首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of salinity on growth, photosynthetic performance and osmotic acclimation was investigated in the eulittoral red algal species Bangiopsis subsimplex (Stylonematophyceae). The strain grew in a broad salinity range between 1 and 70 psu showing optimum growth between 10 and 50 psu. The saturation point Ik of the photosynthesis irradiance curves ranged between 153 and 83 μmol photons m− 2 s− 1 at all salinities and indicates an adaptation of B. subsimplex to moderate radiation conditions. Adjustments on the photosynthetic level (non-photochemical quenching) were sufficient to prevent damage to the photosynthetic apparatus as Fv/Fm values were constantly high (> 0.7) even when grown at the most hypo- and hypersaline conditions. As main low molecular weight carbohydrates, B. subsimplex contains the heteroside digeneaside and the polyol sorbitol. Digeneaside concentration was low and almost unchanged after hypersaline treatment (< 20 μmol g− 1 DW), i.e. it did not play a role in osmotic acclimation. By contrast, sorbitol levels increased linearly from 150 to 380 μmol g− 1 DW with increasing salinities between 5 and 60 psu, indicating its important function as an osmolyte and compatible solute under hypersaline conditions. The data presented are consistent with the natural habitat of B. subsimplex, i.e. the upper eulittoral zone.  相似文献   

2.
Over the course of a growing season (April–October) water quality (water temperature, light, salinity, dissolved oxygen) and reproductive phenology (biomass, production of flowering shoots and seed pods, seed bank densities) were quantified in three Vallisneria americana beds in Nanjemoy Creek, MD, a tributary to the Chesapeake Bay. Clonal production of V. americana biomass increased at all sites when water temperatures rose above 25 °C. Flowering occurred during peak biomass (August–September) and resulted in the production of up to 16,000 seeds m−2 at the end of the growing season. However, observed seed bank densities represented <1% of seed production. Laboratory experiments quantified the effects of dissolved oxygen (0.29–8.00 mg l−1), light (0–160 μmol m2 s−1), temperature (13–29 °C), salinity (0.1–17.4 psu), sediment composition (3–86% sand; 0.9–8.3% sediment organic content), and burial depth (0.2–10 cm) on V. americana seed germination. Germination of V. americana seeds was enhanced (greater overall germination and shorter time to germination) under oxygenated conditions (8.00 mg l−1), temperatures >22 °C, salinities of <1 psu, and in sediments composed of ≤3% organic content and >40% sand. Light (<160 μmol m−2 s−1) and burial depth (0.2–10 cm) had no significant effects on germination. Temperatures most favorable for seed germination (>22 °C) occurred in June, 2 months in the growing season just prior to development of peak vegetative standing stock. Seedlings were therefore at a distinct disadvantage to plants developed from over wintering buds. A lack of viable seed retention and inadequate environmental conditions at critical times in the growing season may be limiting seed germination success and subsequent seedling establishment within V. americana beds in the Chesapeake Bay. However, ungerminated seeds were found to maintain high viability, especially at salinities of 10 psu that can have significant negative effects of shoot growth survival. This suggests that seeds may serve as a source of reproductive material for bed recovery after periods of drought or other stressful conditions in estuarine systems.  相似文献   

3.
Physiological performance (feeding, metabolism, growth and excretion) across a broad range of salinity (5-30 psu) were determined for the benthic amphipod Gammarus oceanicus, a species of marine origin inhabiting brackish waters of the southern Baltic Sea. Feeding rates decreased with increasing salinity, whereas the nutritive absorption efficiency increased. Faeces production and ammonia excretion rates decreased strongly from the lowest to the highest salinity by 60% and 58%, respectively. Increasing salinity was accompanied by a reduction in the metabolic rate from 438 J g− 1 dry wt d− 1 (5.1 mW g− 1) at 5 psu to 245 J g− 1 (2.8 mW g− 1) at 30 psu. Individuals were able to maintain a positive energy balance at all experimental salinities. The greatest values for scope for growth were recorded at the environmental salinity (7 psu) with a mean of 769 J g− 1 dry wt d− 1 (8.7 mW g− 1).  相似文献   

