首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a prevalent species complex in temperate estuaries and salt marshes of the Northern Hemisphere, populations of Eurytemora affinis that inhabit these environments must be adapted to salinity fluctuations. Some populations have invaded freshwater environments. In this work, we focus on the combined effects of temperature and salinity fluctuations on mortality rates and development time of the first naupliar stages under starvation. Two temperatures (10 and 15 °C) and eight salinities, ranging from 0 to 35 psu are investigated. We show (i) that among all experimental conditions the optimal temperature and salinity for naupliar survival and development are 15 psu and 15 °C, and (ii) that only the most extreme salinities (i.e. 0 and 35 psu) have a negative effect on naupliar survival. Nauplii develop faster and reach a higher developmental stage at 15 than at 10 °C, independent of salinity. The relevance of this metabolic adaptive pattern is discussed in the general framework of in situ behavior, tidal forcing and biogeographic variability, as well as the potential sources of the observed individual variability.  相似文献   

2.
The brackish water copepod Eurytemora affinis is the most abundant copepod species in the low salinity zone (2-15) of the Seine estuary. Despite its ecological importance, little is known about its population dynamics in the Seine. We studied the effects of temperature (10 °C and 15 °C) and salinity (5, 15 and 25) on reproduction under non-limiting food conditions. We used experiments to determine multiple reproductive parameters for E. affinis. In all experiments, we fed E. affinis a mixture of Rhodomonas marina and Isochrysis galbana. Couples of pre-adult females (C5) and adult males were mated until the female extruded a clutch of eggs and then individual females were observed every 6-12 hours until death to determine (a) embryonic development time, (b) inter clutch time and (c) clutch size throughout their adult lifespan. All reproductive parameters were negatively affected by low temperature (10 °C) and by high salinity (25). At 10 °C and a salinity of 25, mortality during the post-embryonic period was extremely high (85%). Differences in all reproductive parameters between salinities 5 and 15 were minimal. From 15 °C to 10 °C mean latency time (time between hatching of eggs and extrusion of new ones) increased from 0.8 to 2.25 days, the mean embryonic development time from 2.2 to 3.2 days and the mean clutch size decreased from 38 to 22 eggs female- 1. The mean clutch size decreased when females reached a critical age. The hatching success was high (near 95%) under all conditions except at high salinity. Egg production rates showed no significant differences between salinities 5 and 15 and were significantly higher at 15 °C (13 eggs female- 1 day- 1 at salinity 5 and 15) than at 10 °C (4 eggs female- 1 day- 1). These values at 15 °C were higher compared to those from other populations of E. affinis in estuaries or lakes. The high reproductive potential of E. affinis from the Seine estuary at 15 °C and low salinities explain its high densities in the low salinity zone during spring and early summer.  相似文献   

3.
During their reproductive period, females of Crepipatella dilatata deposit their embryos in capsules that they then brood in the pallial cavity until juveniles emerge several weeks later, after passing through a transient veliger “larval” stage. Artificially excapsulated veligers of this species experimentally exposed to a wide range of salinities (5, 10, 15, 20, 25, and 30 psu) for six hours showed reduced activity at salinities of 15 and 20 psu, whereas encapsulated veligers exposed to those same salinities showed no reduction of activity. Artificially excapsulated veligers showed high mortality at salinities of 5 and 10 psu; encapsulated embryonic stages also showed high mortalities at 5 psu and serious sublethal effects at 10 psu in tests excluding maternal protection, showing that encapsulation alone does not provide complete protection from low salinity stress. Natural tidal cycles in the Quempillén River estuary also reduced embryonic survival at salinities of ≤ 10 psu when the capsules were exposed without maternal protection. In contrast, encapsulated embryos protected by their mothers survived well regardless of the salinity to which they were exposed, under both natural and laboratory-simulated estuarine tidal cycles. C. dilatata are able to develop in the estuary only because of maternal protection, since salinity levels in this environment sometimes decline to as low as 7 psu. Successful embryonic development in this estuary reflects the capacity of C. dilatata adults to detect dangerously low salinity levels and then seal themselves off from the environment for up to 50 hrs (O. Chaparro pers. obs.) when the salinity drops below 22.5 psu, allowing salinity to remain above this level within the pallial cavity despite continued salinity declines in the surrounding seawater.  相似文献   

