首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface plasmon resonance (SPR) technique was used to directly detect an intact form of insect pathogen: the baculovirus, Autographa californica multiple nuclear polyhedrosis virus (AcMNPV). An SPR sensor chip with three bio-functional layers was used to detect the intact AcMNPV: amine-reactive crosslinker with a disulfide bond that chemisorbs to gold film, Protein A, and a mouse IgG monoclonal antibody raised against a surface protein of the target viral pathogen. A two-channel (reference & test) micro-fluidic SPR system is used for reliable measurement. Bio-specific response to the AcMNPV is compared with the response for tobacco mosaic virus (TMV) as control. Successive exposure of the sensor chip to both viruses verifies a specific response to AcMNPV. This serves as a prerequisite to the development of a new type of viral pathogen detection sensors.  相似文献   

2.
A method for microbial cell surface fingerprinting using surface plasmon resonance (SPR) is suggested. Four different Escherichia coli mutants have been used as model cells. Cell surface fingerprints were generated by registration of the interaction between the cell mutants and four different surfaces, with different physical and chemical properties, when a cell suspension was flown over the surface. Significant differences in fingerprint pattern between some of the mutants were observed. At the same time, the physical properties of the cell surfaces were determined using microelectrophoresis, contact angle measurements and aqueous two-phase partitioning and compared to the SPR fingerprints. The generated cell surface fingerprints and the physical property data were evaluated with multivariate data analysis that showed that the cells were separated into individual groups in a similar way using principal component analysis plots (PCA).  相似文献   

3.
表面等离子体共振(surface plasmon resonance,SPR)技术作为一种新型的免标记、实时在线研究生物分子间相互作用的高灵敏传感技术,已经在生命科学领域中得到了大量应用。该文简要介绍了SPR生物传感器的基本原理,重点评述了其在新药筛选和药物作用机制方面的研究进展,并对其前景进行了展望。  相似文献   

4.
Functionalization of a gold surface is usually accomplished by covalent binding via self-assembled monolayers (SAMs) on the gold surface, followed by attachment of flexible polymeric linker layers such as dextran hydrogels. However, these techniques require multiple steps and also have nonspecific interactions and steric problems. In this study, a self-assembled carboxylated terthiophene monolayer was formed onto a gold surface to create a sensitive and stable surface plasmon resonance (SPR) biosensing system. Compared with a commercial carboxymethyl dextran chip (CM5), the terthiophene SAM surface provided more than six times more antibody-binding signals and nearly three times the SPR assay sensitivity for progesterone (P4).  相似文献   

5.
We report an innovative at-line method to monitor concentration of bioactive antibody (i.e., antibody with conserved antigen-binding activity) secreted during bioreactor culture by the use of surface plasmon resonance (SPR)-based biosensor technology. In a first series of experiments, conditions for SPR-based measurements were validated off-line by monitoring bioactive antibody concentration in conditioned medium from 500-ml baffled flask hybridoma cell cultures. A fully automated experimental setup in which the SPR-based biosensor was harnessed to a bioreactor was then used at-line to monitor the concentration of bioactive antibody produced in a 3.5-L bioreactor. Quantitative SPR measurements performed both at-line and off-line were in excellent agreement with quantitative Western blotting followed by densitometry analyses. Thus, our experimental study confirms that SPR biosensors can be applied to at-line quantification of correctly folded proteins that are secreted by cells cultured in a bioreactor. Our experimental approach represents a novel and robust analytical strategy to be applied to the control and optimization of the production of bioactive secreted proteins.  相似文献   