4.
In situ calcification measurements tested the hypothesis that corals from environments (Florida Bay, USA) that naturally experience large swings in pCO2 and pH will be tolerant or less sensitive to ocean acidification than species from laboratory experiments with less variable carbonate chemistry. The pCO2 in Florida Bay varies from summer to winter by several hundred ppm roughly comparable to the increase predicted by the end of the century. Rates of net photosynthesis and calcification of two stress-tolerant coral species, Siderastrea radians and Solenastrea hyades, were measured under the prevailing ambient chemical conditions and under conditions amended to simulate a pH drop of 0.1–0.2 units at bimonthly intervals over a 2-yr period. Net photosynthesis was not changed by the elevation in pCO2 and drop in pH; however, calcification declined by 52 and 50 % per unit decrease in saturation state, respectively. These results indicate that the calcification rates of S. radians and S. hyades are just as sensitive to a reduction in saturation state as coral species that have been previously studied. In other words, stress tolerance to temperature and salinity extremes as well as regular exposure to large swings in pCO2 and pH did not make them any less sensitive to ocean acidification. These two species likely survive in Florida Bay in part because they devote proportionately less energy to calcification than most other species and the average saturation state is elevated relative to that of nearby offshore water due to high rates of primary production by seagrasses.  相似文献   

5.
The seasonal and spatial dynamics of two groups of macroalgae, drift algae and rhizophytes, commonly found in tropical seagrass meadows were studied. The aim of this study was to provide insight into how freshwater discharges may be altering seagrass-dominated nearshore tropical habitats. Species composition, biomass, and percent cover of macroalgae were collected at six Thalassia testudinum König dominated sites within Biscayne Bay, Florida, representing three salinity regimes: canal-influenced, natural sheet-flow, and oceanic conditions. Mean annual salinities in these three regimes correspond to 10, 25 and 35 psu, respectively, with much greater variability in the canal and sheet-flow regimes, than in the oceanic condition. There were distinct changes in the composition of the macroalgal community along this salinity gradient. Drift algae (Chondria spp., Laurencia spp.) were most commonly found at canal-disturbed sites (10–85 g m−2), while rhizophytic calcareous green algae (Halimeda spp., Penicillus spp.) were most abundant at the higher salinity oceanic sites (20–105 g m−2). Seasonal patterns exhibited by the two groups differed also, with drift algae being more abundant in the cooler dry-season months, while rhizophytic algae were more abundant during the warmer wet-season months. These periods of higher abundance correlated with higher growth rates (drift = 2.3% day−1, rhizophytes = 0.85% day−1) measured in representative species for each group. Grazing rates on drift algae were found to be low for tropical habitats and did not differ much between canal (0.44% h−1) and oceanic sites (0.42% h−1).  相似文献   

6.
The dominant seagrass in Florida Bay, Thalassia testudinum Banks ex König, is a stenohaline species with optimum growth around marine salinity (30-40 PSU). Previous studies have examined the responses of mature short shoots of T. testudinum to environmental stresses. Our goal was to assess responses of seedlings to changes in water chemistry in Florida Bay that might occur as part of the Comprehensive Everglades Restoration Plan (CERP). Specifically, we examined seedling survival, growth, photosynthesis, respiration and osmolality in response to hypo- and hyper-salinity conditions, as well as possible synergistic effects of depleted and elevated ammonium concentrations. The study was conducted in mesocosms on T. testudinum seedlings collected during August 2003 near Florida Bay. Hyper- and hypo-saline conditions were detrimental to the fitness of T. testudinum seedlings. Plants at 0 and 70 PSU exhibited 100% mortality and a significant decrease in survival was observed in the 10, 50 and 60 PSU treatments. Increased levels of ammonium further decreased growth in the lower salinity treatments. Seedlings in 30 and 40 PSU had the greatest growth. Quantum yield and relative electron transport rate, measured using PAM fluorometry, showed a decrease in photosynthetic performance on either side of the 30-40 PSU optimum. Tissue osmolality decreased significantly with decreased salinity but tissue remained consistently hyperosmotic to the media across all salinity treatments. Maintaining negative water potential and allocating more energy to osmoregulation may decrease the productivity of this species in salinity-stress conditions. Our results suggest that the salinity-tolerance limits of this seagrass at the seedling stage are not as broad as those reported for mature plants. Increased fresh water inflow, especially if co-occurring with an increase in water-column ammonium, could negatively affect successful recruitment of T. testudinum seedlings in northern regions of Florida Bay.  相似文献   

