首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006-2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas) and by turtle size class (smaller oceanic feeders vs. larger benthic feeders). Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles' debris preferences (color and type) using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles.  相似文献   

2.
海洋沉积物中重金属对底栖无脊椎动物的生物有效性   总被引:1,自引:0,他引:1  
汪飞  黄小平 《生态学杂志》2012,31(1):207-214
海洋沉积物是重金属的重要贮库,而海洋底栖无脊椎动物主要从沉积物中摄取重金属,这些被摄取的重金属能够通过食物链进行传递,进而影响到人类健康。本文总结了近些年来在海洋沉积物中重金属对底栖无脊椎动物生物有效性方面的研究进展,包括海洋底栖无脊椎动物对重金属的吸收途径、沉积物地球化学性质和底栖无脊椎动物生理等生物因素对沉积物中重金属生物有效性的影响。在此基础上,展望了未来研究重点,主要包括近海富营养化对沉积物中重金属生物有效性的影响,海洋底栖无脊椎动物消化道中的物理消化过程对沉积物中重金属生物有效性的影响,海洋底栖无脊椎动物整个生活史过程中沉积物中重金属生物有效性的变化等。  相似文献   

3.
Gary L. Taghon 《Oecologia》1982,52(3):295-304
Summary Feeding experiments were conducted on marine, deposit-feeding benthic invertebrates to test the predictions of an optimal foraging model. Food item selection based on sediment particle size and presence or absence of an organic coating on particles was investigated. Animals displaying a wide range of feeding mechanisms were studied in particle size-selection experiments using artificial sediment of closely controlled size composition. Nine of 10 species from 4 phyla ingested smaller particles in greater proportions than the particles were present in the sediment. In experiments where animals fed on a mixture of two particle types, one with and one without a surface protein coating, 6 of 7 species from 3 phyla ingested preferentially the protein-coated beads. While these trends of selection of smaller particles and protein-coated particles follow qualitatively the predictions of the optimal foraging model, the animals did not ingest exclusively the preferred particle types. Mechanics of particle handling rather than behavioral responses to particle characteristics appear to offer the better explanation for the observed selection patterns. In particular, the results support strongly the recently proposed role of mucous adhesion in particle selection by deposit feeders.These and other results from studies of deposit feeders suggest that factors in addition to food item selection must be considered when testing the assumptions and predictions of optimal foraging theory. Specifically, feeding energetics are also affected by postfood-selection processes such as variation of ingestion rate. Furthermore, the effects of abiotic environmental factors on foraging behavior cannot be overlooked in evaluating the optimality of foraging behavior; variable water velocity affected differently the particle size selectivity of 3 sympatric polychaete species in these studies.Contribution No. 1239 from the School of Oceanography, University of Washington  相似文献   

4.
Banffia constricta is an enigmatic Burgess Shale animal originally described by Charles Walcott in 1911 as an annelid, and more recently as a stem‐group deuterostome. Interpreted, on the basis of anatomy, to have been bottom‐feeders, there are few other data from which to draw interpretations of Banffia's life habit. A slab of Burgess Shale with a dense aggregation of B. constricta may indicate a gregarious habit for the animal, as taphonomic and stratigraphical data indicate an in situ origin for the assemblage. Clustering of individuals, high density of the individuals and non‐random within‐cluster orientation support the hypothesis that detritus‐feeding B. constricta congregated to feed on a local, rich food source. Presumed opportunistic feeding aggregations have been documented in at least one other Burgess Shale taxon and have been described for other fossil benthic marine invertebrates. Extant benthic marine invertebrates such as holothurians and echinoids exhibit mass feeding behaviour and may serve as modern analogs for the behaviour represented by the B. constricta assemblage.  相似文献   

5.
Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best‐fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life‐stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at‐risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.  相似文献   

