首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ocean is a nutritionally heterogeneous environment. For feeding larval forms, food variability has significant consequences for growth and later recruitment success. In this study, the physiological and biochemical responses to a range of different food concentrations (unfed, 4, 20, and 40 algal cells μl− 1) were examined in larvae of the asteroid, Asterina miniata. Measurements of growth, protein synthesis rates, and the energetic cost of protein synthesis were made. Under conditions of rapid growth, protein comprised a larger percent (66%) of a larva's organic biomass compared to similar-aged, slower-growing larvae (26%). Larvae fed at the highest food concentration tested (40 algal cells μl− 1) had a protein depositional efficiency of 80% (± 16%), a value 3-fold higher than larvae fed 20 algal cells μl− 1 (28% ± 11%). Also, faster-growing larvae required 3-fold less energy per unit mass of protein growth. Larvae fed 40 algal cells μl− 1 deposited protein at a respiratory cost of 65 ± 11 pmol O2 h− 1 (μg protein)− 1; larvae fed 20 algal cells μl− 1 had a cost of 192 ± 47 pmol O2 h− 1 (μg protein)− 1. While there were differences in the cost to deposit protein (i.e., protein growth, the balance of synthesis and degradation), there were no differences in the energetic cost of protein synthesis for all food concentrations tested. The energetic cost of protein synthesis was fixed at 13.8 (± 0.92) Joules (mg protein synthesized)− 1 and was independent of developmental stage, growth rates, and large changes (58-fold) in protein synthesis rates. A major conclusion from this study is that larvae grown in high-food environments not only grew faster, but did so for considerably less energy. Defining the complex relationships of food availability and metabolic efficiency will provide more accurate predictions of larval growth under variable food conditions in the ocean.  相似文献   

2.
Many species of marine animals have larval stages whose rates of growth in the plankton are regulated by complex combinations of biological and environmental factors. In this study, we focus on the physiological bases that underlie endogenous variation in growth potential of larvae. Our approach was based on experimental crosses of gravid adults from pedigreed families of the Pacific oyster, Crassostrea gigas. This produced large numbers of larvae with different growth rates when reared under similar environmental conditions of food and temperature. A total of 35 larval families were reared to test hypotheses regarding the physiological bases of growth variation. Growth rate of these larval families varied over a five-fold range, from 3.4 (± 0.5, S.E.) to 17.6 (± 0.6) μm day− 1. The suite of integrated measurements applied to study growth variation included size, biochemical compositions, rates of particulate and dissolved nutrient acquisition, absorption efficiencies, respiration rates and enzyme activities. We show that a complex set of physiological processes regulated differences in genetically determined growth rates of larvae. One-half of the energy required for faster growth came from an enhanced, size-specific feeding ability. Differences in absorption rates were not significant for slow- and fast-growing larvae, nor were differences in size-specific respiration rates. Metabolic processes accounted for the additional 50% of the energy “savings” required to explain enhanced growth rates. We propose that different protein depositional efficiencies could account for this energy saving. Quantitative analyses of the endogenous physiological factors that cause variation in growth rate will allow for a more sophisticated understanding of growth, survival and recruitment potential of larvae.  相似文献   

3.
Effects of food availability on the larval survival and development of Crepidula onyx were studied in four experiments by feeding the larvae with different concentrations of the chrysophyte Isochrysis galbana and by starving the larvae for different periods of time. Food concentration had a clear impact on the survival, growth and development time of C. onyx veligers. Larval development occurred only at 104 cells ml−1 and higher algal concentrations. No shell increment was detected in the veligers cultured for 12 days at 102 cells ml−1I. galbana or the blank control. At 103 cells ml−1, there was only a slight increase in shell length over 12 days. At 104 cells ml−1, about 40% of the larvae became competent in 18 days. At 105 and 106 cells ml−1, more than 90% of the larvae reached competence in 7 days. Initial starvation negatively affected the larval development, but the sensitivity differed among parameters measured on day 5: lower survivorship was detected only for larvae that had suffered 3 days or longer initial starvation, whereas one-day initial starvation caused shorter shells and lower percentage of competent larvae. Three days of continuous feeding was required for 50% of the larvae to reach competence. After feeding for 3 days, most larvae could become competent to metamorphose even under starvation. The time of starvation was also critical: larvae that suffered 1-day food deprivation in the first 2 days of larval release had shorter shells and lowered percent competent larvae than those that suffered the same length of food deprivation in later stages of development. Our study thus indicates that both food concentration and short-term starvation have detrimental effects on the larval development of this species, and that once the larva has consumed certain amount of food, starvation may induce metamorphosis.  相似文献   