4.
The effect of several abiotic factors (salinity, temperature and pH) on bacterial proliferation and survival time of the sea mussel Mytilus edulis L. were studied under anoxic incubations. In addition, the presence in the incubation media of ammonium and the volatile fatty acids propionate and acetate, both excreted fermentation products of the bivalve, was tested.Anoxic incubations with seawater diluted with demineralised water showed at the lowest salinity (50% seawater, SW) a significant increase in the capacity of M. edulis to survive anoxia as compared to both 75% SW and control [100% SW, corresponding to 32 practical salinity units (psu)]. Formation of biotic sulphide and ammonium occurred in all incubations. However, bacterial proliferation was postponed by 2-3 days at lowest salinity and accordingly, concentrations of both compounds were lower. Anoxic survival profiles of mussels collected from different habitats in the Dutch Scheldt area, characterised by differences in salinity (range from 17 to 31 psu), corresponded with the above salinity effect. Walsoorden mussels (17 psu) showed the longest (P<0.001) survival time under anoxia (LT50=17.2 days) as compared with Paulina (27 psu) and Wemeldinge (31 psu) mussels (LT50=12.8 and 9.8 days, respectively). Condition index (ratio of soft body weight to shell volume) was not correlated with anoxic survival time in untreated mussels, although this was clearly the case when the antibiotic chloramphenicol was added to the anoxic seawater.Acidification of the anoxic incubation medium had a positive effect on survival time. LT50 values significantly (P<0.001) increased from 10.2 days at pH 8.1 to 11.6 and 11.5 days at pH 7.3 and 6.5, respectively. Biotic sulphide and ammonium accumulation as well as bacterial numbers were significantly lower at pH 7.3 and 6.5 as compared with pH 8.1. Anoxic incubations at 10 °C (LT50=12.0 days) strongly increased survival time as compared to 18 °C (LT50=5.9 days). The benefit of antibiotic addition was also stronger at lower temperature (10 °C).Addition of both propionate and acetate (0.5 mM) displayed no effect on mortality of mussels under anoxia, but ammonium (0.5 mM) caused a negative effect (P<0.001). Biotic sulphide and ammonium concentrations measured in both volatile fatty acid incubations were lower than the control situation, as well as total bacterial numbers.This study shows that environmental factors play a significant role in determining the course of bacterial infection and death of bivalves exposed to anoxia.  相似文献   

5.
Brackish-water and fresh-water bryozoans produce asexually derived dormant propagules that allow survival of unfavourable conditions and provide a potential means of dispersal. The propagules of brackish-water ctenostome bryozoans are called hibernacula. We monitored the life-cycle of the brackish-water ctenostome Victorella pavida Saville Kent, 1870 in its natural habitat and investigated, in laboratory cultures, the influence of temperature and salinity on the production and germination of hibernacula and on subsequent colony growth. V. pavida is a protected species in the UK, where its only locality is at Swanpool lagoon, Falmouth. Colonies were collected from Swanpool monthly from January 2004 to January 2005. Hibernaculum germination appeared to be triggered by increased water temperature (c. 13 °C) in the lagoon in March and April. In culture, germination was triggered by transfer from 5 °C to 19 °C in a range of salinities; subsequent colony growth was affected by salinity, with strongest growth at 13, 18 and 36 psu, and reduced growth at 5 and 9 psu. At 3.5 psu, hibernacula germinated, but there was no further development. At 36 psu there was an initial lag in growth, but after 30 d the colonies were comparable with those kept at 18 psu. Hibernaculum formation by colonies occurred from June to October, with production increasing towards October. Hibernacula appear not to have long-term viability but merely to permit survival from one year to the next. The results suggest that any changes in the hydrographic regime at Swanpool could have significant consequences for the survival of V. pavida.  相似文献   

