首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙科  丘仲锋  何宜军  尹宝树 《生态学报》2014,34(23):6898-6909
研究探讨了两个零维箱式模型在东海典型赤潮藻东海原甲藻和中肋骨条藻竞争与演替研究中的应用。模型在采用不同接种密度下的单种培养实验数据进行参数校正后,被用来模拟不同N/P条件下单种培养实验以及两藻种共培养竞争实验,并以实验数据对其结果进行了验证。模拟结果表明,在单种培养条件下,模型能够较好地重现两种藻在不同N/P环境中的生长及对营养盐的利用;共培养实验的模拟结果显示,在所有初始细胞密度比例条件下,中肋骨条藻的最终密度均会超过东海原甲藻,且PO4的消耗主要源于中肋骨条藻的利用,与实验结果一致,表明模型能够很好地体现两种藻的竞争结果及对营养盐的竞争关系;由于模型不足以模拟除营养盐竞争以外的藻间相互作用,模拟结果未体现东海原甲藻细胞数迅速衰减这一现象,有待进一步研究。  相似文献   

2.
刘艳  赵卫红  苗辉 《生态学报》2015,35(8):2659-2666
在东海赤潮爆发区域运用围隔生态系实验方法,研究了不同营养盐条件下围隔生态系内多胺浓度变化。结果表明:2010年选用东海原甲藻赤潮爆发处海水,东海原甲藻是各围隔生态系内主要优势种,没有种群演替现象发生。两种营养盐添加方式下各围隔内精胺浓度维持较高水平,都呈现先波折下降后波折上升的趋势,与东海原甲藻的生长变化正好相反;各围隔内腐胺浓度水平较高,变化起伏较大,其中有两个实验组腐胺整体变化趋势与东海原甲藻生长趋势类似;所有围隔内亚精胺浓度最低,波动较小。2011年取用中肋骨条藻赤潮爆发处海水,所有围隔生态系内优势种都发生了从中肋骨条藻到东海原甲藻的演替。各围隔生态系内腐胺浓度最高,在中肋骨条藻生长初期腐胺浓度下降,随着中肋骨条藻的生长有所上升,实验后期随着东海原甲藻的生长又整体呈现出下降趋势;各实验组精胺浓度较低,在中肋骨条藻消亡东海原甲藻出现的种群演替期间,都呈现出较大波动;各围隔内亚精胺浓度较低,在整个种群演替过程中没有明显的变化。围隔生态系中补充营养盐,通过对浮游植物生长的影响,间接影响围隔生态系内的多胺变化。  相似文献   

3.
Both field and laboratory studies were used to investigate the effects of temperature limitation and nutrient availability on seasonal growth dynamics of Laurencia papillosa and Gracilaria coronopifolia from a nearshore coral reef in the southern tip of Taiwan during 1999-2000. L. papillosa was a summer blooming alga abundant in August-November and G. coronopifolia was abundant year round except April-May. L. papillosa blooms in the summer were attributed to its preference for high temperatures and highly sensitivity to low temperatures. A wider temperature range and a significant stimulation of growth by high N inputs can explain the appearance of G. coronopifolia year round and also its maximum growth in November-March. Levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) in water column were extremely high, but the growth of these two rhodophytes still suffered nutrient limitation that the type and severity of nutrient limitation were variable over time and also between two species. The growth of L. papillosa was limited by P in the early growth stage (August-September) as indicated by decreased tissue P contents, increased C/P and N/P molar ratios and increased alkaline phosphatase activity (APA) and in the later growth stage, it was subjected to N-limitation, evidenced by decreased tissue N contents and C/P and N/P molar ratios and increased tissue P contents. The growth of G. coronopifolia was also P-limited as indicated by increased tissue N contents and concomitantly decreased tissue P contents, while marked drops in tissue P contents below the subsistence level in mid September and December 1999 reveal severe P limitation, which was supported by increased alkaline phosphatase activity. Higher critical nutrient contents and nutrient thresholds for maximum growth of G. coronopifolia suggest that G. coronopifolia faced more frequent nutrient limitation compared to L. papillosa. In conclusion, the results from these laboratory and field studies provide evidence that the seasonal abundance of L. papillosa and G. coronopifolia from southern Taiwan was determined by seasonal variations in seawater temperatures and nutrient concentrations as well as different physiological growth strategies. Seawater temperature and nutrient availability were important determinants of seasonal abundance of L. papillosa while the seasonal abundance of G. coronopifolia was influenced by nutrient availability.  相似文献   