4.
The discovery of natural and natural-based compounds has resulted in its application as an alternative to synthetic algicides to control harmful algae in aquatic systems. Of the many natural-product-based algicides, sorgoleone, a natural plant product from Sorghum bicolor root exudates has been investigated for its controlling effect on different algal species and its acute fish toxicity. Growth of the blue green algal species Microcystis aeruginosa Kützing was completely inhibited by the crude methanol extract of sorghum root at 20 μg mL−1. The most noticeable inhibition was observed in the bioassay of n-hexane soluble extract, where 98% growth inhibition occurred in M. aeruginosa at the concentration of 1.25 μg mL−1. Sorgoleone very effectively controlled blue green algae inhibiting 97% of M. aeruginosa at 0.5 μg mL−1 and 99% of Anabaena affinis Lemmermann at 4 μg mL−1. In contrast, inhibition of the green algae species Chlorella vulgaris Beijerinck and Scenedensmus spp. at 16 μg mL−1 sorgoleone was 87 and 68%, respectively. There were no mortalities or adverse effects observed in any of the fish exposed to water control, solvent control, and a nominal concentration of 1 μg mL−1 during the test period. The no observed effect concentration (NOEC) value was 1.5 μg mL−1 for the tested fish (O. latipes). Sorgoleone can be considered as an effective and an ecologically and environmentally sustainable approach to controlling harmful algae.  相似文献   

5.
The objective of this study was to examine the impact of crowding (stocking density) on food consumption and growth of juvenile Sepia officinalis reared at 17 and 25 °C. Two groups of 75 cuttlefish each were reared in closed seawater systems with water temperatures of 17 and 25 °C. Each group was subdivided into two treatments (three replicates per treatment): low-density (equivalent to 100 Sepia m−2) and high-density (equivalent to 400 Sepia m−2). Food consumption was measured daily and live wet body weight (g) was measured weekly over a 5-week study. The 25 °C treatment resulted in significantly higher growth rates and food consumption compared to the 17 °C treatment. Stocking density had no statistically significant effect on food consumption, gross growth efficiency (GGE), or weight at either temperature. However, the high-density treatments had slightly lower GGE values overall and growth in weight at 25 °C was slightly but consistently lower in the high-density treatment suggesting that stocking densities of 400 Sepia m−2 may be approaching levels that impact feeding and growth.  相似文献   

6.
Planktotrophic larvae grow by utilizing energy obtained from food gathered in the plankton. Morphological plasticity of feeding structures has been demonstrated in multiple phyla, in which food-limited larvae increase feeding structure size to increase feeding rates. However, before larvae can feed exogenously they depend largely on material contained within the egg to build larval structures and to fuel larval metabolism. Thus, the capacity for plasticity of feeding structures early in development may depend on egg size. Using the congeneric sea urchins Strongylocentrotus franciscanus and S. purpuratus, which differ in egg volume by 5-fold, I tested whether the degree of expression of feeding structure (larval arm length) plasticity is correlated with differences in the size of the egg. I experimentally manipulated egg size of S. franciscanus (the larger-egged species) by separating blastomeres at the 2-cell stage to produce half-sized larvae. I reared half-size and normal-size larvae under high and low food treatments for 20 days. I measured arm and body lengths at multiple ages during development and calculated the degree of plasticity expressed by larvae from all treatments. Control and unmanipulated S. franciscanus larvae (from ∼ 1.0 nl eggs) had significantly longer arms relative to body size and a significantly greater degree of plasticity than half-sized S. franciscanus larvae (from < 0.18 nl eggs), which in turn expressed a significantly greater degree of plasticity than S. purpuratus larvae (from ∼ 0.3 nl eggs). These results indicate that egg size affects larval arm length plasticity in the genus Strongylocentrotus; larger eggs produce more-plastic larvae both in an experimental and a comparative context. However, changes in egg size alone are not sufficient to account for evolved differences in the pattern of plasticity expressed by each species over time and may not be sufficient for the evolutionary transition from feeding to non-feeding.  相似文献   

