似文献   

2.
The depletion of fish stocks from global fisheries has been a long‐standing concern. More recently, incidental catch of non‐target (termed bycatch) vertebrates also has been proposed as a serious conservation issue. Here we present a bycatch assessment for loggerhead and leatherback sea turtles that are incidentally caught by global pelagic longlines. We integrate catch data from over 40 nations and bycatch data from 13 international observer programmes. Despite infrequent rates of encounter, our analyses show that more than 200 000 loggerheads and 50 000 leatherbacks were likely taken as pelagic longline bycatch in 2000. Our analyses suggest that thousands of these turtles die each year from longline gear in the Pacific Ocean alone. Given 80–95% declines for Pacific loggerhead and leatherback populations over the last 20 years, this bycatch level is not sustainable. Adopting a large‐scale, synthetic approach is critical to accurately characterize the influence of global fisheries bycatch on globally distributed and imperilled pelagic vertebrates.  相似文献   

3.
Aim Resources can shape patterns of habitat utilization. Recently a broad foraging dichotomy between oceanic and coastal sites has been revealed for loggerhead sea turtles (Caretta caretta). Since oceanic and coastal foraging sites differ in prey availability, we might expect a gross difference in home‐range size across these habitats. We tested this hypothesis by equipping nine adult male loggerhead sea turtles with GPS tracking devices. Location National Marine Park of Zakynthos (NMPZ) Greece, central and eastern Mediterranean (Adriatic, Ionian and Aegean seas). Methods In 2007, 2008 and 2009, Fastloc GPS‐Argos transmitters were attached to nine male loggerheads. In addition, a Sirtrack PTT unit was attached to one male in 2007. Four of the turtles were tracked on successive years. We filtered the GPS data to ensure comparable data volumes. Route consistency between breeding and foraging sites of the four re‐tracked turtles was conducted. Foraging site home range areas and within site movement patterns were investigated by the fixed kernel density method. Results Foraging home range size ranged between circa 10 km2 at neritic habitats (coastal and open‐sea on the continental shelf) to circa 1000 km2 at oceanic sites (using 90% kernel estimates), the latter most probably reflecting sparsely distributed oceanic prey. Across different years individuals did not follow exactly the same migration routes, but did show fidelity to their previous foraging sites, whether oceanic or neritic, with accurate homing in the final stages of migration. Main conclusions The broad distribution and diverse life‐history strategies of this population could complicate the identification of priority marine protected areas beyond the core breeding site.  相似文献   

4.
Although invasive species often resemble their native counterparts, differences in their foraging and anti-predator strategies may disrupt native food webs. In a California estuary, we showed that regions dominated by native crabs and native whelks have low mortality of native oysters (the basal prey), while regions dominated by invasive crabs and invasive whelks have high oyster mortality and are consequently losing a biologically diverse habitat. Using field experiments, we demonstrated that the invasive whelk’s distribution is causally related to a large-scale pattern of oyster mortality. To determine whether predator–prey interactions between crabs (top predators) and whelks (intermediate consumers) indirectly control the pattern of oyster mortality, we manipulated the presence and invasion status of the intermediate and top trophic levels in laboratory mesocosms. Our results show that native crabs indirectly maintain a portion of the estuary’s oyster habitat by both consuming native whelks (density-mediated trophic cascade) and altering their foraging behavior (trait-mediated trophic cascade). In contrast, invasive whelks are naive to crab predators and fail to avoid them, thereby inhibiting trait-mediated cascades and their invasion into areas with native crabs. Similarly, when native crabs are replaced with invasive crabs, the naive foraging strategy and smaller size of invasive crabs prevents them from efficiently consuming adult whelks, thereby inhibiting strong density-mediated cascades. Thus, while trophic cascades allow native crabs, whelks, and oysters to locally co-exist, the replacement of native crabs and whelks by functionally similar invasive species results in severe depletion of native oysters. As coastal systems become increasingly invaded, the mismatch of evolutionarily based strategies among predators and prey may lead to further losses of critical habitat that support marine biodiversity and ecosystem function. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Ontogenetic changes in diet and foraging behavior ofThalassoma lutescens were examined in shallow reef habitats around Kuchierabu Island, southern Japan. This species mainly took small benthic invertebrates, including gammarids, polychaetes, sipunculids, chitons, crabs, gastropods, pelecypods and urchins from algal mats. Larger fish consumed correspondingly larger prey, although most of the latter were armored with hard exoskeletons, shells or body plates (e.g., crabs, gastropods, pelecypods and urchins). Such hard parts were crushed with the molar-like, pharyngeal teeth which develop with fish growth, allowing exploitation of such larger, hard-bodied prey. Because the densities of larger prey species were relatively low in the initial habitats foraged, larger fish shifted their foraging attention to rock and coral crevices, where the prey species dwelt in greater numbers, as well as foraging over larger areas. Such behavioral changes maintained high foraging efficiency in larger fish.  相似文献   