6.
The present study examined the effect of salinity and temperature on the rate of oxygen consumption and total body osmolality of the triclad turbellarian Procerodes littoralis, a common marine flatworm normally found in areas where freshwater streams run out over intertidal areas. Extremes in environmental factors encountered by P. littoralis were recorded at the study site. These were salinity (0-44 psu), temperature (2.7-24.9 °C) and oxygen concentration (2.8-16.1 mg l−1). Respirometry experiments showed minimal oxygen consumption rates at the salinity extremes encountered by the study species (0 and 40 psu). Further experiments showed relatively constant oxygen consumption rates over the temperature range 5-20 °C and elevated consumption rates at temperatures above 25 °C. Total body osmolality of P. littoralis increased with increasing salinity. The study illustrates how a marine flatworm uses integrated physiological and behavioural mechanisms to successfully inhabit an environment that is predominantly freshwater for up to 75% of the tidal cycle.  相似文献   

7.
Summary The effects of temperature on rates of respiration, excretion and gut evacuation were examined for copepodite stages and adult female Calanus glacialis collected in areas close to the ice-edge during the arctic summer in the Barents Sea. The various life history stages responded differently to acute temperature changes above the in situ temperature (ca.-1.7°C). Respiration rates of early copepodite stages (C I to C IV) were very variable whereas excretion rates declined with increasing temperature in the range from-1.7°C to +5°C. Rate of oxygen consumption of adult females were independent of temperature between-1.7° and +5°C, but increased as temperature increased from +5° to 10°C. Rates of excretion of copepodite stage V and adult females were independent of temperature in the range from-1.7° to +2°C, whereas excretion of copepodite stages III and IV was negatively related to temperature in the range from-1.7° to +5°C. In C IV, C V and adult females the instantaneous rate of gut evacuation increased with increasing temperature. The different response patterns of metabolic rates of small copepodite stages, copepodite stage V and adult females C. glacialis to acute temperature changes suggest that the capacity for adjustment of ammonia excretion is better developed in C V's and adult females than in the younger life stages.  相似文献   

8.
Recent observations confirm the rising temperatures of Atlantic waters transported into the Arctic Ocean via the West Spitsbergen Current (WSC). We studied the overall abundance and population structure of the North Atlantic keystone zooplankton copepod Calanus finmarchicus, which is the main prey for pelagic fish and some seabirds, in relation to selected environmental variables in this area between 2001 and 2011, when warming in the Arctic and Subarctic was particularly pronounced. Sampling within a 3‐week time window each summer demonstrated that trends in the overall abundance of C. finmarchicus varied between years, with the highest values in “extreme” years, due to high numbers of nauplii and early copepodite stages in colder years (2001, 2004, 2010), and contrary to that, the fifth copepodite stage (C5) peaking in warm years (2006, 2007, 2009). The most influential environmental variable driving C. finmarchicus life cycle was temperature, which promoted an increased C5 abundance when the temperature was above 6°C, indicating earlier spawning and/or accelerated development, and possibly leading to their development to adults later in the summer and spawning for the second time, given adequate food supply. Based on the presented high interannual and spatial variability, we hypothesize that under a warmer climate, C. finmarchicus may annually produce two generations in the southern part of the WSC, what in turn could lead to food web reorganization of important top predators, such as little auks, and induce northward migrations of fish, especially the Norwegian herring.  相似文献   

9.
The size of cheilostome bryozoan zooids has been widely discussed for its potential in inferring palaeotemperatures, based on correlations between zooid size and temperature. Studies in both the natural environment and under experimental laboratory conditions have shown that an increase in temperature significantly decreases zooid size in a range of bryozoan taxa. In order to test the effect of temperature on zooid size, the cheilostome bryozoan Cryptosula pallasiana was for the first time successfully cultured under laboratory conditions. C. pallasiana was grown at 14 °C and 18 °C using Rhodomonas sp. as a food organism. Zooid size, tentacle number and growth rate were measured over a period of 26 days. For comparison, zooids from colonies of C. pallasiana collected from the natural environment were measured in winter and summer months. Results showed that colonies grown in laboratory culture had significantly longer and wider zooids at 14 °C than at 18 °C. The specific growth rate of C. pallasiana doubled from 14 °C to 18 °C. Comparison of tentacle number in culture showed a significantly higher value at lower temperatures. This may be related to differing food availability, longer polypide life spans, or a shift of energy use at colder temperatures. In nature the zooids were significantly longer in colonies sampled in July than in January, a clear difference from laboratory results. The utility of cheilostome Bryozoa as indicators of environmental change and their potential for studies of paleotemperature are highlighted.  相似文献   

