首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Do patchy distribution patterns of infaunal polychaetes result from active site selection of larvae influenced by sediment-associated microbial cues? This hypothesis was tested with still-water laboratory settlement assays revealing the acceptance or rejection of polychaete larvae to qualitatively different sediments. Laboratory brood cultures of the spionid polychaetes Polydora cornuta and Streblospio benedicti yielded a sufficient number of larvae with planktotrophic development for bioassays. High settlement rates (75-95%) of test larvae were observed in response to natural sediment. Sterilization of natural sediment significantly decreased settlement of P. cornuta (25-55%) while combustion of sediment significantly decreased the settlement rate in both species (5-50%). Differences in settlement responses to sediments treated by sterilization or combustion most likely resulted from a variety of factors such as modified sediment fabric, grain size distribution and quantity of adsorbed organic matter. To experimentally address the potential role of microorganisms and microbial metabolites as mediators of larval settlement, ashed sediment was inoculated with viable microorganisms obtained from natural sediment. In both polychaete species, this treatment significantly increased larval settlement in comparison to the control of ashed sediment indicating that larval settlement was at least partially mediated by the presence of microorganisms associated with sediment.  相似文献   

2.
在水温23.2-24.0℃,盐度29.5-30.0条件下,研究了5种单胞藻饵料和饥饿对魁蚶浮游幼虫生长与存活的影响.投喂不同饵料试验中,球等鞭金藻与4种单胞藻混合投喂试验组幼虫的特定生长率、眼点幼虫比例和壳长均显著高于单一投喂试验组,其中球等鞭金藻与小球藻混合投喂的效果最好;投喂单一饵料试验中,球等鞭金藻组幼虫的生长、眼点幼虫比例与存活率显著高于其它试验组.在饥饿试验中,不同饥饿天数条件下幼虫的存活率差异不显著;生长方面,饥饿1-2d较短时间与一直投喂对照组的幼虫相比较,特定生长率、眼点幼虫比例、壳长的差异不显著,但随着饥饿时间延长,幼虫的生长变慢且眼点幼虫比例下降,一直饥饿情况下幼虫的生长基本停滞.研究结果可以为魁蚶人工苗种繁育技术的改进提供参考依据.  相似文献   

3.
4.
Gray snapper (Lutjanus griseus) encounter a wide range of temperatures and salinities in nearshore and estuarine juvenile habitats. The energetic response of juvenile gray snapper to temperature and salinity was measured in laboratory experiments to determine the influence of these physicochemical factors on the potential value of different juvenile nurseries. Maximum consumption and growth rates of juvenile (25-50 mm SL) gray snapper were determined in 12-day trials at 20 temperature/salinity combinations representing conditions in juvenile habitats. Ad libitum feeding level of individual fish was measured daily. Maximum weight specific feeding rate increased significantly with temperature and salinity; however, the effect of salinity was much less than that of temperature. Linear growth rate and specific growth rate both increased with temperature, and salinity did not have a significant effect on either. Gross growth efficiency (K1, growth×consumption−1*100) increased with temperature and was significantly lower at high salinities, indicating increased energetic costs. The higher K1 at lower salinities has several implications for juvenile gray snapper in low salinity habitats: (1) they would need less food to achieve the same somatic growth as juveniles in high salinity habitats; (2) they would have higher growth at limited ration levels as compared to high salinity habitats; and (3) they would have less impact on prey populations than higher salinity habitats assuming similar gray snapper densities.  相似文献   

5.
Oysters and mussels are among the most farmed species in aquaculture industry around the world. The aim of this study was to test the toxicity of cryoprotective agents to trochophore larvae from two different species of bivalves and develop an improved cryopreservation protocol to ensure greater efficiency in the development of cryopreserved trochophores (14 h old oyster larvae and 20 h old mussel larvae) to normal D-larvae for future developments of hatchery spat production. The cryopreservation protocol producing the best results for oyster trochophores (60.0 ± 6.7% normal D-larvae) was obtained by holding at 0 °C for 5 min then cooling at 1 °C min−1 to −10 °C and holding for 5 min before cooling at 0.5 °C to −35 °C, holding 5 min and then plunging into liquid nitrogen (LN), using 10% ethylene glycol. For mussel experiments, no significant differences were found when cooling at 0.5 °C min−1 or at 1 °C min−1 for CPA combinations with 10% ethylene glycol and at 0.5 °C min−1. Using these combinations, around half of trochophores were able to develop to normal D-larvae post-thawing (48.9 ± 7.6% normal D-larvae).  相似文献   