6.
Abyssal holothurians and sediment samples were collected at depths of 4,430 to 4,850 m in the Demerara abyssal plain. Bacterial concentrations in progressive sections of the holothurian digestive tract, as well as in surrounding surface sediments, were determined by epifluorescence microscopy. Total bacterial counts in sediments recently ingested by the animals were 1.5- to 3-fold higher than in surrounding sediments at the deepest station. Lowest counts were observed consistently in the foregut, where the digestive processes of the holothurian are believed to occur. In most animals, counts increased 3- to 10-fold in the hindgut. Microbial activity at 3°C and in situ and atmospheric pressure were determined for gut and sediment samples by measuring the utilization of [14C]glutamic acid, the doubling time of the mixed-population of culturable bacteria, and the percentage of the total bacterial count responsive to yeast extract in the presence of nalidixic acid, using epifluorescence microscopy. A barophilic microbial population, showing elevated activity under deep-sea pressure, was detected by all three methods in sediments removed from the hindgut. Transmission electron micrographs revealed intact bacteria directly associated with the intestinal lining only in the hindgut. The bacteria are believed to be carried as an actively metabolizing, commensal gut flora that transforms organic matter present in abyssal sediments ingested by the holothurian. Using data obtained in this study, it was calculated that sediment containing organic matter altered by microbial activity cleared the holothurian gut every 16 h, suggesting that abyssal holothurians and their associated gut flora are important participants in nutrient cycles of the abyssal benthic ocean.  相似文献   

7.
External chemical signals used by scleractinian corals to recognize suitable substrata for larval settlement and metamorphosis were identified from crustose coralline red algae (CCA). A fragment of coral rubble with CCA induced larval metamorphosis of the scleractinian coral Pseudosiderastrea tayamai. A natural inducer and compounds that enhanced its effect in larval metamorphosis were isolated from the methanol extracts of coral rubble with CCA. A bromotyrosine derivative, 11-deoxyfistularin-3 (10− 7 M) isolated from the CCA, induced the metamorphosis of P. tayamai larvae (27.5 ± 24.0%). In the presence of fucoxanthinol (10− 9 M) and fucoxanthin (10− 9 M), the percentage of metamorphosis induced by the bromotyrosine derivative was further enhanced to 87.8 ± 13.0 and 88.4 ± 17.8%, respectively. Both carotenoids are also found in the coral rubble with CCA. These results suggest that bromotyrosine derivative and carotenoids have a synergistic effect in the metamorphosis of P. tayamai larvae. The synergistic effect provides a higher selectivity for recruitment than a single-component natural inducer for recognizing suitable substrata for larval metamorphosis. Thus, the effect might offer a survival advantage for benthic marine invertebrates.  相似文献   

8.
The fate of benthic bacterial biomass in benthic food webs is a topic of major importance but poorly described. This paper describes an alternative method for evaluation of bacterial grazing rate by meiofauna and macrofauna using bacteria pre-enriched with stable isotopes. Natural bacteria from the sediment of an intertidal mudflat were cultured in a liquid medium enriched with 15NH4Cl. Cultured bacteria contained 2.9% of 15N and were enriched sufficiently to be used as tracers during grazing experiments. Cultured bacteria presented a biovolume (0.21 μm3) and a percentage of actively respiring bacteria (10%) similar to those found in natural communities. The number of Operational Taxon Units found in cultures fluctuated between 56 and 75% of that found in natural sediment. Despite this change in community composition, the bacterial consortium used for grazing experiments exhibited characteristics of size, activity and diversity more representative of the natural community than usually noticed in many other grazing studies. The bacterial ingestion rates of three different grazers were in the range of literature values resulting from other methods: 1149 ngC ind− 1h− 1 for the mud snail Hydrobia ulvae, 0.027 ngC ind− 1 h− 1 for the nematode community, and 0.067 ngC ind− 1 h− 1 for the foraminifera Ammonia tepida. The alternative method described in this paper overcomes some past limitations and it presents interesting advantages such as short time incubation and in situ potential utilisation.  相似文献   

9.
Egeler  Philipp  Meller  Michael  Roembke  Joerg  Spoerlein  Peter  Streit  Bruno  Nagel  Roland 《Hydrobiologia》2001,463(1-3):171-184
Sediments contaminated with poorly water-soluble organic chemicals pose a risk to aquatic food chains. Sediment-associated chemicals can be accumulated by endobenthic, sediment-ingesting invertebrates. Some tubificid species – or other benthic annelids – serve as food for benthivorous fish, which thereby ingest the sediment-borne chemicals and may accumulate contaminant concentrations far higher than from water exposure only, and transfer them to organisms of higher trophic levels. For measurement of biomagnification, a sediment based food chain was developed and established in the laboratory. The two-step food chain included the sediment-dwelling freshwater oligochaete Tubifex tubifex (Müller) as a representative species of benthic infauna. The three-spined stickleback (Gasterosteus aculeatus, Linné), a small teleost fish which often feeds primarily on benthic invertebrates, served as a model predator. Spiked artificial sediment and reconstituted water as the overlying medium were used. Experiments were performed using 14C-labelled hexachlorobenzene, a hydrophobic pollutant as a model compound. To examine the influence of benthic prey on the bioaccumulation of the test substance in the predator, fish were exposed to spiked water, spiked sediment, pre-contaminated prey organisms, or combinations of these exposure routes. The results of these experiments indicate that for hexachlorobenzene, the presence of contaminated Tubifex tubifex as a food source in combined exposure leads to significantly higher accumulation in fish than exposure to single pathways.  相似文献   