10.
Acute toxicities of crude oil and crude oil water accommodated hydrocarbon fraction (WAF) are relatively well documented, but data on the biological effects of chronic exposures to WAF on species and populations are scarce. South Louisiana Sweet crude oil was used to assess the effects of crude oil WAF on the copepod Amphiascus tenuiremis' survival, development and reproduction. Effects were evaluated using a 96-well microplate full life-cycle toxicity test, a test that allows tracking of individuals from the nauplius stage to sexual maturation and reproduction. Briefly, 24-h hatched nauplii were followed to adulthood (ni = ≥ 120 nauplii/treatment) in individual glass-coated microplate wells containing 200 μL of seawater solution. Treatments consisted of 10%, 30%, 50% and 100% Louisiana WAF, with seawater used as control. Nauplii were monitored through development to adulthood, and sexually mature virgin copepods were mated pairwise in wells containing original rearing treatments. Nauplius-to-copepodite survival was reduced by 57% in exposures to 100% WAF, relative to controls (88 ± 3%), and copepodite-to-adult survival was reduced by 18% in the 50% WAF, relative to controls (98 ± 3%). Analysis of development curves showed that nauplii in the 10% WAF developed significantly faster into copepodites, while nauplii in the 50% WAF developed significantly slower than controls. Although the naupliar developmental rate in the 100% WAF was not significantly different from the control, these nauplii showed an average 1.4 day delay in development into copepodites. Similarly, copepodite development into mature females and males was significantly enhanced by 1.2 to 1.8 days and delayed by 1.9 to 2.2 days (p < 0.05) in the 10% and 50% WAFs, respectively, compared to controls. Although the copepodite developmental rate in the 100% WAF was not significantly different from the control, these copepodites still showed an average 1.5 and 2.1 day delay in development into females and males, respectively. Analysis of reproductive endpoints showed that fertility was the only endpoint negatively affected by WAFs; reproductive failure increased by 30% and 41% in exposures to 30% and 100% WAF, respectively, compared to controls (3.33 ± 4.71%). Leslie matrix population projections based on empirical microplate data indicated lower production rates through three generations of exposure to WAFs. Furthermore, a comparison between NIST and Louisiana crude oil WAFs using the same life-cycle approach indicated a greater chronic toxicity for the Louisiana WAF and an overall developmental delay in exposures to high WAFs (50% and 100% WAFs) from both crude oil types.  相似文献   

11.
The copulation duration of male wolf spider Pardosa astrigera, was significantly influenced by environmental temperature, as had been found in some insect species. Therefore, temperature during male courtship and copulation may influence the amount of sperm and seminal fluids transferred during copulation, which in turn could influence female fitness. In order to test this hypothesis, we subjected pairs of male and female P. astrigera to five temperature groups from 16 to 32 °C at an interval of 4 °C, and investigated whether and to what extent the various temperatures during male courtship and copulation influenced female reproductive output and female adult longevity under controlled laboratory conditions. With the increase of copulation temperature, females were more likely to lay egg sacs. The total egg sacs and lifetime fecundity of female were positively influenced by copulation temperature, whereas female lifetime spiderlings and adult longevity were independent of copulation temperature.  相似文献   

12.
Quahog parasite unknown (QPX) is a protistan microorganism associated with mass mortalities of hard clams (Mercenaria mercenaria) along the northeastern coasts of the United States and maritime Canada. Because several studies indicate modulatory effects of prevailing environmental parameters on disease outbreaks, this study tested the effect of major environmental parameters (temperature, salinity and oxygen concentration; individually or combined) on QPX survival in artificial seawater and parasite growth in culture media in vitro. Three QPX isolates from two different geographic locations were compared. Results indicated that in vitro growth of QPX was optimal in standard culture medium at 34 ppt between 20 °C and 23 °C. Additionally, significant differences in temperature optima were observed for geographically distinct QPX isolates (p < 0.001) confirming previous studies suggesting the existence of different QPX strains (or ecotypes). When tested in seawater, QPX exhibited opposite trends with higher survival at 15 °C and 15 ppt. Results also demonstrated limited survival and growth of QPX under anoxic conditions. Additionally, results showed that the parasite is able to survive extreme temperatures (−12 °C to 32 °C) suggesting that QPX could overcome short periods of extreme conditions in the field. These results contribute to a better understanding of interactions between QPX and its environment, but potential impacts of environmental conditions on QPX disease development need further work as it also involves clam response to these factors.  相似文献   