6.
Bos taurus indicus cattle are less susceptible to infestation with Rhipicephalus (Boophilus) microplus than Bos taurus taurus cattle but the immunological basis of this difference is not understood. We compared the dynamics of leukocyte infiltrations (T cell subsets, B cells, major histocompatibility complex (MHC) class II-expressing cells, granulocytes) in the skin near the mouthparts of larvae of R. microplus in B. t. indicus and B. t. taurus cattle. Previously naïve cattle were infested with 50,000 larvae (B. t. indicus) or 10,000 larvae (B. t. taurus) weekly for 6 weeks. One week after the last infestation all of the animals were infested with 20,000 larvae of R. microplus. Skin punch biopsies were taken from all animals on the day before the primary infestation and from sites of larval attachment on the day after the first, second, fourth and final infestations. Infiltrations with CD3+, CD4+, CD8+ and γδ T cells followed the same pattern in both breeds, showing relatively little change during the first four weekly infestations, followed by substantial increases at 7 weeks post-primary infestation. There was a tendency for more of all cell types except granulocytes to be observed in the skin of B. t. indicus cattle but the differences between the two breeds were consistently significant only for γδ T cells. Granulocyte infiltrations increased more rapidly from the day after infestation and were higher in B. t. taurus cattle than in B. t. indicus. Granulocytes and MHC class II-expressing cells infiltrated the areas closest to the mouthparts of larvae. A large volume of granulocyte antigens was seen in the gut of attached, feeding larvae.  相似文献   

7.
Bivalve molluscs, in common with consumers in general, use behavioral and physiological mechanisms to balance metabolic requirements with available nutrients. This study considered how the Pacific oyster, Crassostrea gigas, meets the demands of growth and maintenance, measured in terms of carbon and nitrogen, in a variable food environment. Stoichiometry theory helped to evaluate: a) whether feeding behaviour modifies the intake of C and N given seasonal variability in food quality: b) how rates of metabolism and excretion, and C and N growth efficiencies, respond to mismatch between nutrient intake and the oysters' needs. Two field experiments in the Port Stephens estuary, near Sydney, Australia, measured feeding behaviour, metabolic and growth rates relative to seasonal changes in food supply. In a laboratory experiment, relationships between physiological rates and growth were measured to test a model of growth as a function of absorption of C and N. Potential metabolic targets for compensation were the C/N ratios of body tissues, maintenance and/or of soft tissue added as growth. C/N of whole soft issues varied little during the year (mean 5.4). In July (a time of low food availability of poor quality) growth was negligible and the C/N (maintenance) target was 6.7. In March (abundant food of high quality) growth was rapid with a high N-demand; the C/N of growth was 3.9. In November (medium food quality) there was an enhanced C-demand for glycogen storage; the C/N of growth was 7.9. Feeding behaviour changed the balance between C and N intake across months, primarily due to changes in the selection efficiency for nitrogen, which was highest at low filtration rates on particles of high C/N ratio. Nitrogen intake was favoured over C in July. In November, C-intake increased relative to N. In March, when abundant food nitrogen coincided with a high demand for growth, feeding behaviour was neutral with respect to C/N ratios. In all cases C/N of absorbed matter was greater than the C/N of growth. Growth efficiencies for carbon declined with increased C/N of ingested matter due to higher metabolic increments (SDA) when feeding on lower food quality; the metabolic costs of growth did not vary. In contrast, growth efficiencies for nitrogen did not alter with C/N for ingested matter, due in part to increased nitrogen losses, relative to tissue nitrogen content, when feeding on low C/N food. Nitrogen was therefore conserved metabolically relative to C. Both feeding and metabolic processes contributed to compensation for the mismatch between seasonally variable food quality and the demands of growth.  相似文献   