10.
When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been ‘optimal’ foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to differences in plastic ingestion.  相似文献   

11.
Population density, nitrate turnover, and oxygen respiration of benthic foraminiferans were investigated in the oxygen minimum zone (OMZ) off the Chilean coast. Live foraminiferans were found predominantly in the upper 3 mm of the sediment, and the nitrate accumulating species Nonionella cf. stella and Stainforthia sp. dominated with a combined standing stock of 2.0 × 106 Rose Bengal stained specimens m− 2. The rate of denitrification in cells of N. cf. stella analyzed with nitrous oxide microsensors during acetylene inhibition was 84 ± 33 pmol C individual− 1 d− 1. Multiplied with the standing stock of N. cf. stella and Stainforthia sp. this yielded a minimum benthic denitrification rate of 173 µmol N m− 2 d− 1 by foraminiferans. Foraminiferal denitrification, which seemed to account for almost all benthic denitrification at the investigated site will be overlooked by most conventional methods measuring benthic denitrification. Compared to the denitrification rates, the potential rates of nitrate accumulation and oxygen respiration by N. cf. stella were an order of magnitude higher (864 pmol N individual− 1 d− 1 and 760 ± 87 pmol C individual− 1 d− 1, respectively), which seems an adaptation to the infrequent availability of nitrate and oxygen in the sediment surface.  相似文献   

12.
It is unknown whether sulfide-tolerant marine invertebrates suffer cytotoxicity from sulfide exposure in vivo at environmentally-relevant concentrations. We tested this with the mudflat polychaete Glycera dibranchiata. Exposure of live animals to sulfide up to 2.4 mmol l− 1 for 24 h did not affect animal survival, and animal condition (gross appearance and activity) was unaffected at sulfide concentrations up to 0.25 mmol l− 1. However, animal condition was decreased at higher sulfide concentrations (P < 0.0001, n = 33). Coelomic fluid obtained from the animals showed decreased erythrocyte count (P = 0.0035, n = 14), indicating cell loss, and increased propidium iodide and Hoechst 33324 staining (P < 0.0001 and P = 0.0003, respectively, n = 14), indicating loss of plasma membrane integrity, even at sulfide concentrations that produced no change in animal condition. When G. dibranchiata were allowed a 72 h recovery period following 24 h sulfide exposure, there was no overall improvement in condition (P ≥ 0.12, n = 7-8), and worms that had been exposed to 1 mmol l−  1 sulfide still had an erythrocyte count that was less than half that of control animals (P = 0.028, n = 7). The inability to completely recover the cell count was at least partially due to impaired production of new erythrocytes, since analysis of BrdU incorporation indicated that erythrocyte proliferation was reduced from 2% per day in control animals to 0.12% per day in animals exposed to 1 mmol l− 1 sulfide (P = 0.010, n = 21). Together, these findings indicate that at least some sulfide-tolerant marine invertebrates experience significant cellular injury and impaired tissue proliferation when exposed to environmentally relevant sulfide concentrations, even when the appearance and behavior of the animal appear unaffected.  相似文献   

13.
In order to evaluate the role of hypoxic conditions of overlying water in the benthic flux and speciation of Hg, we analyzed sediment cores from hypoxic or oxic sites downstream from a sewage outfall in the Damyang Riverine Wetland, Korea. Each core was analyzed for total Hg (THg), monomethylmercury (MMHg), and elemental Hg (Hg0) from sediment, and for THg and MMHg from pore water. Hypoxic conditions of the overlying water near the sewage outfall were associated with a peak production of Hg0, but the lowest production of MMHg, in the upper 2 cm sediments. The benthic fluxes of THg and MMHg were estimated at 130-2109 ng m−2 day−1 and −12 to 260 ng m−2 day−1, respectively. The order of MMHg flux from sediment to overlying water at each site did not follow the order of MMHg concentration in sediment, but was highest in hypoxic water conditions. The results suggest that maintaining oxic conditions in wetland water is important for decreasing the transfer of MMHg from sediment into overlying water.  相似文献   