13.
The proposition to introduce the Asian oyster Crassostrea ariakensis to the mid-Atlantic region of the USA is being considered with caution, particularly after the discovery of a novel microcell haplosporidian parasite, Bonamia sp., in North Carolina. Although this parasite was found to be pathogenic in C. ariakensis under warm euhaline conditions, its persistence in C. ariakensis exposed to various temperature and salinity combinations remained unresolved. In this laboratory experiment, we tested the influence of temperature in combination with a wide range of salinities (10, 20 and 30 psu) on Bonamia sp. Temperature was either changed from warm (>20 °C) to cold (6 °C for 6 weeks) and back to warm or maintained constant and warm. Warm temperature was associated with higher host mortality than cold temperature, suggesting that temperature influenced Bonamia sp. pathogenicity. The effect of salinity was revealed under warm temperature with highest mortality levels observed in infected C. ariakensis exposed to 30 psu. When temperature was increased following low-temperature exposure, Bonamia sp. was not detected; however sub-optimal experimental conditions may have contributed to this result, making it difficult to draw conclusions regarding the reemergence of the parasite after low-temperature exposure. Although the overwintering of Bonamia sp. in C. ariakensis will need to be further investigated, the results presented here suggest that Bonamia sp. may be able to persist in C. ariakensis under a combination of low temperature and meso- to euhaline salinities.  相似文献   

14.
The fecundity and hatching success of Acartia clausi were analysed at fixed salinity sites (35, 34 and 33 psu) in two nearby estuaries (Bilbao and Urdaibai, Basque coast, Bay of Biscay) from March to June 1997. Field incubations were conducted to estimate egg production rates and hatching success, and the size of eggs and experimental females measured. Water temperature and dissolved oxygen saturation were also determined, as well as seston samples to quantify food abundance and quality. Between-estuary and within-estuary differences were tested statistically, and correlation and regression analyses were used to determine relationships between reproductive and environmental variables. Egg production rates were higher in the organically enriched estuary of Bilbao; this denoting that food supply controls the fertility of A. clausi in these systems. Temporal patterns of egg production differed between estuaries, and were associated with different nutritional factors in each estuary. Within the salinity range analysed, egg production reached higher values at intermediate salinity (≈34 psu) in both estuaries. This was interpreted as the result of the interaction between the positive effect of food increase, and the negative effect of physicochemical conditions with decreasing salinity. Egg size variations mainly occurred temporally in relation to female size, but no clear trade-off between egg size and egg number was observed in any case. A drop in hatching success in Bilbao, mainly in waters of <34 psu, was related to the oxygen depletion caused by organic pollution. This indicates that organic enrichment in Bilbao has opposite effects on the reproductive success, because it enhances egg production but reduces offspring survival.  相似文献   

15.
Two non-indigenous botryllid ascidian species - Botryllus schlosseri (golden star tunicate) and Botrylloides violaceus (violet tunicate) - have become established in British Columbia (BC), Canada. One species, B. schlosseri, is native to Europe while the other, B. violaceus, is native to Asia. Environmental tolerances of both species are poorly understood. We examined the effects of temperature and salinity on growth, survival, and reproduction of these species in the laboratory in order to characterize their environmental tolerances and preferences. Laboratory-raised juvenile colonies were studied using a two-factorial experimental design with five levels of temperature (5, 10, 15, 20, 25 °C) and five levels of salinity (14, 20, 26, 32, 38‰). Both B. schlosseri and B. violaceus possessed broad temperature and salinity tolerances, but B. schlosseri was slightly more euryhalinal than B. violaceus. Generally, B. schlosseri survived environmental conditions of 10-25 °C and 14-38‰, exhibited positive growth at 10-25 °C and 20-38‰, and attained its largest colony sizes at 15-20 °C and 20-38‰. Botrylloides violaceus tolerated environmental conditions between 5-25 °C and 20-38‰, demonstrated positive growth at 15-25 °C and 26-38‰, and attained its largest colony sizes at 20-25 °C and 26-38‰. Results from the laboratory experiment were then used in a modeling exercise to determine the coastal areas of BC that these organisms might be likely to exist in or invade, based on near-surface temperatures and salinities. The model predicted that no areas were totally unsuitable for survival and growth of either species (based solely on temperature and salinity tolerances), with the most suitable locations being along the west coast of Vancouver Island, a region with significant shellfish aquaculture activity.  相似文献   