7.
Anthropogenic metal pollutants bioaccumulated in benthic animals by means of feeding and osmotic diffusion. These metals may affect the physiology of the benthos. In this study, we exposed Capitella sp. I to three metals (Cd, Pb, and Ni), each in eight different concentrations, to determine the effects of metals on the animals. Growth rate, ingestion rate, and percent survival were estimated in three separated experiments. The growth and feeding of the worms were sensitive to even the lowest concentrations of each metal added to the sediments. The lowest observable adverse effect levels for Cd, Ni, and Pb were 0.03, 1.59, and 0.41 μmol g 1 sediment, respectively. Growth rates in the elevated metal contaminant treatments decreased drastically at slightly contaminated levels, lessened detrimental effects at moderately contaminated levels, and showed incompensable intoxication at heavily contaminated levels. The trends in ingestion rates were similar to those of growth rates. No significant difference in survivorship was found among the different contaminant levels for any of the three heavy metals. Capitella sp. I was most sensitive to Cd, followed by Ni and Pb, which had similar effects. The rapid physiological responses of Capitella sp. I allowed the animals to survive metal exposure. Sediment productivity remained unchanged at different contamination levels of Ni and Pb, but was drastically reduced at 4.75 μmol g 1 Cd in the sediment. This further demonstrated Capitella sp. I can adjust their ingestion rates to maintain constant sediment productivities in moderate pollution conditions; however, when threshold concentration was exceeded, homeostasis collapsed.  相似文献   

8.
Glycerol was utilized by Cupriavidus necator DSM 545 for production of poly-3-hydroxybutyrate (PHB) in fed-batch fermentation. Maximal specific growth rates (0.12 and 0.3 h−1) and maximal specific non-growth PHB production rate (0.16 g g−1 h−1) were determined from two experiments (inocula from exponential and stationary phase). Saturation constants for nitrogen (0.107 and 0.016 g L−1), glycerol (0.05 g L−1), non-growth related PHB synthesis (0.011 g L−1) and nitrogen/PHB related inhibition constant (0.405 g L−1), were estimated. Five relations for specific growth rate were tested using mathematical models. In silico performed optimization procedures (varied glycerol/nitrogen ratio and feeding) has resulted in a PHB content of 70.9%, shorter cultivation time (23 h) and better PHB yield (0.347 g g−1). Initial concentration of biomass 16.8 g L−1 and glycerol concentration in broth between 3 and 5 g L−1 were decisive factors for increasing of productivity.  相似文献   

9.
External chemical signals used by scleractinian corals to recognize suitable substrata for larval settlement and metamorphosis were identified from crustose coralline red algae (CCA). A fragment of coral rubble with CCA induced larval metamorphosis of the scleractinian coral Pseudosiderastrea tayamai. A natural inducer and compounds that enhanced its effect in larval metamorphosis were isolated from the methanol extracts of coral rubble with CCA. A bromotyrosine derivative, 11-deoxyfistularin-3 (10− 7 M) isolated from the CCA, induced the metamorphosis of P. tayamai larvae (27.5 ± 24.0%). In the presence of fucoxanthinol (10− 9 M) and fucoxanthin (10− 9 M), the percentage of metamorphosis induced by the bromotyrosine derivative was further enhanced to 87.8 ± 13.0 and 88.4 ± 17.8%, respectively. Both carotenoids are also found in the coral rubble with CCA. These results suggest that bromotyrosine derivative and carotenoids have a synergistic effect in the metamorphosis of P. tayamai larvae. The synergistic effect provides a higher selectivity for recruitment than a single-component natural inducer for recognizing suitable substrata for larval metamorphosis. Thus, the effect might offer a survival advantage for benthic marine invertebrates.  相似文献   