4.
Seasonality of nutrient dynamics in three morphologically different seagrass species and their sediments was examined for 1 year between November 2006 and November 2007 at four sites in the Andaman Sea, Thailand. The smaller species, Cymodocea serrulata and Halophila ovalis, showed major seasonal variation in shoot density, above- and belowground biomass, much more than expected from seasonal changes in water temperature and light conditions. All parameters showed minimum values in the dry season due to desiccation during neap tides. In contrast Enhalus acoroides showed less seasonal variation. Only limited seasonality was found in tissue N content of all species, whereas tissue P content responded to the low P concentration in the water column during the wet season. There were no differences in sediment conditions among species, and nutrient pools were generally low. Furthermore there were no significant spatial differences in seagrass and sediment nutrient dynamics, despite varying anthropogenic activity at the study sites, reflecting the oligotrophic conditions in this region.  相似文献   

5.
Foliar nutrient concentrations of South Patagonian ombrotrophic peatland species were analyzed along a gradient of increasing continentality. We paid particular attention to nutrient demands of Sphagnum magellanicum, the dominant constituent of continental raised bogs, and to those of cushion-forming vascular plants such as Astelia pumila, dominating in western hyperoceanic blanket bogs. With exception of one graminoid species, nutrient concentrations in leaf tissues were generally low, but showed considerable variation. Extremely low concentrations were measured in S. magellanicum reflecting the unpolluted, pristine character of the investigated bog ecosystems. Nutrient concentrations in cushion plants showed remarkable variation. While nutrient concentrations in Donatia fascicularis were almost as low as in S. magellanicum, they were significantly higher in A. pumila. Variation in foliar nutrient concentrations was predominantly due to differences between species. Nevertheless, there was a significant shift within species along the considered west-to-east continental gradient. The stronger minerotrophic character of the western cushion bogs was reflected by higher Ca contents. N concentrations increased and P concentrations decreased westward in most species. Consequently, the most noticeable shift was an increasing N:P ratio indicating a higher degree of P limitation towards western cushion dominated blanket bogs.  相似文献   

6.
The vegetation N:P ratio is thought to be a diagnostic indicator of the nature of nutrient limitation in wetland vegetation. It should therefore be closely linked to other indicators of nutrient acquisition and conservation, such as nitrogen stable isotope fractionation (δ15N), nutrient resorption efficiency (RE) and resorption proficiency (RP). However, the interrelationships among these traits and the N:P ratio remain unclear. We compared tissue nutrient concentrations, N:P ratios, δ15N fractionation, RE, and RP along an N to P limitation gradient in an oligotrophic wetland valley in the South Island of New Zealand. Within the valley, the soil TN:TP ratio increased from 1.3 to 18.0 in three discrete wetlands along the gradient. In pooled data from all vegetation communities within each site, the mass-based vegetation N:P ratio correlated significantly (r2 = 0.35, P < 0.01) to soil TN:TP ratios and increased from 10.2 ± 2.7 to 13.5 ± 3.6 along the N to P limitation gradient. This was accompanied by an increase in tissue δ15N enrichment from 2.05 ± 1.12‰ to 6.27 ± 1.70‰, consistent with more open N cycling and lower N demand. These trends held within all vegetation types, but were particularly strong in a Typha orientalis (C-strategist) community (soil TN:TP vs vegetation N:P correlation r2 = 0.78, P < 0.001; δ15N increase from 1.81 ± 0.44‰ to 7.73 ± 1.79‰). The individual N and P concentrations and retention patterns were more species-specific and less responsive to the nutrient limitation gradient. T. orientalis maximised N resorption as N limitation increased (increasing NRE from 50.8 ± 3.3% to 71.7 ± 7.4%; reducing NRP from 0.70 ± 0.12% to 0.36 ± 0.13%) but did not alter PRE or PRP, whereas the S-strategist Schoenus pauciflorus maximised P resorption as P limitation increased (increasing PRE from 48.0 ± 5.6% to 73.5 ± 10.1%; reducing PRP from 0.053 ± 0.008% to 0.015 ± 0.004%) but did not alter NRE or NRP. These results show that the tissue N:P ratio and its associated δ15N enrichment are highly responsive indicators of the relative availability of N and P at the site and community level. However, they are not indicators of species-specific physiological requirements for N and P, or of likely responses of individual species to N or P enrichment, which are better interpreted from indicators such as RE and RP that describe nutrient retention behaviour.  相似文献   