16.
The purpose of this study was to evaluate the effect of embryonic incubation temperature on the morphology, energetic content, and individual weights of C. opilio zoeae. Ovigerous female C. opilio were collected by trawl from the eastern Bering Sea in the summer of 2002 and were held in the laboratory at five temperature treatments (− 1, 0, 1, 3, and 6 °C) from embryo stage five to hatching. The mean duration of incubation ranged from 240 d at 6 °C to 353 d at − 1 °C. No relationship between larval weight and caloric content with incubation temperature was detected, indicating that increased development time at cooler temperatures may not have an energetic cost. However, several morphological features varied with temperature. Most larval characters including rostro-dorsal length, rostral spine length, lateral spine length, and carapace width were smaller at the warmest incubation temperature. Protopodite length did not differ with temperature. The length of the 3rd abdominal somite consistently increased with increased temperature and may serve as a suitable indicator that could be used in field populations to infer temperature of incubation. Variation in morphology with temperature could confound identification of C. opilio zoeae from those of a congener, Chionoecetes bairdi because identification of C. bairdi is based on the length of the 3rd abdominal somite.  相似文献   

17.
Rockpools on Loggerhead Key in the Dry Tortugas National Park experience cyclic tidal changes in water quality and physical dimension resulting in ichthyofaunal assemblages that differ markedly from the adjacent coral reef. Within the beach rock formations and areas transitioning to the nearby reef, we observed 45 fish species; however, only four species - schoolmaster, Lutjanus apodus, French grunt, Haemulon flavolineatum, cocoa damsel, Pomacentrus variabilis, and frillfin goby, Bathygobius soporator - were found in all rockpools. All fishes were transient juveniles except for frillfin goby, which was a pool resident. High temperature tolerance, (Critical Thermal Maxima), and low oxygen tolerance, (Critical Oxygen Minima) for schoolmaster, French grunt, cocoa damsel, and frillfin goby were 40.9, 36.2, 37.6, 40.9 °C and 0.56, 0.77, 0.50, and 0.27 mg/L, respectively. All four species demonstrated thermal and hypoxia tolerance values similar to those published for species traditionally noted as abiotic specialists. Although fish distribution patterns in rockpools were likely influenced by structural complexity and spatial limitations, the relationship between pool morphology and species richness was weak, suggesting that physiological tolerance to high temperature and low oxygen among reef fishes may be more influential in determining which species inhabit the rockpools. Harsh thermal and oxic conditions that cannot be exploited by less tolerant species may be beneficial for some Loggerhead Key reef fishes in providing refuge from predators, foraging grounds, or potential nursery areas.  相似文献   

18.
The responses of the larvae of the cirripede barnacle Peltogasterella gracilis (Crustacea: Cirripedia: Rhizocephala) that parasitizes the hermit crab Pagurus pectinatus to different combinations of seawater temperature (25, 22, 20, 16, and 12°C) and salinity (from 34 to 8) were studied in a laboratory. The nauplii of P. gracilis completed the entire cycle of development at 22 to 12°C in a narrow range of salinity (from 34 to 28), which agrees well with the environmental conditions of the crab hosts' habitat. At favorable temperatures (22–20°C) and salinity (34–28), the nauplii reached the cypris stage in 88 ± 2 h, while at 12°C and 34–30, the naupliar development took 156 ± 5 h. The cypris larvae appeared more resistant compared with the nauplii, in terms of changes in both the temperature and salinity of seawater. They actively swam at all experimental temperatures and in the salinity range of 34–18. At temperatures (22–16°C) and salinities (34–24) favorable for the cyprids, their longevity in plankton equaled 6–10 days. Thus, the nauplii of P. gracilis is the more vulnerable stage of development in the life cycle of this parasitic barnacle. The tolerance against changes in environmental factors is due to the adaptive capabilities of parasitic larvae and the environmental conditions in the habitats of its host, a typical marine crustacean. The insignificant parasitization rate of the hermit crab by its rhizocephalan parasite may be explained by the death of the nauplii of P. gracilis, which occurs when they enter to the surface water layer.  相似文献   