7.
《Acta Oecologica》1999,20(4):259-265
The excessive growth of opportunistic macroalgae in estuaries and other coastal areas, characterised by enormous values of vegetal biomass in the form of dense mats, is a common and widespread picture nowadays. In such conditions, macroalgae completely dominate the nutrient dynamics in the ecosystem and function as high quality food for the microbial, meio- and macrofaunal communities. Due to their important role in the nutrient pathways of the ecosystems, it becomes essential to obtain new information on variables and processes that regulate the bloom formation of these primary producers. The Mondego estuary (west Portugal) is a eutrophic estuary, where usually macroalgae of the genera Enteromorpha seasonally bloom. Nevertheless, in years with high precipitation characterised by a significant increase of the freshwater runoff to the system, no Enteromorpha blooms are observed. Possible explanations for this are related to the reduction of light in the water column, high water speed, high sediment turbulence and low salinity values. Thus, because the decrease in salinity seemed an important feature during such periods, a set of experiments were conducted, to evaluate to what extent the growth of Enteromorpha intestinalis (the most abundant species in the Mondego estuary) is affected by fluctuations in salinity and, particularly, by low salinity values. In the laboratory, the growth rate of E. intestinalis was tested against a range of salinity, from 0 to 32 psu. E. intestinalis showed the lowest growth rates at extreme low salinity values (≤ 3 psu) and for salinity ≤ 1 psu, the algae died. Growth rates at salinity lower than 5 psu and higher than 25 psu were also low, when compared with growth between salinity of 15 and 20 psu, where E. intestinalis showed the highest growth rates. These results agree with the field observations and suggest that, in the Mondego estuary, salinity is an important external parameter to control the growth of E. intestinalis, which has important ecological implications for the system.  相似文献   

8.
The specific metabolic rate (SMR) and haemolymph osmolality (HO) of the mud crab Rhithropanopeus harrisii Gould, 1841 from Baltic brackish waters were measured at a habitat salinity of 7 psu (T = 15 °C, full air saturation) and after step-wise acclimation to a salinity range of 3-27 psu. Values of SMR at 7 psu varied between 0.40 and 3.89 J g− 1 WW h− 1 (n = 25, wet weight range 0.051-1.142 g) and were significantly (p < 0.05) related to the specimen's wet weight (WW) according to the power regression SMR = 0.94 WW 0.41 (R2 = 0.68). The SMR of females did not differ significantly (p > 0.05) from those of males. When exposed to higher salinities, the SMR of R. harrisii decreased significantly (p < 0.05) and reached a minimum value at 23 psu (0.55 ± 0.05 J g− 1 WW h− 1, n = 6). Mean haemolymph osmolality at 7 psu amounted to 581 ± 26 mOsm kg− 1 (n = 5) and was 2.9 times higher than that of the external medium. R. harrisii hyperosmoregulated its body fluids up to 24 psu (727 mOsm kg− 1) at which salinity the isosmotic point was reached.  相似文献   