7.
闽江河口湿地植物枯落物立枯和倒伏分解主要元素动态   总被引:3,自引:0,他引:3  
曾从盛  张林海  王天鹅  张文娟  仝川 《生态学报》2012,32(20):6289-6299
采用分解袋法,对闽江河口湿地2种挺水植物——芦苇(Phragmites australis)和互花米草(Spartina alterniflora)花和叶枯落物的立枯和倒伏分解过程及C、N、P元素动态进行研究。结果表明:(1)立枯分解是2种湿地盐沼植物重要的分解阶段,干物质损失率在13.26%—31.89%之间。多项式模型能较好描述2种植物花和叶的枯落物分解残留率动态。(2)立枯分解阶段,芦苇花和叶的C含量主要为波动下降,互花米草较为稳定;倒伏阶段后期,2种植物都以升高为主。立枯分解阶段2种植物枯落物N含量略有下降,而倒伏阶段逐渐上升。分解过程中枯落物P含量的波动较大。(3)2种植物花和叶C、N的NAI值在分解过程中<100%。芦苇的花和叶中P的NAI值在立枯和倒伏分解阶段都经历了明显下降和升高的过程,而互花米草在立枯阶段变化不大,倒伏阶段下降较为明显。(4)与芦苇相比,互花米草的花和叶枯落物C库较高,N库较低,P库差异不大。  相似文献   

8.
Feng D  Chen Z  Xue S  Zhang W 《Bioresource technology》2011,102(12):6710-6716
Effects of nitrate feeding on the cell growth and lipid accumulation of marine microalgae Isochrysis zhangjiangensis were investigated. When nitrate was supplied at interval of 24 h, instead of 72 h, a high lipid content of 40.9% and a biomass density of 3.1 g L−1 were obtained. To confirm whether I. zhangjiangensis accumulates lipid during nitrogen-repletion, a two-stage cultivation method was applied. This algal strain had a high lipid content during sustained nitrate addition and showed a high carbohydrate content under nitrate-depletion conditions. These results revealed that this algal strain can accumulate lipids under nitrogen-repletion conditions and accumulate carbohydrate under nitrogen-depletion conditions. When cultured in an extremely high nitrate concentration, 9 g L−1 at 24 h intervals, the growth of algal cells was suppressed, but the highest lipid content of 53% was attained. This special characteristic of lipid accumulation makes I. zhangjiangensis an ideal candidate for producing biodiesel using N-rich wastewater.  相似文献   