10.
Colurella dicentra clones isolated from bay water in the Mississippi Gulf Coast were cultured with artificial seawater. Experiments were conducted to determine the effects of six algae species (Nannochloropsis oculata, Tetraselmis chuii, Chaetoceros gracilis, Rhodomonas salina, Isochrysis galbana, and Prorocentrum micans), six C. gracilis densities, and six N. oculata densities (25,000, 50,000, 100,000, 250,000, 500,000, and 1,000,000 cells ml− 1) on C. dicentra population growth. Algae type influenced rotifer production (p < 0.0001). C. gracilis treatment (9120 ± 3351SD) produced the highest number of rotifers followed by N. oculata (5760 ±2232SD). P. micans had the lowest number of rotifers, although not significantly different from numbers in T. chuii, R. salina, and I. galbana treatments (p > 0.05).The population growth rate (r) varied with algae species treatment. The highest values were recorded for C. gracilis treatment (0.22 to 0.26 d− 1), followed by N. oculata (0.21 to 0.24 d− 1), and the lowest for P. micans (− 0.19 to 0.14 d− 1). C. gracilis and N. oculata densities had significant effects (p < 0.0001) on C. dicentra population growth. The highest rotifer production was recorded at a C. gracilis density of 100,000 cells ml− 1, followed by 250,000 cells ml− 1 and 50,000 cells ml− 1. Algae densities of 500,000 cells ml− 1 and above produced the lowest rotifer numbers. Population growth rate (r) varied with C. gracilis densities. The highest values were observed for C. gracilis concentrations of 100,000 cells ml− 1 (0.17 to 0.19 d− 1), and the lowest for concentrations of 500,000 cells ml− 1 and above (− 0.19 to 0.09 d− 1). The 100,000 cells ml− 1N. oculata density gave the highest rotifer production followed by 50,000, 250,000, 25,000, and 500,000 cells ml− 1. Algae densities of 1,000,000 cells ml− 1 produced the lowest rotifer numbers. Population growth rate (r) varied with N. oculata densities, with the highest values obtained for algae densities of 100,000 cells ml− 1 (0.35 to 0.40 d− 1), and the lowest for concentrations of 1,000,000 cells ml− 1 (0.05 to 0.012 d− 1). This is the first report of C. dicentra in Mississippi Coastal waters, and perhaps the smallest marine rotifer species (93 by 49 μm) ever cultured successfully.  相似文献   

11.
Chaetognaths are one of the most numerous organisms in the zooplankton community off the coast of North Carolina. During two years of offshore sampling in the late winter to early spring, sixteen chaetognath species were identified, four of which had not previously been reported in the waters of the United States South Atlantic Bight. Offshore samples were dominated by Sagitta enflata Grassi, 1881, one of the larger species, which contributed > 61% of total chaetognath abundance while dominant coastal species were S. tenuis Conant, 1896 and S. hispida Conant, 1895. Abundances, body sizes and spatial distributions were determined for the most abundant chaetognath species along with the overall abundance of three common co-occurring larval fish species (spot, Atlantic croaker and Atlantic menhaden). In addition, laboratory feeding experiments were conducted using S. tenuis and S. hispida to estimate the potential impact of chaetognath predation on representative North Carolina larval fish which spawn offshore and subsequently migrate into local estuaries. Feeding rates (no. prey items day− 1) varied with prey type and the condition (starved/fed) of the chaetognath. Weight specific daily rations (SDR) were found to vary inversely with chaetognath size, decreasing exponentially with an increase in chaetognath length. The observed abundance and distribution data indicate that wintertime chaetognath populations in offshore waters of Onslow Bay, North Carolina have the potential to interact with recently spawned larval fish and may simultaneously act as competitors, predators, or prey. Furthermore, calculations using published values of chaetognath abundance, zooplankton standing crops, and our SDR estimates indicate that chaetognaths in a representative North Carolina estuary would require a minimum of 5.96 cal m− 3 day− 1 to sustain their biomass. Allowing for the reported spatial and temporal variability in zooplankton abundance in these systems, chaetognaths should consume 4.4%-20.9% of the estimated total zooplankton production day− 1. This further emphasizes the role of chaetognaths not only as predators, but also as competitors with larval fish for zooplankton food stocks in southeastern United Sates estuaries.  相似文献   