8.
The escape response of Atlantic cod larvae (Gadus morhua) 25 and 47 days post hatch (dph) - either fed or deprived of food for three days - was studied. Larval escape responses were provoked by water movement from the suction of a fixed-position pipette. Escape latency, distance, speed, burst speed, and vertical and lateral escape angles were quantified using motion tracking software designed for 3-D silhouette video recordings. Escape performance, expressed as escape distance and escape speed, improved with age. The escape angles were normally distributed and highly variable, ranging from − 170° to 170° and − 40° to 105° for lateral and vertical escape angles respectively. No food deprivation-induced effects in any of the behaviours were found, suggesting that there are no condition-related behavioural effects (size-independent effects) in escape response performance after 3 d of food deprivation. This may reflect a negligible difference in the cost/benefit equation for fed vs. food-deprived larvae in performing an escape response when under attack.  相似文献   

9.
Many species of marine animals have larval stages whose rates of growth in the plankton are regulated by complex combinations of biological and environmental factors. In this study, we focus on the physiological bases that underlie endogenous variation in growth potential of larvae. Our approach was based on experimental crosses of gravid adults from pedigreed families of the Pacific oyster, Crassostrea gigas. This produced large numbers of larvae with different growth rates when reared under similar environmental conditions of food and temperature. A total of 35 larval families were reared to test hypotheses regarding the physiological bases of growth variation. Growth rate of these larval families varied over a five-fold range, from 3.4 (± 0.5, S.E.) to 17.6 (± 0.6) μm day− 1. The suite of integrated measurements applied to study growth variation included size, biochemical compositions, rates of particulate and dissolved nutrient acquisition, absorption efficiencies, respiration rates and enzyme activities. We show that a complex set of physiological processes regulated differences in genetically determined growth rates of larvae. One-half of the energy required for faster growth came from an enhanced, size-specific feeding ability. Differences in absorption rates were not significant for slow- and fast-growing larvae, nor were differences in size-specific respiration rates. Metabolic processes accounted for the additional 50% of the energy “savings” required to explain enhanced growth rates. We propose that different protein depositional efficiencies could account for this energy saving. Quantitative analyses of the endogenous physiological factors that cause variation in growth rate will allow for a more sophisticated understanding of growth, survival and recruitment potential of larvae.  相似文献   

10.
Range expansion and population establishment of individual species can have significant impacts on previously established food webs and predator-prey dynamics. The stone crab (Menippe spp.) is found throughout southwestern North Atlantic waters, from North Carolina through the Gulf of Mexico and the Central American Caribbean, including the Greater Antilles. Recent observations suggest that stone crabs have become better established on certain oyster reefs in North Carolina than in the early 1900s when they we first observed in NC. To assess the predatory impact of stone crabs on oysters, we (1) quantified stone crab densities on subtidal oyster reefs in Pamlico Sound, NC using scuba surveys, and (2) conducted laboratory predation experiments to assess the functional response of stone crabs to varying densities of oysters. We then (3) analyzed previously unpublished functional response data on another important oyster predator, the mud crab Panopeus herbstii. Finally, we (4) compared and contrasted potential predatory impacts of stone, mud and blue crabs (Callinectes sapidus). The functional response data and analyses for both stone crabs and mud crabs were consistent with a type II functional response. Mud crabs, on a m2 basis, inflicted the highest proportional mortality on oysters over a 24 hour period, followed by stone and then blue crabs. Proportional mortality did not vary significantly with oyster size; however, relatively small and large oysters were consumed disproportionately less than medium-sized oysters, likely due to the mechanical inability of stone crabs to handle small oysters, and the inability to crush large oysters. Although stone crabs appear to be established in Pamlico Sound at densities equivalent to densities in other systems such as the U.S. Florida Panhandle, their predatory activities on oysters are not expected to have as significant a negative impact on oyster populations compared to other resident predators such as mud crabs.  相似文献   