6.
Diagnostic biomarkers such as proteins and enzymes are generally hard to detect because of the low abundance in biological fluids. To solve this problem, the advantages of surface plasmon resonance (SPR) and nanomaterial technologies have been combined. The SPR sensors are easy to prepare, no requirement of labelling and can be detected in real time. In addition, they have high specificity and sensitivity with low cost. The nanomaterials have also crucial functions such as efficiency improvement, selectivity, and sensitivity of the detection systems. In this report, an SPR‐based sensor is developed to detect lysozyme with hydrophobic poly (N‐methacryloyl‐(L)‐phenylalanine) (PMAPA) nanoparticles. The SPR sensor was first characterized by attenuated total reflection‐Fourier transform infrared, atomic force microscope, and water contact angle measurements and performed with aqueous lysozyme solutions. Various concentrations of lysozyme solution were used to calculate kinetic and affinity coefficients. The equilibrium and adsorption isotherm models of interactions between lysozyme solutions and SPR sensor were determined and the maximum reflection, association, and dissociation constants were calculated by Langmuir model as 4.87, 0.019 nM−1, and 54 nM, respectively. The selectivity studies of SPR sensor were investigated with competitive agents, hemoglobin, and myoglobin. Also, the SPR sensor was used four times in adsorption/desorption/recovery cycles and results showed that, the combination of optical SPR sensor with hydrophobic ionizable PMAPA nanoparticles in one mode enabled the detection of lysozyme molecule with high accuracy, good sensivity, real‐time, label‐free, and a low‐detection limit of 0.66 nM from lysozyme solutions. Lysozyme detection in a real sample was performed by using chicken egg white to evaluate interfering molecules present in the medium.  相似文献   

7.
We enhanced the sensitivity of surface plasmon resonance biosensor by the conversion of the real-time direct binding immunoassay into the sandwich immunoassay, in which colloidal gold particles coated with anti-mouse IgG was used. By the immobilization of anti-mouse IgG onto the carboxymethyl dextran surface of thin gold film, the direct binding of analyte (mouse IgG) onto the sensor chip, and the injection of colloidal gold particles coated with antimouse IgG, about 100 times of sensitivity enhancement was obtained. This result suggests that nanoparticles, which has a high refractive index, homogeneous ultrafine structure and capability of size control, would be applicable for the detection of very small quantity of biomaterial.  相似文献   

8.
Surface plasmon resonance (SPR) is a powerful technique for measuring molecular interaction in real-time. SPR can be used to detect molecule to cell interactions as well as molecule to molecule interactions. In this study, the SPR-based biosensing technique was applied to real-time monitoring of odorant-induced cellular reactions. An olfactory receptor, OR I7, was fused with a rho-tag import sequence at the N-terminus of OR I7, and expressed on the surface of human embryonic kidney (HEK)-293 cells. These cells were then immobilized on a SPR sensor chip. The intensity of the SPR response was linearly dependent on the amount of injected odorant. Among all the aldehyde containing odorants tested, the SPR response was specifically high for octanal, which is the known cognate odorant for the OR I7. This SPR response is believed to have resulted from intracellular signaling triggered by the binding of odorant molecules to the olfactory receptors expressed on the cell surface. This SPR system combined with olfactory receptor-expressed cells provides a new olfactory biosensor system for selective and quantitative detection of volatile compounds.  相似文献   

9.
Monoclonal antibodies have become an increasingly important part of fundamental research and medical applications. To meet the high market demand for monoclonal antibodies in the biopharmaceutical sector, industrial manufacturing needs to be achieved by large scale, highly productive and consistent production processes. These are subject to international guidelines and have to be monitored intensely due to high safety standards for medical applications. Surface plasmon resonance spectroscopy — a fast, real‐time, and label‐free bio‐sensing method — represents an interesting alternative to the quantification of monoclonal antibody concentrations by enzyme‐linked immunosorbent assay during monoclonal antibody production. For the application of monitoring bioactive and total monoclonal antibody concentrations in cell culture samples, a surface plasmon resonance assay using a target‐monoclonal antibody model system was developed. In order to ensure the subsequent detection of bioactive monoclonal antibody concentrations, suitable immobilization strategies of the target were identified. A significant decrease of the limit of detection was achieved by using an adapted affinity method compared to the commonly used amine coupling. Furthermore, the system showed limit of detection in the low ng/mL range similar to control quantifications by enzyme‐linked immunosorbent assay. Moreover, the comparison of total to bioactive monoclonal antibody concentrations allows analysis of antibody production efficiency. The development of an alternative quantification system to monitor monoclonal antibody production was accomplished using surface plasmon resonance with the advantage of low analyte volume, shorter assay time, and biosensor reusability by target‐layer regeneration. The established method provides the basis for the technical development of a surface plasmon resonance‐based system for continuous process monitoring.  相似文献   