14.
Marine litter has been defined as solid materials of human origin discarded at sea, or reaching the sea through waterways. The effect of marine debris on wildlife, tourism and human health is well documented and there is considerable scientific literature about plastic litter in the sea and over the seabed, mostly highlighting the possible impact on marine mammals and tourism. Dispersal of marine and terrestrial organisms on floating objects has biogeographical and ecological interest. For some species, extension of their geographical range is more likely to be related to transport of mature individuals on floating rafts than to the active or passive dispersal of reproductive propagules. Variability and variety of rafting materials has increased dramatically in recent years and marine litter has been used widely as a raft by ‘hitch-hiking’ species. This paper reports on the benthic invertebrates living on marine debris transported by wind and surface currents over the western Mediterranean Sea. Plastics accounted for the major item of debris because of poor degradability, however glass, cans, fishing nets and polyurethane containers, were also found. Macro-benthos living on raft material comprised mainly molluscs, polychaetes and bryozoans. Large fish were found commonly below large plastic bags. Estimations of the distances that may be covered by hitch-hiking species and the contribution of rafting to the theoretical dispersal of species is provided.  相似文献   

15.
Effective management of eutrophic ecosystems requires an understanding of how nutrient input affects the structure and function of benthic communities. The effects of nutrients in soft sediment habitats can be influenced by a variety of factors including sediment characteristics, hydrodynamic exposure, and the presence of bioturbating macroinvertebrates. We used a large scale exclusion experiment (400 m2 areas, n = 6) to test if bioturbating lugworms, Arenicola marina mediate the effects of nutrient enrichment. We incorporated small plots (30 × 30 cm) dosed with household garden fertilizer within the lugworm exclusion and corresponding control areas and predicted that the effects of nutrient enrichment would be greater in the absence of lugworms. We found that the increases in nutrient concentrations were higher in the absence of lugworms, but only in the less permeable sediment in the low intertidal zone compared to the more permeable sediment in the high intertidal. Contrary to expectations, the accumulation of nutrients in the plots did not affect the organic matter and chlorophyll levels in the sediment. Interestingly, there were overall negative effects of nutrient additions on some of the most abundant molluscs, Hydrobia ulvae, Retusa obtusa and juvenile Cerastoderma edule. Possible explanations for these adverse effects such as the changes in the sediment chemistry or the physical presence of the fertilizer in the sediment caused by the nutrient additions are discussed. We conclude that the effects of nutrient enrichment in soft sediment habitats on benthic assemblages are determined by the interplay between the presence of bioturbating macroinvertebrates, tidal height and sediment characteristics.  相似文献   

16.
While the ecophysiology of planktonic Mesodinium rubrum species complex has been relatively well studied, very little is known about that of benthic Mesodinium species. In this study, we examined the growth response of the benthic ciliate Mesodinium coatsi to different cryptophyte prey using an established culture of this species. M. coatsi was able to ingest all of the offered cryptophyte prey types, but not all cryptophytes supported its positive, sustained growth. While M. coatsi achieved sustained growth on all of the phycocyanin‐containing Chroomonas spp. it was offered, it showed different growth responses to the phycoerythrin‐containing cryptophytes Rhodomonas spp., Storeatula sp., and Teleaulax amphioxeia. M. coatsi was able to easily replace previously ingested prey chloroplasts with newly ingested ones within 4 d, irrespective of prey type, if cryptophyte prey were available. Once retained, the ingested prey chloroplasts seemed to be photosynthetically active. When fed, Mcoatsi was capable of heterotrophic growth in darkness, but its growth was enhanced significantly in the light (14:10 h light:dark cycle), suggesting that photosynthesis by ingested prey chloroplast leads to a significant increase in the growth of M. coatsi. Our results expand the knowledge of autecology and ecophysiology of the benthic M. coatsi.  相似文献   