6.
Most marine turtle species are non-annual breeders and show variation in both the number of eggs laid per clutch and the number of clutches laid in a season. Large levels of inter-annual variation in the number of nesting females have been well documented in green turtle nesting populations and may be linked to environmental conditions. Other species of marine turtle exhibit less variation in nesting numbers. This inter-specific difference is thought to be linked to trophic status. To examine whether individual reproductive output is more variable in the herbivorous green turtle (Chelonia mydas Linneaeus 1758) than the carnivorous loggerhead (Caretta caretta Linneaeus 1758), we examined the nesting of both species in Cyprus over nine seasons. Green turtles showed slower annual growth rates (0.11 cm year−1 curved carapace length (CCL) and 0.27 cm year−1 curved carapace width (CCW)) than loggerhead turtles (0.36 cm year−1 CCL, 0.51 cm year−1 CCW). CCL was highly correlated to mean clutch size in both green (R2=0.51) and loggerhead turtles (R2=0.61) and maximal clutch size of green turtles (R2=0.58). Larger females did not lay a greater number of clutches or have a shorter remigration interval than smaller females of either species. On average, the size of green turtle clutches increased and that of loggerhead turtles decreased as the season progressed. Individual green turtles, however, produced more eggs per clutch through the season to a maximum in the third or fourth clutch. In loggerhead turtles, clutches 1-4 were very similar in size but the fifth clutch was 38% smaller than the first. No individuals of either species were recorded laying more than five clutches. Green turtles may not be able to achieve their maximum reproductive output with respect to clutch size throughout the season, whereas only loggerhead turtles laying five clutches (n=5) appear to become resource depleted. Green turtles nesting in years when large numbers of nests were recorded laid a greater number of clutches than females nesting in years with lower levels of nesting.  相似文献   

7.
Although the Atlantic waters of North America support hundreds of thousands of loggerhead sea turtles ( Caretta caretta ), remarkably little is known regarding their migratory ecology and habitat use. We integrate satellite tracking with remotely sensed oceanographic data to uncover two different migratory strategies used by loggerhead turtles at the northern part of their range. Most turtles travelled from the nesting beach to forage at higher latitudes in summer, before migrating south to wintering grounds in the autumn. Others moved south after nesting to forage for up to 514 days and did not make an autumn migration. Both groups utilized warm waters at the very edge of the Gulf Stream during winter: for southerly turtles obviating seasonal migration, and for northerly turtles minimizing the distance, time and energy required to reach northern areas for subsequent foraging seasons, avoiding lethally cold winter temperatures in inshore waters at the same latitude, and reducing energy costs that would be incurred within the fast-flowing Gulf Stream. Females made long resting dives of up to 7 h 24 min, effectively hibernating during the colder months. Offshore federal waters of the USA constitute a more important habitat for both foraging and wintering turtles than previously appreciated. These areas are potential hotspots for interaction with fisheries and proposed US military training activities and should receive special monitoring efforts to fully assess the extent of overlap.  相似文献   

8.
Large annual fluctuations are seen in breeding numbers in many populations of non-annual breeders. We examined the interannual variation in nesting numbers of populations of green (Chelonia mydas) (n = 16 populations), loggerhead (Caretta caretta) (n = 10 populations), leatherback (Dermochelys coriacea) (n = 9 populations) and hawksbill turtles (Eretmochelys imbricata) (n = 10 populations). Interannual variation was greatest in the green turtle. When comparing green and loggerhead turtles nesting in Cyprus we found that green turtles were more likely to change the interval between laying seasons and showed greater variation in the number of clutches laid in a season. We suggest that these differences are driven by the varying trophic statuses of the different species. Green turtles are herbivorous, feeding on sea grasses and macro-algae, and this primary production will be more tightly coupled with prevailing environmental conditions than the carnivorous diet of the loggerhead turtle.  相似文献   