10.
The determination of equilibrium binding constants is an important aspect of the analysis of protein-protein interactions. In recent years surface plasmon resonance experiments (e.g., with a BIAcore instrument) have provided a valuable experimental approach to determining such constants. The standard method is based on measuring amounts of analyte bound at equilibrium for different analyte concentrations. During the course of a typical surface plasmon resonance experiment the measured equilibrium levels for a given analyte concentration often decrease. This appears to be due to a loss of activity of the protein coupled to the sensor chip or other phenomena. The loss in signal can lead to an erroneous determination of the equilibrium constant. A data analysis approach is introduced that aims to compensate for the loss of activity so that its influence on the results of the experiments is reduced.  相似文献   

11.
In this article, we report for the first time, the detection of circulating miRNA as a breast cancer biomarker in patient sera using surface plasmon resonance imaging biosensor. The advantage of this approach lies in the rapid, label-free and sensitive detection. The sensor excites plasmonic resonance on the gold sensor surface and specific DNA-miRNA molecular bindings elucidate responses in the plasmonic resonance image. Experiments of detecting synthetic miRNA molecules (miR-1249) were performed and the sensor resolution was found to be 63.5 nM. The sensor was further applied to screen 17 patient serum samples from National Cancer Centre Singapore and Tan Tock Seng Hospital. Sensor intensity response was found to differ by 20% between malignant and benign cases and thus forms, a potential and an important metric in distinguishing benignity and malignancy.  相似文献   

12.
Acetylcholinesterase (AChE) inhibitors are potentially lethal but also have applications as therapeutic drugs for neurodegenerative diseases such as Alzheimer’s. Enzyme inhibitor binding are difficult to be detected directly by surface plasmon resonance (SPR) due to their small molecular weight. In this article, we describe the detection of AChE inhibitor binding by SPR without the use of competitive binding or antibodies. AChE was immobilized on the gold surface of an SPR sensor through covalent attachment to a self-assembled monolayer (SAM) of a COOH-terminated alkanethiol. The activity of the immobilized protein and the surface density were determined by using a standard photometric assay. Binding of two reversible inhibitors, which are used as therapeutic drugs, was detectable by SPR without the need to further modify the surface or the use of other reagents. The binding affinities (KA) obtained from the fits were 3.8 × 103 M−1 for neostigmine and 1.7 × 103 M−1 for eserine, showing a higher affinity of the sensor for neostigmine. We believe that the SPR sensor’s ability to detect these inhibitors is due to conformational changes of the enzyme structure on inhibitor binding.  相似文献   

13.
An epitope may be defined as a specific site on an antigen module characterized by the binding of one monoclonal antibody (MAb). Epitope mapping by surface plasmon resonance in the BIAcore biosensor may be performed to characterize an antigen or a group of specific MAbs or both. This article describes the BIAcore instrument and methods for such mapping. Examples include molecular interaction studies with simple and complex proteins, such as myoglobin and calprotectin, respectively.  相似文献   

14.
In recent years, in situ protein synthesis microarray technologies have enabled protein microarrays to be created on demand just before they are needed. In this paper, we utilized the TUS-TER immobilization technology to allow label-free detection with real-time kinetics of protein–protein interactions using surface plasmon resonance imaging (SPRi). We constructed an expression-ready plasmid DNA with a C-terminal TUS fusion tag to directionally immobilize the in situ synthesized recombinant proteins onto the surface of the biosensor. The expression plasmid was immobilized on the polyethylene imine-modified gold surface, which was then coupled with a cell-free expression system on the flow cell of the SPRi instrument. The expressed TUS fusion proteins bind on the surface via the immobilized TER DNA sequence with high affinity (∼3–7 × 10−13 M). The expression and immobilization of the recombinant in situ expressed proteins were confirmed by probing with specific antibodies. The present study shows a new low cost method for in situ protein expression microarrays that has the potential to study the kinetics of protein–protein interactions. These protein microarrays can be created on demand without the problems of stability associated with protein arrays used in the drug discovery and biomarker discovery fields.  相似文献   