11.
The complete mitochondrial genome of the sycamore lace bug, Corythucha ciliata, was sequenced in this study. It represents the first sequenced mitogenome of family Tingidae in Heteroptera. The mitogenome of C. ciliata is 15,257 bp and contains 37 genes including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes and a large non-coding region. Gene arrangement, nucleotide content, codon usage, and amino acid composition and asymmetry indicate a high degree of conservation with six other species of Cimicomorpha. The 13 PCGs initiated with ATN as the start codon and terminated with TAA, TA or T as stop codon. The evolutionary rate of each PCG was different, among which ATP8 showed the highest rate while ATP6 indicated the lowest rate. The 22 tRNAs genes apparently fold into a typical cloverleaf structure; however, the anticodon (TTC) of trnSer (AGN) differs from other Heteropteran insects. Secondary structure modeling of rRNA genes revealed similarity to other insects, except for two incomplete helices (H1648 and H2735) in lrRNA. The predicted secondary structure of lrRNA indicates 45 helices in six domains, whereas srRNA has 27 helices in three domains. Three potential stem–loops and two tandem repeats (–TCTAAT–) were identified in the A+T-rich region. Phylogenetic analysis indicated that C. ciliata is a sister group to other Heteroptera species based on analysis of the 13 PCGs.  相似文献   

12.
13.
Behavioral adaptations to the severe nature and high faunal densities of hydrothermal vent habitats have received little attention from researchers. In this study, video and digital still imagery were analyzed to document the feeding and general behavior of the polychaete Paralvinella sulfincola at deep-sea vents on the Juan de Fuca ridge (North-East Pacific). This worm lives in mucous tubes on the actively growing portions of sulphide mineral chimneys and is considered to be the pioneering macrofaunal species in this habitat. We identified 6 recurrent behavior patterns, including antagonistic territoriality between neighboring conspecifics. The latter likely explains the regular spatial distribution of P. sulfincola populations on the substratum they colonize, and the observed confinement of feeding and exploration activities to a definable territory around the tube opening. Territory size, territorial overlap and density were significantly related to body weight, further supporting the importance of size and aggressive encounters in the maintenance of the worm's feeding area. During feeding, P. sulfincola uses its buccal tentacles to gather particles from the substratum using two different capture modes: seizing single macro-particles and aggregation of small particles.  相似文献   

14.
15.
We evaluated the effect of autotomy on feeding, energy storage and growth of juvenile Stichaster striatus kept in the laboratory for five months with a limited supply of the mussel Semimytilus algosus. Autotomy strongly decreased feeding, energy storage and growth. Intact juveniles showed a ∼ 3 fold higher feeding rate than autotomized individuals throughout the experiment. Intact juveniles also had a higher (∼ 5 fold) energy content per pyloric caeca in each arm. This was mainly due to higher lipid content, the main proximate constituent of pyloric caeca. Intact juveniles showed a greater growth rate and reached a greater size than autotomized individuals, more evident for underwater mass than radius length. The reduced capacity to feed reduced energy intake in autotomized individuals. However, low energy reserves along with low growth in autotomized sea stars, support the hypothesis that juveniles of this species allocate energy to regeneration to the detriment of growth. This was also supported by the ∼ 25% of arm length regeneration after 5 mo. Remaining small could increase risk of lethal predation, however, S. striatus may reduce predation risk by using crevices and kelp holdfasts as refuges from predators. Given the strong impact of autotomy on feeding, regeneration of arms to recover full capacity to forage and grow seems a better strategy for juvenile S. striatus, than merely growing.  相似文献   

16.
Although newly described, Pseudopolydora vexillosa is one of the most conspicuous surface-feeding spioniform polychaetes in subtropical waters. This is the first report on larval growth and metamorphosis of P. vexillosa. Newly hatched (3-chaetigers stage) larvae of P. vexillosa reached metamorphic competence at 12-17 chaetigers stage when fed with Chaetoceros gracilis or Dunaliella tertiolecta at a concentration of ∼ 105 cells ml− 1 for 6 to 8 days at 32 psu and 27 °C. Larvae on these two diets achieved comparable levels, of approximately 70% metamorphosis. On the other hand, larvae fed with Isochrysis galbana or starved in 0.22 μm filtered seawater never reached competence during the 10 days of study. The effect of organic matter on larval substrate selection was examined using glass beads, manipulated sediments and natural sediments. A significantly higher percentage of larvae metamorphosed on glass beads that had been submerged in unfiltered natural seawater for 5 days as compared to the control; when manipulating the organic content of sediment as a substratum, significantly more larvae metamorphosed in 100% natural sediment, compared with 0%, 25%, 50%, and 75% natural sediment mixed with different portions of ashed sediment. Surprisingly, with natural undisturbed surface sediment sampled along a transect perpendicular to a sewage discharge site, these laboratory bioassays demonstrate that the larvae of P. vexillosa are capable of responding to sedimentary cues in complex ways to find a habitat suitable for metamorphosis and survival.  相似文献   