9.
通过对福建省惠安县不同林龄短枝木麻黄人工林不同发育阶段小枝单宁含量及氮磷再吸收率的研究,探讨了短枝木麻黄林分发育过程中的营养保存策略。结果表明,幼龄林(5年生)成熟小枝中的总酚(TP)、可溶性缩合单宁(ECT)总缩合单宁(TCT)含量及蛋白质结合能力(PPC)显著高于成熟林(21年生)和衰老林(38年生)。随着林分发育,成熟小枝中N含量显著升高,而P含量呈降低趋势。不同发育阶段林分成熟小枝中N:P比均大于20,且随着林龄的增加而升高。磷再吸收率(PRE)显著高于氮再吸收率(NRE),均以成熟林分最高。这表明短枝木麻黄小枝单宁含量与养分再吸收受林龄影响,其养分保存机制会随着林分生长发育的变化而进行调节。  相似文献   

10.
造纸废水灌溉对毛白杨苗木生长及养分状况的影响   总被引:2,自引:0,他引:2  
为了探讨工业造纸废水用于杨树人工林灌溉的可行性,以三倍体毛白杨(triploid Populus tomentosa)1年生盆栽苗木为对象,研究了不同浓度造纸废水(分别稀释到12.5% (IF7Q)、16.7% (1F5Q)、25%(1F3Q)、33.3% (1F2Q)、50% (1F1Q))灌溉对苗木生长及养分状况、土壤化学性质的影响.结果表明:造纸废水灌溉对土壤pH值、速效P含量无显著影响(P>0.05),但能显著提高土壤有机质、全N及碱解N的含量(P<0.05).适当稀释的废水灌溉能促进三倍体毛白杨的苗木生长,提高土壤和植株养分水平:灌溉后1F5Q地径、苗高生长量分别为10.5 mm和97.3 cm,较CK分别显著增加102%和47% (P<0.05);1F5Q和1F3Q处理苗木总生物量为247 g和230 g,分别较CK显著提高19%和11%(P<0.05);废水灌溉可显著提高植株根、叶N含量和茎P含量(P<0.05),但对植株叶、根P含量和茎N含量影响不大(P>0.05).造纸废水通过一定处理后,可应用于苗木灌溉并促进其生长,提高地力.对于三倍体毛白杨,将废水稀释到16%-25%能起到较好的灌溉效果.  相似文献   

11.

Lipid production by the red yeast Rhodosporidium toruloides was explored under nutrient limitation. To determine the compositional profiles of R. toruloides cells, samples were prepared using a continuous cultivation process under nutrient limitation and analyzed via several methods, including Fourier transform infrared spectroscopy and elemental analysis. Under nitrogen limitation, as the dilution rate increased, the cellular lipid content decreased but the carbohydrate and protein contents increased. Under carbon limitation, the cellular lipid, protein, and carbohydrate contents remained relatively constant at the different dilution rates. Moreover, the cellular elemental composition was essentially identical under nitrogen and carbon limitation at a high dilution rate of 0.20 h−1. We also analyzed the consumed carbon to nitrogen (C/N) under different nutrition conditions. The results indicated that the consumed C/N had a major influence on cell metabolism and product formation, which contributed to our understanding of the physiological characteristics of R. toruloides.

  相似文献   

12.
《Aquatic Botany》2007,86(2):139-147
The effects of fresh thalli and culture medium filtrates from two species of marine macroalgae, Ulva pertusa Kjellm (Chlorophyta) and Gracilaria lemaneiformis (Bory) Dawson (Rhodophyta), on growth of marine microalgae were investigated in co-culture under controlled laboratory conditions. A selection of microalgal species were used, all being identified as bloom-forming dinoflagellates: Prorocentrum donghaiense Lu sp., Alexandrium tamarense (Lebour) Balech, Amphidinium carterae Hulburt and Scrippsiella trochoide (Stein) Loeblich III. Results showed that the fresh thalli of either U. pertusa or G. lemaneiformis significantly inhibited the microalgal growth, or caused mortality at the end of the experiment. However, the overall effects of the macroalgal culture filtrates on the growth of the dinoflagellates were species-specific (inhibitory, stimulatory or none) for different microalgal species. Results indicated an allelopathic effect of macroalga on the co-cultured dinoflagellate. We then took P. donghaiense as an example to further assess this hypothesis. The present study was carried out under controlled conditions, thereby excluded the fluctuation in light and temperature. Nutrient assays showed that nitrate and phosphate were almost exhausted in G. lemaneiformis co-culture, but remained at enough high levels in U. pertusa co-culture, which were well above the nutrient limitation for the microalgal growth, when all cells of P. donghaiense were killed in the co-culture. Daily f/2 medium enrichment greatly alleviated the growth inhibition on P. donghaiense in G. lemaneiformis co-culture, but could not eliminate it. Other environmental factors, such as carbonate limitation, bacterial presence and the change of pH were also not necessary for the results. We thus concluded that allelopathy was the most possible reason leading to the negative effect of U. pertusa on P. donghaiense, and the combined roles of allelopathy and nutrient competition were essential for the effect of G. lemaneiformis on P. donghaiense.  相似文献   