9.
The loggerhead sea turtle, Caretta caretta, is the most common species of sea turtle nesting in Brazil and is listed as endangered by the IUCN. Our study characterizes the genetic structure of loggerheads in Brazil based on mitochondrial DNA control region variability and presents a hypothesis for the colonization of Brazilian rookeries. We analyzed 329 samples from Brazilian rookeries and an oceanic foraging ground, and we compared our results with previously published data for other loggerhead populations. Brazilian rookeries had four haplotypes, none of which have been reported for rookeries outside Brazil. Six haplotypes were found in the foraging aggregation. The presence of the CC-A4 haplotype at all sampled sites and the low nucleotide diversity suggest a common origin for all rookeries, with CC-A4 being the ancestral haplotype of the Brazilian populations. The occurrence of three haplotypes in the foraging aggregation that are known only from rookeries outside of Brazil is consistent with the transoceanic migratory behavior of loggerheads. Our results indicated that the colonization of Brazilian rookeries probably occurred from the southern USA stock. This recent colonization most likely followed a north to south route along the Brazilian coastline, influenced by the Brazilian warm current. Our results further suggest the existence of two genetic population units of loggerheads in Brazil and corroborate natal homing behavior in loggerheads.  相似文献   

10.
We investigated the factors providing structure to the helminth communities of 182 loggerhead sea turtles, Caretta caretta, collected in 6 localities from Central and Western Mediterranean. Fifteen helminth taxa (10 digeneans, 4 nematodes and 1 acanthocephalan) were identified, of which 12 were specialist to marine turtles; very low numbers of immature individuals of 3 species typical from fish or cetaceans were also found. These observations confirm the hypothesis that phylogenetic factors restrict community composition to helminth species specific to marine turtles. There were significant community dissimilarities between turtles from different localities, the overall pattern being compatible with the hypothesis that parasite communities reflect the ontogenetic shift that juvenile loggerheads undergo from oceanic to neritic habitats. The smallest turtles at the putative oceanic, pelagic-feeding stage harboured only the 2 digenean species that were regionally the most frequent, i.e. Enodiotrema megachondrus and Calycodes anthos; the largest turtles at the putative neritic, bottom-feeding stage harboured 11 helminth taxa, including 3 nematode species that were rare or absent in turtles that fed partially on pelagic prey. Mean species richness per host was low (range: 1.60–1.89) and did not differ between localities. Variance ratio tests indicated independent colonization of each helminth species. Both features are expected in ectothermic and vagrant hosts living in the marine environment.  相似文献   

11.
The integration of satellite telemetry, remotely sensed environmental data, and habitat/environmental modelling has provided for a growing understanding of spatial and temporal ecology of species of conservation concern. The Republic of Cape Verde comprises the only substantial rookery for the loggerhead turtle Caretta caretta in the eastern Atlantic. A size related dichotomy in adult foraging patterns has previously been revealed for adult sea turtles from this population with a proportion of adults foraging neritically, whilst the majority forage oceanically. Here we describe observed habitat use and employ ecological niche modelling to identify suitable foraging habitats for animals utilising these two distinct behavioural strategies. We also investigate how these predicted habitat niches may alter under the influence of climate change induced oceanic temperature rises. We further contextualise our niche models with fisheries catch data and knowledge of fisheries ‘hotspots’ to infer threat from fisheries interaction to this population, for animals employing both strategies. Our analysis revealed repeated use of coincident oceanic habitat, over multiple seasons, by all smaller loggerhead turtles, whilst larger neritic foraging turtles occupied continental shelf waters. Modelled habitat niches were spatially distinct, and under the influence of predicted sea surface temperature rises, there was further spatial divergence of suitable habitats. Analysis of fisheries catch data highlighted that the observed and modelled habitats for oceanic and neritic loggerhead turtles could extensively interact with intensive fisheries activity within oceanic and continental shelf waters of northwest Africa. We suggest that the development and enforcement of sustainable management strategies, specifically multi‐national fisheries policy, may begin to address some of these issues; however, these must be flexible and adaptive to accommodate potential range shift for this species.  相似文献   

12.
Abstract: We deployed pop-up archival transmitting tags on 15 loggerhead sea turtles (Caretta caretta) that had been lightly hooked in the United States pelagic longline fishery and on 10 loggerheads that we dip-netted off the surface to serve as controls in the North Atlantic Ocean. We received data from tags of 10 lightly hooked turtles and 7 control turtles. We used data transmitted by the tags in a known-fate model to estimate annual survival rates and determine if there were differences in survival between the 2 groups. The best model indicates there is no difference in survival between the lightly hooked and control turtles, and the estimated annual survival rate was 0.814 (95% CI = 0.557-0.939). Our results suggest that when all fishing gear is removed lightly hooked turtles may not suffer any additional mortality relative to control turtles.  相似文献   