15.
16.
An immunoassay method based on the peak shift of the localized surface plasmon resonance (LSPR) absorption maxima has been developed for the determination of the thyroid stimulating hormone (TSH) in human blood serum. The anti-TSH antibody was adsorbed on the synthesized gold nanoparticles by electrostatic forces. The efficiency of the nanobiosensor was improved by optimizing the factors affecting the probe construction such as the pH and the antibody to gold nanoparticles ratio. Dynamic light scattering was applied for the characterization of the constructed probe. The amount of peak shift of the LSPR absorption maxima was selected as the basis for determination of TSH antigen. The linear dynamic range of 0.4–12.5 mIU L−1 and the calibration sensitivity of 1.71 L mIU−1 were obtained. The human control serum sample was analyzed for TSH by constructed nanobiosensor and the acceptable results were obtained.  相似文献   

17.
A polyrotaxane-biotin conjugate was synthesized and its interaction with streptavidin measured using surface plasmon resonance (SPR) detection. A biodegradable polyrotaxane in whichca. 22 molecules of α-cyclodextrins (α-CDs) were threaded onto a poly(ethylene oxide) chain (M n: 4,000) capped with benzyloxycarbonyl-L-phenylalanine was conjugated with a biotin hydorazide and 2-aminoethanol after activating the hydroxyl groups of α-CDs in the polyrotaxane usingN,N′-carbony diimidazole. The results of the high-resolution1H-nuclear magnetic resonance (1H-NMR) spectra and gel permeation chromatography of the conjugate showed thatca. 11 biotin molecules were actually introduced to the polyrotaxane scaffold. An SPR analysis showed that the binding curves of the biotin molecules in the conjugate on the streptavidin-deposited surface changed in a concentration dependent manner, indicating that the biotin in the conjugate was actually recognized by streptavidin. The association equilibrium constant (K a) of the interaction between the conjugate and streptavidin tetramer was of the order 107. These results suggest that polyrotaxane is useful for scaffolds as a polymeric ligand in biomedical fields.  相似文献   

18.
Ligand binding to nuclear receptors leads to a conformational change that increases the affinity of the receptors to coactivator proteins. We have developed a ligand sensor assay for farnesoid X receptor (FXR) in which the receptor–coactivator interaction can be directly monitored using surface plasmon resonance biosensor technology. A 25-mer peptide from coactivator SRC1 containing the LXXLL nuclear receptor interaction motif was immobilized on the surface of a BIAcore sensor chip. Injection of the FXR ligand binding domain (FXRLBD) with or without the most potent natural ligand, chenodeoxycholic acid (CDCA), over the surface of the chip resulted in a ligand- and LXXLL motif-dependent interaction. Kinetic analysis revealed that CDCA and its conjugates decreased the equilibrium dissociation constant (Kd) by 8–11-fold, indicating an increased affinity. Using this technique, we found that a synthetic bile acid sulfonate, 3,7-dihydroxy-5β-cholane-24-sulfonate, which was inactive in a FXR response element-driven luciferase assay using CV-1 cells, caused the most potent interaction, comparable to the reaction produced by CDCA. This method provides a rapid and reliable in vitro ligand assay for FXR. This kinetic analysis-featured technique may be applicable to mechanistic studies.  相似文献   

19.
Para‐maleimidophenyl (p‐MP) modified gold surfaces have been prepared by one‐step electrochemical deposition and used in surface plasmon resonance (SPR) studies. Therefore, a FITC mimotope peptide (MP1, 12 aa), a human mucin 1 epitope peptide (MUC, 9 aa) and a protein with their specific antibodies were used as model systems. The peptides were modified with an N‐terminal cysteine for covalent and directed coupling to the maleimido functionalized surface by means of Michael addition. The coupling yield of the peptide, the binding characteristics of antibody and the unspecific adsorption of the analytes were investigated. The results expand the spectrum of biosensors usable with p‐MP by widely used SPR and support its potential to be versatile for several electrochemical and optical biosensors. This allows the combination of an electrochemical and optical read‐out for a broad variety of biomolecular interactions on the same chip. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号