9.
《Aquatic Botany》2007,86(1):14-24
The long-term sustainability of seagrasses in the subtropics and tropics depends on their ability to adapt to shifts in salinity regimes, particularly in light of present increases in coastal freshwater extractions and future climate change scenarios. Although there are major concerns world-wide on increased salinity in coastal estuaries, there is little quantitative information on the specific upper salinity tolerance of tropical and subtropical seagrass species. We examined seagrass hypersalinity tolerance under two scenarios: (1) when salinity is raised rapidly simulating a pulsed event, such as exposure to brine effluent, and (2) when salinity is raised slowly, characteristic of field conditions in shallow evaporative basins; the first in hydroponics (Experiments I and II) and the second in large mesocosms using intact sediment cores from the field (Experiment III). The three tropical seagrass species investigated in this study were highly tolerant of hypersaline conditions with a slow rate of salinity increase (1 psu d−1). None of the three species elicited total shoot mortality across the range of salinities examined (35–70 psu over 30 days exposures); representing in situ exposure ranges in Florida Bay, a shallow semi-enclosed subtropical lagoon with restricted circulation. Based on stress indicators, shoot decline, growth rates, and PAM florescence, all three species were able to tolerate salinities up to 55 psu, with Thalassia testudinum (60 psu) and Halodule wrightii (65 psu) eliciting a slightly higher salinity threshold than Ruppia maritima (55 psu). However, when salinity was pulsed, without a slow osmotic adjustment period, threshold levels dropped 20 psu to approximately 45 psu for T. testudinum. While we found these three seagrass species to be highly tolerant of high salinity, and conclude that hypersalinity probably does not solely cause seagrass dieoff events in Florida Bay, high salinity can modify carbon and O2 balance in the plant, potentially affecting the long-term health of the seagrass community.  相似文献   

10.
Suaeda salsa is an annual halophyte which produces two morphologically distinct types of seeds on the same plant. The main purpose of this study was to investigate growth responses of S. salsa plants to different levels of NaCl and nitrate nitrogen, and its significance from the viewpoint of photosynthetic physiology. In a pot experiment, we sowed seeds belonging to the two morphs into a substrate with three salinity and three nutrient levels. Plants derived from brown seeds grew well at moderate salinity (300 mmol L−1 NaCl). Shoot weight of plants from black seeds gradually decreased with the increase of salinity. Plants derived from both seed morphs had the same growth rates under similar nitrogen levels. Plant growth status was generally related to chlorophyll content and photosynthetic rates. Our study shows that plants grown from the two different seed morphs of S. salsa exhibit different salt tolerance, but have similar responses to nitrate nitrogen. This is the first report on different responses to salinity and nitrogen availability in plants with heteromorphic seeds.  相似文献   

11.
Brackish-water and fresh-water bryozoans produce asexually derived dormant propagules that allow survival of unfavourable conditions and provide a potential means of dispersal. The propagules of brackish-water ctenostome bryozoans are called hibernacula. We monitored the life-cycle of the brackish-water ctenostome Victorella pavida Saville Kent, 1870 in its natural habitat and investigated, in laboratory cultures, the influence of temperature and salinity on the production and germination of hibernacula and on subsequent colony growth. V. pavida is a protected species in the UK, where its only locality is at Swanpool lagoon, Falmouth. Colonies were collected from Swanpool monthly from January 2004 to January 2005. Hibernaculum germination appeared to be triggered by increased water temperature (c. 13 °C) in the lagoon in March and April. In culture, germination was triggered by transfer from 5 °C to 19 °C in a range of salinities; subsequent colony growth was affected by salinity, with strongest growth at 13, 18 and 36 psu, and reduced growth at 5 and 9 psu. At 3.5 psu, hibernacula germinated, but there was no further development. At 36 psu there was an initial lag in growth, but after 30 d the colonies were comparable with those kept at 18 psu. Hibernaculum formation by colonies occurred from June to October, with production increasing towards October. Hibernacula appear not to have long-term viability but merely to permit survival from one year to the next. The results suggest that any changes in the hydrographic regime at Swanpool could have significant consequences for the survival of V. pavida.  相似文献   