12.
The present study employed simultaneously methods to investigate particle and solute transport and reaction rates in sandy sediments inhabited by two worms (2500 m− 2) with different feeding modes. Heteromastus filiformis is a head-down deposit-feeder and the main activities exerted by this worm are transport of particles as faecal pellets from subsurface to surface sediments and burrow ventilation. Marenzelleria viridis is a surface deposit-feeder that actively searches for food by burrowing near the sediment surface, producing a network of ventilated galleries in this zone. M. viridis exhibited 1.5 to 2.2 times higher particle mixing rates (Db = 3.3 to 4 × 10− 3 cm− 2 d− 1) compared to H. filiformis. In M. viridis treatments, continuous advection (eddy diffusion) was the major factor influencing solute transport resulting in apparent diffusion rates (Da = 2.2 cm− 2 d− 1), which were 3 times higher than molecular diffusion within the sediment. In H. filiformis inhabited sediments, the transport of solutes was discontinuous and driven by a surprisingly high nonlocal exchange (α = 1.1-1.3 d− 1), emphasizing its strong irrigation effects. Accordingly, the enhancement of solute fluxes was more pronounced for H. filiformis compared to M. viridis. Depth integrated TCO2 production derived from diagenetic modelling, which takes into account three reaction zones, is in good agreement with rates obtained from measured fluxes, indicating the applicability of both approaches to get reliable rates. However, the reaction rates showed that the presence of animals had a modest effect on microbial carbon oxidation. The results proved that transport conditions are deeply related to feeding modes. Exchange of solutes was the most important transport process by H. filiformis, while M. viridis affected both mixing and solute transport.  相似文献   

13.
We isolated eleven strains of the harmful algal bloom (HAB)-forming dinoflagellate Karlodinium veneficum during a bloom event in the NW Mediterranean coastal waters and we studied the inter-strain variability in several of their physiological and biochemical traits. These included autotrophic growth parameters, feeding capabilities (mixotrophy), lipid composition, and, in some cases, their responses to biotic and abiotic factors. The strains were found to differ in their growth rates (0.27–0.53 d−1) and in the maximum cell concentrations achieved during stationary phase (6.1 × 104–8.6 × 104 cells mL−1). Their ingestion performance, when offered Rhodomonas salina as prey, was also diverse (0.22–1.3 cells per K. veneficum per day; 8–52% of their daily ration). At least two strains survived for several months under strict heterotrophic conditions (no light, low inorganic nutrients availability, and R. salina as food source). These strains also showed very distinct fatty acid compositions, with very low contents of monounsaturated and polyunsaturated fatty acids. According to a Bray Curtis similarity analysis, three or four strain groups able to perform different roles in bloom development were identified. We further analyzed one strain from each of the two most distinct groups with respect to prey concentration, light intensity, nutrient availability, and we determined the functional responses (growth and feeding rates) to food concentration. Taken together, the results served to highlight the role of mixotrophy and clone variability in the formation of HABs.  相似文献   

14.
To understand how a major cosmopolitan pest responds to two very different insecticidal proteins and to determine whether herbivorous insects and their frass could be environmental sources of recombinant proteins from transgenic plants, Spodoptera litura (Fab.) (Lepidoptera, Noctuidae) larvae were fed on tobacco leaves expressing either the biotin-binding protein, avidin, or the protease inhibitor, aprotinin. Control larvae received non-transgenic tobacco. Samples of larvae were taken after 5, 6 or 7 days’ feeding and frass was collected after two 24-h periods at 6 and 7 days. Insects in all treatments grew significantly during the experiment, but the avidin-fed larvae were significantly smaller than the others on Day 7. Avidin was found in all samples of avidin-fed larvae (7.0±0.86 ng mg−1, n=45), at a lower level than in their frass (31.9±5.08 ng mg−1, n=30), and these frass levels were lower than those of the the leaves fed to the larvae (69.0±6.71 ng mg−1, n=45). All of the avidin detected in these samples was capable of binding biotin. On average, between 10 and 28% of avidin was recovered with the methods used, whereas almost full recovery of aprotinin was effected. Aprotinin levels in larvae (8.2±0.53 ng mg−1, n=45) were also lower than aprotinin levels in frass (77.4±6.9 ng mg−1, n=30), which were somewhat lower than those in the leaves fed to the larvae (88.6±2.51 ng mg−1, n=45). Approximately half the trypsin-binding ability of aprotinin was lost in larvae, and in frass, aprotinin had lost about 90% of its ability to bind trypsin.  相似文献   