19.
There has been an increasing interest in using the brackish water mysid Neomysis integer as a toxicological test species for Western European estuarine systems. In this respect, more data on growth, moulting and development in this species is needed. The influence of prevailing environmental variables (e.g. temperature, salinity) and age on these processes as well as their optimal range have to be known in order to develop optimal laboratory cultures and to differentiate between chemically induced variability and natural variability in toxicity testing. Individual post-marsupial growth (size, intermoult period, growth factor) was studied from first day neonates until adulthood at eight environmentally relevant temperature-salinity conditions. Three salinities (5, 15 and 30 psu) were tested at 15 and 20 °C, and two more extreme temperatures (8 and 25 °C) were tested at a salinity of 5 psu.Survival and growth of N. integer were detected within the whole range tested, but sexual maturation was only possible in the narrower range of 15-25 °C and 5-15 psu. The size at maturity of N. integer increased with decreasing temperature and increasing salinity. Salinity seems to have a stronger effect than temperature on the duration of maturation. The sigmoid von Bertalanffy growth model was fitted to the individual and pooled data, except for the 8 °C experiment where growth was linear. Estimates from pooled data were comparable with individually based estimates, but generally underestimated the asymptotic length. Temperature was negatively correlated with the asymptotic length and positively correlated with the growth constant K. Higher temperatures caused smaller intermoult periods but had no effect on the growth increment, while salinity effects were less straightforward and dependent on the water temperature. A tool is provided to estimate the age, moult number, intermoult period, growth factor and growth rate from the body standard length of N. integer. Experimentally derived von Bertalanffy parameter estimates resulted in a higher growth performance index compared with field-based estimates for the Schelde estuary and Galgenweel populations of N. integer.  相似文献   

20.
Observations made overseas of predation by blue mussels and zebra mussels on mesozooplankton (>200 μm) have raised concern within New Zealand that the Greenshell mussel, Perna canaliculus, which is cultured in large tonnages throughout hundreds of marine farms within the New Zealand coastal zone, could exert ecologically detrimental effects by preying on zooplankton. We conducted experiments at Clova Bay, Pelorus Sound in May 2002 to determine the rates that P. canaliculus ingests prey, up to and including the mesozooplankton size range. Single mussels from farms were incubated with seawater enriched with zooplankton (>60 μm) in gently circulated 15-l pails. Depletion of chlorophyll-a (chl-a), ciliate microzooplankton, and nauplii, copepodites, and adults of copepods was determined over 5 h, relative to controls with no mussels. Two experiments were made over consecutive days. Gut contents of these experimental mussels, and of mussels examined soon after collection from a farm, were described.Gut contents of experimental and of freshly collected mussels (standard shell length ∼90 mm) had numerous copepod parts, whole copepods and larval bivalves present. Experimental mussels cleared chl-a and ciliates from 59- to 137-l individual−1 day−1, respectively, averaged across the two experiments. Faster ciliate than chl-a clearance was probably caused by the high proportion (56%) of phytoplankton below the retention size for P. canaliculus (ca. 5 μm) and by faster ciliate grazing in controls than treatments. The average clearance rates of adult, copepodite, and naupliar copepod stages by mussels were 20, 31, and 49 l individual−1 day−1, respectively. The clearance rates of each copepod stage were not significantly different between the two experiments. Clearance of nauplii was significantly greater than of adults and copepodites, while adult and copepodite clearance rates were nearly significantly different. The mean lengths of the adult, copepodite, and naupliar copepods were 430, 265, and 165 μm, respectively. The decreasing clearance rates with increasing size and development of prey (from ciliates, through naupliar, copepodite to adult copepods), suggested that prey escape ability, related to body size and/or morphology, affected capture rates. Mussel faecal samples indicated complete digestion of the gut contents. Pseudofaecal samples showed very low rejection rates of mesozooplankton by mussels. The results are considered in context of current biophysical modelling studies of impacts of large mussel farms in New Zealand. Designs of future experiments to improve accuracy of estimates of mesozooplankton clearance rates by P. canaliculus are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号