12.
Thermotolerance (CTMax) was determined in L. vannamei in three salinities and five acclimation temperatures 20, 23, 26, 29 and 32 °C. In white shrimp, the CTMax was not significantly affected by salinity (P>0.05). A direct relationship was obtained between CTMax and acclimation temperature. The end point of the CTMax in L. vannamei exposed to different combinations of temperature and salinity was defined as the loss of the righting response (LRR). The acclimation response ratio (ARR) for the juveniles of white shrimp ranged from 0.42 to 0.49; values in agreement with other crustaceans from tropical and sub tropical climates. The osmotic pressure of the hemolymph was measured in control organisms and in organisms exposed to CTMax; significant differences were found in organisms maintained in 10 and 40 psu, but there were no significant differences in hemolymph osmotic pressure in those that were acclimated to 26 psu.  相似文献   

13.
In this study we examine the influence of non-monsoon sediment arrival on the high-diversity SE Indian seagrass meadows of the Palk Bay and the Gulf of Mannar. We used a gradient-based approach to examine the influence of increasing sediment loads on species composition and shoot density. In addition, for the ubiquitous seagrass (Cymodocea serrulata), we tested the influence of sediment on its biomass and productivity. We identified three sites in Palk Bay and four sites in Gulf of Mannar (SE India) along a gradient of sediment input. At each of the seven locations, sediment traps were deployed to measure sedimentation rates. Nine seagrass cores were taken systematically along 50 m transects at a constant sub-tidal depth to measure shoot density and biomass. A few shoots of C. serrulata were marked to estimate the above ground seagrass growth rate. Our results indicate that sedimentation rates that ranged from 8.6 to 62.4 mg DW cm−2 d−1 could not explain species composition of the meadow or shoot density of the observed species. C. serrulata was, by far, the most abundant species and present in all sediment conditions. Sedimentation rates did not alter shoot elongation rates in C. serrulata, ranging from 1.54 ± 0.29 SD to 0.25 ± 0.02 SD cm d−1, but in contrast, increased vertical rhizome elongation rate. This increase was reflected in an increase in below ground biomass along the sediment gradient (R2 = 0.582, p = 0.01). C. serrulata appears to be able to adapt to the sediment dynamics in this area by allocating resources to rhizomes and roots to counteract burial and stabilizing sediments. Given that siltation is one of the most important threats to seagrass meadows, understanding the species-specific adaptive mechanisms of seagrass species in these high-sediment, high diversity South Asian meadows is an important first step in ensuring their long-term survival and functioning.  相似文献   

14.
In the present study the induction of metallothioneins (MTs) and effects on the cellular energy allocation (CEA) in euryhaline crustacean Neomysis integer exposed to Cd at different salinities were studied. N. integer was exposed to the same sub-lethal concentration of free cadmium ion (1/5 of the cadmium activity of the reported 96 h LC50 value) in hypo-osmotic (7.2 μg Cd/L at 5 psu), isosmotic (23.0 μg Cd/L at 16 psu) and hyper-osmotic media (38.1 μg Cd/L at 25 psu) for 7 days. By using the free Cd concentration as the basis for conducting the exposures, the effect of salinity on cadmium speciation was eliminated and therefore the true effect of salinity as an abiotic factor on the MT induction and CEA could be studied.MT content was quantified by differential pulse voltammetry (DPV); this is the first time that this method is applied to assays with N. integer. No significant differences in MT levels between the control and Cd-exposed groups were observed. The measured MT levels (ranging from 32.3 to 75.7 μg/mg(cytosolic protein)) probably represent the constitutive MT levels responsible for binding essential metals. The differences in MT levels observed at the different salinities indicate a possible relationship between some physiological process (possibly osmoregulation) other than detoxification and MT induction. A decrease in salinity caused an increase in MT level in N. integer, and this was significantly correlated to the CEA values (Spearman correlation coefficient r = − 0.56, p = 0.016). Our results indicate that salinity can change the energy status and MT content of N. integer. These findings should be taken into account when using these biomarkers - and especially MTs - in field studies and environmental monitoring.  相似文献   