13.
Marine turtles undergo dramatic ontogenic changes in body size and behavior, with the loggerhead sea turtle, Caretta caretta, typically switching from an initial oceanic juvenile stage to one in the neritic, where maturation is reached and breeding migrations are subsequently undertaken every 2-3 years. Using satellite tracking, we investigated the migratory movements of adult females from one of the world's largest nesting aggregations at Cape Verde, West Africa. In direct contrast with the accepted life-history model for this species, results reveal two distinct adult foraging strategies that appear to be linked to body size. The larger turtles (n = 3) foraged in coastal waters, whereas smaller individuals (n = 7) foraged oceanically. The conservation implications of these findings are profound, with the population compartmentalized into habitats that may be differentially impacted by fishery threats in what is a global fishing hotspot. Although the protection of discrete areas containing coastal individuals may be attainable, the more numerous pelagic individuals are widely dispersed with individuals roaming over more than half a million square kilometers. Therefore, mitigation of fisheries by-catch for sea turtles in the east Atlantic will likely require complex and regionally tailored actions to account for this dichotomous behavior.  相似文献   

14.
Here we report the first observations of the rapa whelk Rapana venosa massively bio-fouling immature green turtles Chelonia mydas. From November 2004 to July 2011, we examined 33 green turtles with rapa whelks attached to their carapaces in Uruguayan waters. The number of attached rapa whelks ranged from 1 to 49 individuals, representing up to 20 % of turtle weight. This previously unrecorded interaction may be of global importance to green turtles conservation because (a) immature green turtles from distant breeding populations utilize insular and coastal waters of the Río de la Plata estuary and Atlantic coast of Uruguay as developmental and foraging habitats and (b) attached whelks may reduce green turtle fitness by reducing buoyancy, increasing drag, and causing severe injuries to the carapace.  相似文献   

15.
Northern Gulf of Mexico (NGoM) loggerheads (Caretta caretta) make up one of the smallest subpopulations of this threatened species and have declining nest numbers. We used satellite telemetry and a switching state-space model to identify distinct foraging areas used by 59 NGoM loggerheads tagged during 2010–2013. We tagged turtles after nesting at three sites, 1 in Alabama (Gulf Shores; n = 37) and 2 in Florida (St. Joseph Peninsula; n = 20 and Eglin Air Force Base; n = 2). Peak migration time was 22 July to 9 August during which >40% of turtles were in migration mode; the mean post-nesting migration period was 23.0 d (±13.8 d SD). After displacement from nesting beaches, 44 turtles traveled to foraging sites where they remained resident throughout tracking durations. Selected foraging locations were variable distances from tagging sites, and in 5 geographic regions; no turtles selected foraging sites outside the Gulf of Mexico (GoM). Foraging sites delineated using 50% kernel density estimation were located a mean distance of 47.6 km from land and in water with mean depth of −32.5 m; other foraging sites, delineated using minimum convex polygons, were located a mean distance of 43.0 km from land and in water with a mean depth of −24.9 m. Foraging sites overlapped with known trawling activities, oil and gas extraction activities, and the footprint of surface oiling during the 2010 Deepwater Horizon oil spill (n = 10). Our results highlight the year-round use of habitats in the GoM by loggerheads that nest in the NGoM. Our findings indicate that protection of females in this subpopulation requires both international collaborations and management of threats that spatially overlap with distinct foraging habitats.  相似文献   

16.
Between-site variation in the diet and foraging behaviour of a fixed-method forager, the Grey Plover Pluvialis squatarola , and a versatile forager, the Whimbrel Numenius phaeopus , was examined and compared at nine tropical and south temperate sites. Grey Plover always foraged in a run-stop-search manner but changed the emphasis of components of this behaviour in response to prey type. Whimbrel foraged tactilely or visually and readily changed foraging speed and habitat. Both species ate a variety of prey species depending on their availability. The diet of Grey Plover was dominated by small prey, polychaetes and crabs, and Whimbrel ate mostly crabs, with Whimbrel being the more specialized in prey choice. The broader diversity of prey types consumed by Grey Plover was attributed to limitations imposed by obligate visual foraging, whereas the flexible foraging behaviour of Whimbrel allowed the latter to concentrate their efforts on the most profitable prey. Grey Plover appeared to have a density upper limit, determined by their stereotyped foraging behaviour. Whimbrel densities varied greatly in response to prey type and foraging method. Foraging effort could not be predicted from measurements of instantaneous daytime energy intake rates, and reasons for the lack of this relationship are discussed.  相似文献   