13.
The coexistence of multiple species within a trophic level can be regulated by consumer preferences and nutrient supply, but the influence of these factors on the co-occurrence of seagrass species is not well understood. We examined the biomass and density responses of two seagrass species in the Florida Keys Reef Tract to grazing pressure near patch reefs, and evaluated how nutrient enrichment impacted herbivory dynamics. We transplanted Halodule wrightii (shoalgrass) sprigs into caged and uncaged plots in a Thalassia testudinum (turtlegrass) bed near a patch reef. Nutrients (N and P) were added to half of the experimental plots. We recorded changes in seagrass shoot density, and after three months, we measured above- and belowground biomass and tissue nutrient content of both species. Herbivory immediately and strongly impacted H. wrightii. Within six days of transplantation, herbivory reduced the density of uncaged H. wrightii by over 80%, resulting in a decrease in above- and belowground biomass of nearly an order of magnitude. T. testudinum shoot density and belowground biomass were not affected by herbivory, but aboveground biomass and leaf surface area were higher within cages, suggesting that although herbivory influenced both seagrass species, T. testudinum was more resistant to herbivory pressure than H. wrightii. Nutrient addition did not alter herbivory rates or the biomass of either species over the short-term duration of this study. In both species, nutrient addition had little effect on the tissue nutrient content of seagrass leaves, and N:P was near the 30:1 threshold that suggested a balance between N and P. The different impacts of grazing on these two seagrass species suggest that herbivory may be an important regulator of the distribution of multiple seagrass species near herbivore refuges like patch reefs in the Caribbean.  相似文献   

14.
Recently, we described the cellular energy allocation (CEA) methodology to asses the effects of abiotic stress on the energy metabolism of the estuarine crustacean Neomysis integer (Crustacea: Mysidacea) [J. Exp. Mar. Biol. Ecol. 279 (2002) 61]. This short-term assay is based on the biochemical assessment of changes in the energy reserves (total carbohydrate, protein and lipid content) and the energy consumption (electron transport activity), and has been shown to be predictive of effects at the population level in daphnids [J. Aquat. Ecosyst. Stress Recovery 6 (1997) 43]. In the present study, the CEA methodology was evaluated using adult N. integer exposed for 96 h to the antifoulant tributyltinchloride (TBTCl). From a range-finding experiment with juvenile N. integer, a 96-h LC50 of 164 ng TBTCl/l was calculated. The energy metabolism of N. integer, as summarized by the CEA, was significantly altered by TBTCl exposure. Mysids exposed to 10, 100 and 1000 ng TBTCl/l consumed less energy and had lower respiration rates (in 10 and 1000 ng TBTCl/l treatments) than the control, resulting in a lower CEA. These changes at the cellular level occurred at environmentally relevant concentrations of the toxicant TBTCl which were an order of magnitude lower than reported effect concentrations for scope for growth in other marine invertebrates.  相似文献   