15.
Greenhouse experiments were conducted to assess the effects of soil salinity on emergence, growth, water status, proline content and mineral accumulation of seedlings of Avicennia marina (Forssk.) Vierh. NaCl was added to the soil and salinity was maintained at 0.2, 2.5, 5.1, 7.7, 10.3, 12.6, 15.4, 17.9, 20.5, 23.0, 25.6 and 28.2 psu. A negative relationship between seedling emergence and salt concentration was obtained. Nevertheless, this mangrove is highly salt tolerant during germination. Growth of seedlings was significantly promoted by low salinity and optimum growth was obtained at 15.4 psu. Higher salinities inhibited plant growth. Growth and dry matter accumulation in tissues followed the same optimum curve. Water potential of tissues became significantly more negative with increasing salinity, and proline content significantly increased. Moreover, water potential and proline content of tissues displayed an S-curve with the inflection point below ∼10 psu. The concentration of Na in tissues increased significantly, whereas K, Ca, Mg, N and P content decreased.  相似文献   

16.
The present study examined the effect of salinity and temperature on the rate of oxygen consumption and total body osmolality of the triclad turbellarian Procerodes littoralis, a common marine flatworm normally found in areas where freshwater streams run out over intertidal areas. Extremes in environmental factors encountered by P. littoralis were recorded at the study site. These were salinity (0-44 psu), temperature (2.7-24.9 °C) and oxygen concentration (2.8-16.1 mg l−1). Respirometry experiments showed minimal oxygen consumption rates at the salinity extremes encountered by the study species (0 and 40 psu). Further experiments showed relatively constant oxygen consumption rates over the temperature range 5-20 °C and elevated consumption rates at temperatures above 25 °C. Total body osmolality of P. littoralis increased with increasing salinity. The study illustrates how a marine flatworm uses integrated physiological and behavioural mechanisms to successfully inhabit an environment that is predominantly freshwater for up to 75% of the tidal cycle.  相似文献   

17.
The influence of global climate change will potentially alter the salinity of aquatic ecosystems. This represents a tremendous challenge for societies worldwide. Different sources of salinization (natural or anthropogenic) amplify the introduction of salt in rivers and streams, causing an increase of salt flowing down to estuarine and coastal areas. In this study, Corbicula fluminea and Scrobicularia plana have been selected because of their large tolerance for salinity variation (euryhaline organisms). They will allow the study of effect on the whole spectrum of salinity from fresh to marine waters respectively. The aim was to study the impact of experimental salinity stress at physiological, biochemical and behavioral levels by exposing both species to a salinity close to their limit range of tolerance, 15 practical salinity unit (psu), and at their field salinity (1.5 psu and 30 psu for C. fluminea and S. plana respectively) in the presence or absence of food during 2 and 7 days of exposure. Negative impacts of hyper saline condition for C. fluminea (15 psu) and hypo saline condition for S. plana (15 psu) have been measured at biochemical, physiological and behavioral levels. At sub-individual and individual levels, structural and energetic parameters and behavioral impairments seemed to be suitable biomarkers to assess salinity stress on C. fluminea and S.plana. After exposure to the limit of salinity tolerance (15psu) for both organisms, fitness modifications could appear, and may participate in endangering populations.  相似文献   