17.
Twelve loggerhead sea turtle hatchlings (Caretta caretta) were removed from a nest site (A) at the Back Bay National Wildlife Refuge (U.S. Fish and Wildlife Service), Virginia Beach, VA. Hatchlings were distributed among study participants, and raised in captivity for a period of two years. Growth of the loggerheads was recorded weekly by straight-line caliper measurements of carapace lengths as well as measurements of total weights. Growth rates from the present study were much greater than those measured in previous studies. Mean weights for Nest A turtles at 1.5 years ranged from 10.3 to 17.6 kg, with one exceptional individual reaching 20.0 kg. The data from this study provide new insights into the early growth potential of loggerhead sea turtles. How this accelerated development may affect sexual maturity and post-release viability remain to be determined. © 1993 Wiley-Liss, Inc.  相似文献   

18.
During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ∼3–4 months during the nesting period (November–February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53–304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season.  相似文献   

19.
In recent years, the use of intrinsic markers such as stable isotopes to link breeding and foraging grounds of migratory species has increased. Nevertheless, several assumptions still must be tested to interpret isotopic patterns found in the marine realm. We used a combination of satellite telemetry and stable isotope analysis to (i) identify key foraging grounds used by female loggerheads nesting in Florida and (ii) examine the relationship between stable isotope ratios and post-nesting migration destinations. We collected tissue samples for stable isotope analysis from 14 females equipped with satellite tags and an additional 57 untracked nesting females. Telemetry identified three post-nesting migratory pathways and associated non-breeding foraging grounds: (1) a seasonal continental shelf–constrained migratory pattern along the northeast U.S. coastline, (2) a non-breeding residency in southern foraging areas and (3) a residency in the waters adjacent to the breeding area. Isotopic variability in both δ13C and δ15N among individuals allowed identification of three distinct foraging aggregations. We used discriminant function analysis to examine how well δ13C and δ15N predict female post-nesting migration destination. The discriminant analysis classified correctly the foraging ground used for all but one individual and was used to predict putative feeding areas of untracked turtles. We provide the first documentation that the continental shelf of the Mid- and South Atlantic Bights are prime foraging areas for a large number (61%) of adult female loggerheads from the largest loggerhead nesting population in the western hemisphere and the second largest in the world. Our findings offer insights for future management efforts and suggest that this technique can be used to infer foraging strategies and residence areas in lieu of more expensive satellite telemetry, enabling sample sizes that are more representative at the population level.  相似文献   

20.
In most shallow water marine systems, fluid movements vary on scales that may influence local community dynamics both directly, through changes in the abundance of species, and indirectly, by modifying important behaviors of organisms. We examined how differences in current speed affect the outcome of predator-prey interactions for two species of marine benthic predators (knobbed whelks, Busycon carica, and blue crabs, Callinectes sapidus) foraging on two common prey species (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria). The predators differ in their foraging strategies and prey in their potential escape responses. Predation by blue crabs, highly mobile predators/scavengers that rely upon chemical odors transported in the water column to locate prey, could be strongly affected by changes in current speed and turbulent mixing because their foraging strategy relies on a high degree of spatial integration of prey odor plumes. Whelks, slow moving, predatory gastropods that often forage with their bodies buried in the sediment, may be less susceptible to flow-induced distortion of prey odor plumes because their sluggish movements result in a high degree of temporal integration of prey odors. Bay scallops, relatively mobile bivalves capable of rapid short-distance swimming burst, and hard clams, sedentary bivalves, have been shown to respond to varying degrees to predator odors that are dispersed in the water column. Flow regime for the predator-prey experiments was manipulated in situ using large channels. Predation by blue crabs on both juvenile hard clams and bay scallops decreased with increases in water flow (0-12 vs. 0-30 cm s−1). Whelk predation on bay scallops increased with increases in water flow, whereas predation by whelks on hard clams did not differ between flow regimes. For blue crabs movement decreased at periods of high water flow. Because blue crabs locate prey through chemolocation of water-borne cues, which are diluted rapidly at higher flows, decreases in foraging may result from the inability to successfully detect prey at enhanced flows. Differences in predation by whelks could not be explained by a similar mechanism. Visual observations of foraging whelks revealed no differences in whelk behavior between the two flow regimes. The pattern of higher whelk predation on scallops at enhanced flow is likely to be related to a flow-inhibiting ability of scallops to detect predator approach. Thus, flow enhancement interferes with three of the predator-prey systems but the effect on predator success depends on whether the predator or prey is most affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号