17.
This study focused on effects from Monoporeia affinis reworking and ventilation activities on benthic fluxes and mineralization processes during a simulated bloom event. The importance of M. affinis density for benthic solute (O2, ΣNO2 + NO3, NH4+ and HPO42−) fluxes and sediment reactivity (mobilization of NH4+ and HPO42−) following additions of organic material to the sediment surface was experimentally investigated using sediment-water and closed sediment (jar) incubations. Three different densities of M. affinis were used to resemble a low, medium and high density situation (1300, 2500 and 6400 ind. m− 2, respectively) of a natural amphipod community. The degradation of phytodetritus (Tetraselmis sp., 5 g C m− 2) added to the sediment surface was followed over a period of 20 days. Benthic solute fluxes of O2, ΣNO2 + NO3 and NH4+ were generally progressively stimulated with increasing number of M. affinis, while no such correlation was found for HPO42−. Solute fluxes were initially enhanced 1 to 2 days after the addition of phytodetritius, caused by mineralization of the most labile organic material and a food-stimulated irrigation by the amphipods. There was no effect from the activity of M. affinis on total denitrification (Dtot = Dn + Dw) or denitrification utilizing nitrate from coupled nitrification/denitrification (Dn) for any of the densities examined. Denitrification utilizing overlying water nitrate (Dw) was only about 10% of Dtot. Dw was significantly enhanced for the highest M. affinis density investigated. The reactivity of the sediment decreased progressively with increasing density of M. affinis and with time of the experiment. However, enhanced ammonium production at least 6 days after the organic addition indicated excretion of N-containing organic compounds by M. affinis. In conclusion, large spatial and temporal variations in density of M. affinis may be of significant importance for benthic solute fluxes and overall mineralization of organic material in Baltic Sea sediments.  相似文献   

18.
Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2′-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g–1 to µg g–1. Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub µg l–1 to mg l–1 and were correlated with the level of economic development.  相似文献   

19.
Anthropogenic metal pollutants bioaccumulated in benthic animals by means of feeding and osmotic diffusion. These metals may affect the physiology of the benthos. In this study, we exposed Capitella sp. I to three metals (Cd, Pb, and Ni), each in eight different concentrations, to determine the effects of metals on the animals. Growth rate, ingestion rate, and percent survival were estimated in three separated experiments. The growth and feeding of the worms were sensitive to even the lowest concentrations of each metal added to the sediments. The lowest observable adverse effect levels for Cd, Ni, and Pb were 0.03, 1.59, and 0.41 μmol g 1 sediment, respectively. Growth rates in the elevated metal contaminant treatments decreased drastically at slightly contaminated levels, lessened detrimental effects at moderately contaminated levels, and showed incompensable intoxication at heavily contaminated levels. The trends in ingestion rates were similar to those of growth rates. No significant difference in survivorship was found among the different contaminant levels for any of the three heavy metals. Capitella sp. I was most sensitive to Cd, followed by Ni and Pb, which had similar effects. The rapid physiological responses of Capitella sp. I allowed the animals to survive metal exposure. Sediment productivity remained unchanged at different contamination levels of Ni and Pb, but was drastically reduced at 4.75 μmol g 1 Cd in the sediment. This further demonstrated Capitella sp. I can adjust their ingestion rates to maintain constant sediment productivities in moderate pollution conditions; however, when threshold concentration was exceeded, homeostasis collapsed.  相似文献   

20.
This study examined how sediment-sorbed PCBs and several large storms affected sediment nutrient dynamics based on potential nitrification rates and benthic flux measurements. PCBs were hypothesized to negatively affect potential nitrification rates due to the sensitivity of nitrifying bacteria. Sediment disturbance caused by the succession of storms, which can enhance nutrient inputs and phytoplankton production, was hypothesized to enhance both potential nitrification rates and benthic flux measurements as a result of higher nutrient and organic matter concentrations. Potential nitrification rates, benthic fluxes (NO3  + NO2 , NH4 +, and DIP), sediment PCB content, water content, organic content, salinity, bottom water dissolved oxygen, and sediment chlorophyll were measured at 13 different sites in Escambia Bay during the summer of 2005. Potential nitrification rates were highest at deep, organic-rich sites. Total PCB content did not have a direct effect on potential nitrification rates. An analysis of recent changes in benthic processes in relation to extreme meteorological events was performed by comparing the 2005 results with data from 2000, 2003, and 2004. Storm effects on sediment biogeochemistry were mixed with sediment nitrogen dynamics enhanced at some sites but not others. In addition, SOC and NH4 + fluxes increased in deeper channel sites after Hurricanes Ivan and Dennis, which could be attributed to the deposition of phytoplankton blooms. Sediment nutrient dynamics in Escambia Bay appear to be resilient to these extreme meteorological events since there were no significant effects on sediment processes in the Bay as a whole. Handling editor: P. Viaroli  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号