18.
N. Suárez 《Flora》2011,206(3):267-275
Ipomoea pes-caprae is widespread in pantropical coastal areas along the beach. The aim of this study was to investigate the salinity tolerance level and physiological mechanisms that allow I. pes-caprae to endure abrupt increases in salinity under brief or prolonged exposure to salinity variations. Xylem sap osmolality (Xosm), leaf water relations, gas exchange, and number of produced and dead leaves were measured at short- (1-7 d) and long- (22-46 d) term after a sudden increase in soil salinity of 0, 85, 170, and 255 mM NaCl. In the short-term, Xosm was not affected by salinity, but in the long-term there was a significant increase in plants grown in presence of salt compared with control plants. After salt addition, the plants showed osmotic stress with temporal cell turgor loss. However, the water potential gradient for water uptake was re-established at 4, 7 and 22 d after salt addition, at 85, 170 and 255 mM NaCl, respectively. In the short-term I. pes-caprae was able to tolerate salinities of up to 255 mM NaCl without significant reduction in carbon assimilation or growth. With the duration of stress, leaf ion concentration continued to increase and reached toxic levels at high salinity with a progressive decrease in photosynthetic rate, reduced leaf formation and accelerated senescence. Then, if high levels of soil salts from tidal inundation occur for short periods, the survival of I. pes-caprae is possible, but prolonged exposure to salinity may induce metabolic damage and reduce drastically the plant growth.  相似文献   

19.
Although otolith Strontium (Sr)/calcium (Ca) ratios have been widely used to reconstruct the past salinity environmental history of anguillid eels, factors affecting the Sr/Ca ratios in otoliths are incompletely understood. Japanese Eel (Anguilla japonica) elvers (mean length 54.7 ± 2.1 mm) were collected in the estuary during their upstream migration and reared at 5 different salinities (0, 5, 15, 25, and 35 psu) and 3 types of feeding conditions (formulated feed, tubifex, and starvation) for 30 days to evaluate the effects of salinity and diets on otolith Sr/Ca ratios. Ca and Sr concentrations in the ambient water significantly increased with salinity (SAL) as [Ca] water = 15.50SAL − 5.56, and [Sr] water = 0.21SAL + 0.03, respectively. Sr/Ca ratios in otoliths increased with salinity (SAL) of the rearing water as [(Sr/Ca) × 1000] otolith = 0.091SAL + 3.790. In diets, Sr/Ca ratios were 4 times higher in tubifex than in formulated feed. However, in otoliths, ANOVA indicated that Sr/Ca ratios did not differ significantly between groups fed on tubifex or formulated feed (p = 0.118). Otolith Sr/Ca ratios were negatively correlated with fish growth rates while the growth rates differed significantly among rearing conditions with different salinities and diets. Partition coefficients of the Sr/Ca ratios from ambient water to fish tissues and otoliths significantly increased with salinity. The Sr/Ca ratios of Japanese Eel otoliths thus were positively correlated with the ambient salinity and decreased with increasing fish growth rate, but was not affected by fish diet.  相似文献   

20.
During their reproductive period, females of Crepipatella dilatata deposit their embryos in capsules that they then brood in the pallial cavity until juveniles emerge several weeks later, after passing through a transient veliger “larval” stage. Artificially excapsulated veligers of this species experimentally exposed to a wide range of salinities (5, 10, 15, 20, 25, and 30 psu) for six hours showed reduced activity at salinities of 15 and 20 psu, whereas encapsulated veligers exposed to those same salinities showed no reduction of activity. Artificially excapsulated veligers showed high mortality at salinities of 5 and 10 psu; encapsulated embryonic stages also showed high mortalities at 5 psu and serious sublethal effects at 10 psu in tests excluding maternal protection, showing that encapsulation alone does not provide complete protection from low salinity stress. Natural tidal cycles in the Quempillén River estuary also reduced embryonic survival at salinities of ≤ 10 psu when the capsules were exposed without maternal protection. In contrast, encapsulated embryos protected by their mothers survived well regardless of the salinity to which they were exposed, under both natural and laboratory-simulated estuarine tidal cycles. C. dilatata are able to develop in the estuary only because of maternal protection, since salinity levels in this environment sometimes decline to as low as 7 psu. Successful embryonic development in this estuary reflects the capacity of C. dilatata adults to detect dangerously low salinity levels and then seal themselves off from the environment for up to 50 hrs (O. Chaparro pers. obs.) when the salinity drops below 22.5 psu, allowing salinity to remain above this level within the pallial cavity despite continued salinity declines in the surrounding seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号