15.
The sea urchins Paracentrotus lividus and Psammechinus miliaris are submitted to the same environmental conditions in the Bay of Brest. The relationship between seasonal changes in food source quality and their gonad production was investigated in reproducing experimentally these conditions. In a first stage two macroalgae (Palmaria palmata and Laminaria digitata) were tested. P. miliaris showed a stronger preference for P. palmata and over a year-long experiment both urchins progressively preferred P. palmata. Seasonal variations in the chemical composition of P. palmaria were observed in the Bay of Brest: total carbohydrates were important and the relative maximum (about 50%) was reached between February and August; the lipid level was low and had a relative maximum of about 1% in June and August. Total protein in P. palmaria was high compared to other seaweeds: the maximum value (25%) was observed in June, which was probably due to the maintenance of nitrogen nutrient in the bay.In the second stage of the study, seasonal changes in biochemical components of ingestion and absorption of the two sea urchins were followed in the laboratory using a monospecific diet of P. palmaria. The patterns of total carbohydrates and lipid absorption were very similar for both sea urchin species. Carbohydrates were absorbed strongly and uniformly, year round. Lipid absorption mimicked the lipid nutrient pattern in the food source. Only changes in protein absorption varied slightly between the two urchin species. Protein absorption was maximal for both species in February and June, but the quantity of absorbed protein was significantly higher in P. miliaris than in P. lividus during February. This increase was concomitant with protein storage in the sea urchin gonads, which peaked in February for P. miliaris and in June for P. lividus. P. lividus had a higher gonad production efficiency, based on gonad yield. The comparison between in situ data and the experimental results suggests that an algal diet more nitrogenous than the in situ algal food source would benefit the herbivorous P. lividus, rather than the more omnivorous species P. miliaris. Although P. milaris has been described as a species with large gonad production potential, P. lividus appears to be a more suitable species for echiniculture conditions.  相似文献   

16.
This study dealt with the decomposition and nutrient release from the halophytes Atriplex portulacoides, Arthrocnemum macrostachyum, Limoniastrum monopetalum, and Spartina densiflora, the dominant species in the Castro Marim salt marsh, Portugal. Environmental effects on decomposition were also assessed. The study was carried out for one year using the in situ litterbag technique. S. densiflora showed a lower decomposition rate (k = 0.003 day−1) than the other study species (k = 0.005-0.009). Study species showed similar decomposition patterns, that is, the weight loss mostly occurred during the autumn-winter period (study beginning in November). This indicates that temperature in this period did not hamper the decomposition process. The decomposition rate was positively affected by the initial N concentration (r2 = 0.87, P < 0.05) and negatively by the C:N ratio (r2 = 0.86, P < 0.05) in decomposing materials. At the end of the study, S. densiflora and L. monopetalum, the species with lower initial N concentrations, retained much higher proportion of initial N (89-109%) than the others (5-14%). Also, S. densiflora with the lowest P concentration retained higher proportion of initial P (48%) than the others (5-20%). Release of K and Mg were also slower from S. densiflora and was associated with their initial low concentration in this species. The lowest Mn release was observed from A. macrostachyum and also in relation to the lowest initial concentration. Our study supports the hypothesis that decomposition patterns of marsh species are mostly associated with differences regarding their morphology and chemical composition. Given the higher resistance of S. densiflora to decomposition, its progressive spreading may result in accumulation of organic detritus overtime in invaded salt marshes.  相似文献   