15.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

16.
In this study, interactions on the mortality and debilitating effects between Cry1Ac, a toxic protein produced by Bacillus thuringiensis (Berliner) and HaCPV (Chinese strain) on first and third instars larvae of Helicoverpa armigera were evaluated in laboratory. When first instar was exposed to combination of Bt cotton leaf discs containing HaCPV (6 × 106, 1 × 107, and 3 × 107 PIB ml−1) the effect on mortality was additive, when such instar larvae exposed to combination of Cry1Ac (0.9, 2.7, or 8.1 μg g−1) and the same concentrations of HaCPV the effect on mortality was additive except for the combination of Cry1Ac (0.3 μg g−1) and HaCPV concentrations that showed synergism. When third instars of H. armigera were infected using a suspension containing both HaCPV and Cry1Ac, most combinations of them showed additive effect except for the combination of Cry1Ac (0.3 μg g−1) and HaCPV (3 × 107 PIB ml−1) that showed synergism. However, when they exposed to Bt cotton leaf discs and HaCPV the effect on mortality was synergism except combination of Bt cotton leaf discs and HaCPV (6 × 106 PIB ml−1) that showed additive. Most of the combinations are showed additive effect in the toxicity and in combinations of Cry1Ac at lowest and HaCPV at highest concentrations synergism is observed. Not only were larval growth and development delayed, but pupation and pupal weight also decreased when larvae were fed on artificial diet containing Cry1Ac and HaCPV or transgenic Bt cotton leaf discs specially in first instar.  相似文献   

17.
The Greenshell™ mussel (Perna canaliculus) is the main shellfish species farmed in New Zealand. The aim of this study was to evaluate the effects of cryoprotectant concentration, loading and unloading strategy as well as freezing and thawing method in order to develop a protocol for cryopreservation of trochophore larvae (16–20 h old). Toxicity tests showed that levels of 10–15% ethylene glycol (EG) were not toxic to larvae and could be loaded and unloaded in a single step. Through cryopreservation experiments, we designed a cryopreservation protocol that enabled 40–60% of trochophores to develop to D-larvae when normalized to controls. The protocol involved: holding at 0 °C for 5 min, then cooling at 1 °C min−1 to −10 °C, holding for a further 5 min, then cooling at 0.5 °C min−1 to −35 °C followed by a 5 min hold and then plunging into liquid nitrogen. A final larval rearing experiment of 18 days was conducted to assess the ability of these frozen larvae to develop further. Results showed that only 2.8% of the frozen trochophores were able to develop to competent pediveligers.  相似文献   

18.
Temperature had a significant and positive effect on the foraging and growth of juvenile common carp Cyprinus carpio (90-105 mm) between 16 and 28 °C. Metrics measured were feeding rate (items s−1), functional response (feeding rate as a function of food density), specific growth rate and incremental fork lengths. Experiments that were conducted at 16, 20, 24 and 28 °C and used two food types revealed a strong thermal influence on foraging, with the highest feeding rates achieved at 24 °C. Functional responses also revealed optimal feeding rates in relation to food density occurred at temperatures >20 °C. Specific growth rate and incremental fork lengths were depressed at 16 and 28 °C when compared to those achieved at 20 and 24 °C. These outputs suggest an increase in foraging and growth of C. carpio according to a thermal gradient that were maximal between 24 and 28 °C.  相似文献   

19.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

20.
The effects of an oligogalacturonic acid (OGA) pool on root length of intact alfalfa seedlings (Medicago sativa L.), on extracellular pH and on both extracellular and intracellular O2 dynamics were examined in this study. Lower OGA concentrations (25, 50 and 75 μg mL−1) promoted root length, but 50 μg mL−1 had a stronger effect in promoting growth, while the higher OGA concentration (100 μg mL−1) had no significant effect. Extracellular alkalinization was tested only at concentrations higher than 50 μg mL−1 OGA, showing that the response is determined not only by the specific size of OGA, but also by the concentration of OGA. The promoting effect of OGA on root growth at 25, 50 and 75 μg mL−1 OGA concentrations in alfalfa root appeared to be unrelated to extracellular alkalinization. A possible explanation could be the induction of an O2 burst at non-toxic levels, which could drive directly or indirectly several processes associated with root elongation in 25, 50 and 75 μg mL−1 OGA-treated seedlings. Analyses using confocal microscopy showed that the increase in the O2 generation, mainly in the epidermal cells, induced by 50 μg mL−1 OGA could be related to the promoting effect on root growth. The combination of OGA with DPI allowed us to demonstrate that there are different O2-generating sources in the epidermal cells of the meristematic zone, likely NADPH oxidase and oxidases or oxido-reductase enzymes, insensitive to DPI, that maintain detectable O2 accumulation at 60 and 120 min of treatment. These results suggest that OGA induce an oxidative burst by several O2-generating sources in the active growth zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号