17.
Otolith microstructure analysis was applied to known age capelin larvae (Mallotus villosus) in order to examine the formation of daily increments. In two validation experiments, newly hatched yolk sac larvae were stocked into eight 10 m3 plastic bags where environmental conditions were kept as natural as possible. The bags were terminated after 35-79 days, the surviving larvae were collected and the otoliths were analysed. Survival in the bags varied between 39 - 71% with average individual length growth rates of 0.25 mm day- 1. The ages of most larvae were underestimated and the accuracy in age estimation was generally low. Highest accuracy was found for fast growing larvae. On average, the larvae started to form increments about 12 days after hatching, and the increment width increased with age and/or length of the larvae. Larvae showing low body growth rates had fast otolith growth relative to body length.  相似文献   

18.
Temperature had a significant and positive effect on the foraging and growth of juvenile common carp Cyprinus carpio (90-105 mm) between 16 and 28 °C. Metrics measured were feeding rate (items s−1), functional response (feeding rate as a function of food density), specific growth rate and incremental fork lengths. Experiments that were conducted at 16, 20, 24 and 28 °C and used two food types revealed a strong thermal influence on foraging, with the highest feeding rates achieved at 24 °C. Functional responses also revealed optimal feeding rates in relation to food density occurred at temperatures >20 °C. Specific growth rate and incremental fork lengths were depressed at 16 and 28 °C when compared to those achieved at 20 and 24 °C. These outputs suggest an increase in foraging and growth of C. carpio according to a thermal gradient that were maximal between 24 and 28 °C.  相似文献   

19.
We measured changes in the feeding rate and food absorption efficiency of two suspension feeding bivalves, cross-trasplanted between habitats with special emphasis on their capacity for differential absorption of biochemical components from their food supply. Mulinia edulis were moved from the intertidal zone to the subtidal zone, and Mytilus chilensis from the subtidal to the intertidal zone for a period of 7 days, and then compared with animal that had not been transplanted. Experimentally prepared diets similar to those available in the two different environments were offered to the bivalves, and their rates of feeding and differential uptake of biochemical components were determined and statistically compared. The two species did not achieve complete acclimation of their feeding behaviour during the transplant period since the highest ingestion rates for biochemical components occurred under dietary conditions that reflected their habitats of origin. Absorption efficiency showed greater acclimation than the other physiological parameters measured, indicating the capacity of these species to modulate their enzymatic-digestive activity depending on food composition. We conclude that both Mytilus and Mulinia have a certain degree of physiological plasticity in their feeding behaviour and assimilatory balance of biochemical components, being greater in Mytilus. When both species encounter ambient food conditions characteristic of their normal habitats, they show maximum values of food absorption, while under conditions where their typical diets are exchanged (Mytilus in intertidal and Mulinia in subtidal), the energy absorbed declines in each, but in ways very different between the two species. Thus, Mytilus exposed to high concentrations of low quality seston reduced the energy absorbed by 31.7% compared to its normal habitat, while Mulinia exposed to low concentrations of high-quality food reduced their energy absorption by 64%.  相似文献   

20.
Flow cytometric cell cycle analysis was used to determine the fraction of muscle cells in the S and G2 phases of the cell cycle, which were used as covariates with temperature and standard length, in a laboratory-developed model to assess the physiological condition of wild walleye pollock, Theragra chalcogramma, larvae. The assay was calibrated to the range of temperatures larvae are likely to encounter in the eastern Bering Sea, and it was sensitive to changes in condition within 3 days of starvation. The S and G2 phases of the cell cycle gave an indication of larval walleye pollock condition. Healthy larvae had a larger fraction of cells in the S phase than G2 phase, and unhealthy larvae had a larger fraction of cells in the G2 phase than the S phase. Validation tests showed that the model classified 75% to 83% of the larvae correctly. The assessment of the condition of walleye pollock larvae collected from the southeastern Bering Sea in 2007 indicated that unhealthy larvae were located on the continental shelf (6%), and this may be due in part to the coldest temperatures occurring there and less abundant prey. In the continental slope/ocean basin waters, where prey levels were higher and temperatures warmest, no larvae in unhealthy condition were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号