17.
Summary Artemisia tridentata seedlings were grown under carbon dioxide concentrations of 350 and 650 l l–1 and two levels of soil nutrition. In the high nutrient treatment, increasing CO2 led to a doubling of shoot mass, whereas nutrient limitation completely constrained the response to elevated CO2. Root biomass was unaffected by any treatment. Plant root/shoot ratios declined under carbon dioxide enrichment but increased under low nutrient availability, thus the ratio was apparently controlled by changes in carbon allocation to shoot mass alone. Growth under CO2 enrichment increased the starch concentrations of leaves grown under both nutrient regimes, while increased CO2 and low nutrient availability acted in concert to reduce leaf nitrogen concentration and water content. Carbon dioxide enrichment and soil nutrient limitation both acted to increase the balance of leaf storage carbohydrate versus nitrogen (C/N). The two treatment effects were significantly interactive in that nutrient limitation slightly reduced the C/N balance among the high-CO2 plants. Leaf volatile terpene concentration increased only in the nutrient limited plants and did not follow the overall increase in leaf C/N ratio. Grasshopper consumption was significantly greater on host leaves grown under CO2 enrichment but was reduced on leaves grown under low nutrient availability. An overall negative relationship of consumption versus leaf volatile concentration suggests that terpenes may have been one of several important leaf characteristics limiting consumption of the low nutrient hosts. Digestibility of host leaves grown under the high CO2 treatment was significantly increased and was related to high leaf starch content. Grasshopper growth efficiency (ECI) was significantly reduced by the nutrient limitation treatment but co-varied with leaf water content.  相似文献   

18.
Three marine phytoplankters (Isochrysis galbana, Chaetoceros calcitrans andThalassiosira pseudonana), commonly used in the culture of bivalve larvae, were grown in batch or semi-continuous cultures. Changes in protein, carbohydrate, lipid and some fatty acids were measured as growth became limited by nitrogen, silicon, phosphorus or light. Under N starvation (2 d) the % lipid remained relatively constant, while% carbohydrate increased and% protein decreased in all 3 species compared to cells growing under no nutrient limitation. Under Si starvation (6 h) there was no change in lipid, protein or carbohydrates. The amount of two fatty acids, 20 : 53 and 22 : 63 remained relatively constant under N, P and Si starvation, exept for a sharp drop in the cells of P-starvedT. pseudonana. However, there were pronounced species differences withI. galbana containing significantly less 20 : 5 3 thanC. calcitrans orT. pseudonana. Under light limitation the amount of lipid per cell showed no consistent trend over a range of irradiances for all 3 species. The amount of N per cell (an index of protein content) as a function of irradiance, was relatively constant forI. galbana andT. pseudonana, while the amount of N per cell was lower under low irradiances forC. calcitrans. These examples of changes in protein, carbohydrate, lipid and certain fatty acids under nutrient (N, Si or P) or light limitation, emphasize the importance of knowing the phase (e.g. logarithmic vs stationary) of the growth curve in batch cultures, since the nutritional value of the phytoplankters could change as cultures become dense and growth is terminated due to nutrient or light limitation.Presented at the XIIIth International Seaweed Symposium, University of British Columbia, Vancouver, Canada, August 1989.  相似文献   

19.
Biochemical analyses of total protein, lipid, carbohydrate, DNA, amino acid, and length, width, and dry weight measurements are reported for different stages of Romanomermis culicivorax cultured in the mosquito, Culex pipiens. The Bradford technique for assaying total protein was the most sensitive and reliable biochemical technique tested for assaying in vivo growth of R. culicivorax. Increases in total protein, lipid, carbohydrate, and dry weight during growth from preparasite to postparasite were greater than 6,900-fold for females and 2,300-fold for males. DNA increased 650-fold and 233-fold during development to female and male postparasites, respectively. The proportions of amino acids for preparasites were significantly different (P ≤ 0.01) from female and male postparasites for all amino acids tested, except methionine and tyrosine. Female and male postparasites were similar in protein, lipid, carbohydrate, DNA, and most amino acid proportions, but were significantly different in relative concentrations of serine, glycine, and alanine (P ≤ 0.01). Preliminary results suggest that the use of amino acid ratios from female postparasites improves the in vitro culture performance of R. culicivorax.  相似文献   

20.
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3–N), ammonium (NH4–N), nitrite (NO2–N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3–N+NH4–N+NO2–N), SRP and DRSi were 131.6, 1.2 and 155.6 μM, respectively. The maximum Chl a concentration was 19.5 mg m−3 in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 μM and from 0.4 to 0.95 μM, respectively. From 1963 to 2004, N:P ratios also increased from 30–40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m−3, nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l−1, much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号