首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An important mechanism underlying cochlear hair cell (HC) susceptibility to hypoxia/ischemia is the influx of Ca(2+). Two main ATP-dependent mechanisms contribute to maintaining low Ca(2+) levels: uptake of Ca(2+) into intracellular stores via smooth endoplasmic reticulum calcium ATPase (SERCA) and extrusion of Ca(2+) via plasma membrane calcium ATPase (PMCA). The effects of the SERCA inhibitors thapsigargin (10 nM-10 microM) and cyclopiazonic acid (CPA; 10-50 microM) and of the PMCA blockers eosin (1.5-10 microM) and o-vanadate (1-5 mM) on inner and outer hair cells (IHCs/OHCs) were examined in normoxia and ischemia using an in vitro model of the newborn rat cochlea. Exposure of the cultures to ischemia resulted in a significant loss of HCs. Thapsigargin and CPA had no effect. Eosin decreased the numbers of IHCs and OHCs by up to 25 % in normoxia and significantly aggravated the ischemia-induced damage to IHCs at 5 and 10 microM and to OHCs at 10 microM. o-Vanadate had no effect on IHC and OHC counts in normoxia, but aggravated the ischemia-induced HC loss in a dose-dependent manner. The effects of eosin and o-vanadate indicate that PMCA has an important role to play in protecting the HCs from ischemic cell death.  相似文献   

2.
Vibration of the stereociliary bundles activates calcium-permeable mechanotransducer (MT) channels to initiate sound detection in cochlear hair cells. Different regions of the cochlea respond preferentially to different acoustic frequencies, with variation in the unitary conductance of the MT channels contributing to this tonotopic organization. Although the molecular identity of the MT channel remains uncertain, two members of the transmembrane channel–like family, Tmc1 and Tmc2, are crucial to hair cell mechanotransduction. We measured MT channel current amplitude and Ca2+ permeability along the cochlea’s longitudinal (tonotopic) axis during postnatal development of wild-type mice and mice lacking Tmc1 (Tmc1−/−) or Tmc2 (Tmc2−/−). In wild-type mice older than postnatal day (P) 4, MT current amplitude increased ∼1.5-fold from cochlear apex to base in outer hair cells (OHCs) but showed little change in inner hair cells (IHCs), a pattern apparent in mutant mice during the first postnatal week. After P7, the OHC MT current in Tmc1−/− (dn) mice declined to zero, consistent with their deafness phenotype. In wild-type mice before P6, the relative Ca2+ permeability, PCa, of the OHC MT channel decreased from cochlear apex to base. This gradient in PCa was not apparent in IHCs and disappeared after P7 in OHCs. In Tmc1−/− mice, PCa in basal OHCs was larger than that in wild-type mice (to equal that of apical OHCs), whereas in Tmc2−/−, PCa in apical and basal OHCs and IHCs was decreased compared with that in wild-type mice. We postulate that differences in Ca2+ permeability reflect different subunit compositions of the MT channel determined by expression of Tmc1 and Tmc2, with the latter conferring higher PCa in IHCs and immature apical OHCs. Changes in PCa with maturation are consistent with a developmental decrease in abundance of Tmc2 in OHCs but not in IHCs.  相似文献   

3.
4.
Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamically regulated. Recently, it was shown that the actin-binding protein gelsolin is expressed in the stereocilia of outer hair cells (OHCs) and in its absence they become long and straggly. Gelsolin is part of a whirlin scaffolding protein complex at the stereocilia tip, which has been shown to interact with other actin regulatory molecules such as Eps8. Here we investigated the physiological effects associated with the absence of gelsolin and its possible overlapping role with Eps8. We found that, in contrast to Eps8, gelsolin does not affect mechanoelectrical transduction during immature stages of development. Moreover, OHCs from gelsolin knockout mice were able to mature into fully functional sensory receptors as judged by the normal resting membrane potential and basolateral membrane currents. Mechanoelectrical transducer current in gelsolin-Eps8 double knockout mice showed a profile similar to that observed in the single mutants for Eps8. We propose that gelsolin has a non-overlapping role with Eps8. While Eps8 is mainly involved in the initial growth of stereocilia in both inner hair cells (IHCs) and OHCs, gelsolin is required for the maintenance of mature hair bundles of low-frequency OHCs after the onset of hearing.  相似文献   

5.
Receptor-interacting protein (RIP) kinases promote the induction of necrotic cell death pathways. Here we investigated signaling pathways in outer hair cells (OHCs) of adult male CBA/J mice exposed to noise that causes permanent threshold shifts, with a particular focus on RIP kinase-regulated necroptosis. One hour after noise exposure, nuclei of OHCs in the basal region of the cochlea displayed both apoptotic and necrotic features. RIP1 and RIP3 protein levels increased and caspase-8 was activated. Treatment with pan-caspase inhibitor ZVAD blocked the activation of caspase-8 and reduced the number of apoptotic nuclei, while increasing levels of RIP1, RIP3, and necrotic OHCs. Conversely, treatment with necrosis inhibitor necrostatin-1 (Nec-1) or RIP3 siRNA (siRIP3) diminished noise-induced increases in RIP1 and RIP3, and decreased necrotic OHC nuclei. This treatment also increased the number of apoptotic nuclei without increasing activation of caspase-8. Consistent with the elevation of levels of RIP1 and RIP3, noise-induced active AMPKα levels increased with ZVAD treatment, but decreased with Nec-1 and siRIP3 treatment. Furthermore, treatment with siRIP3 did not alter the activation of caspase-8, but instead increased activation of caspase-9 and promoted endonuclease G translocation into OHC nuclei. Finally, auditory brainstem response functional measurements and morphological assessment of OHCs showed that ZVAD treatment reduces noise-induced deficits. This protective function is potentiated when combined with siRIP3 treatment. In conclusion, noise-induced OHC apoptosis and necrosis are modulated by caspases and RIP kinases, respectively. Inhibition of either pathway shifts the prevalence of OHC death to the alternative pathway.  相似文献   

6.
The expression of two calcium-binding proteins of the parvalbumin (PV) family, the alpha isoform (alphaPV) and the beta isoform known as oncomodulin (OM), was investigated in the rat cochlea during postnatal development and related to cholinergic efferent innervation. Using RT-PCR analysis, we found that OM expression begins between postnatal day 2 (P2) and P4, and peaks as early as P10, while alphaPV mRNA begins expression before birth and remains highly expressed into the adult period. Both in situ hybridization and immunoreactivity confirm that OM is uniquely expressed by the outer hair cells (OHCs) in the rat cochlea and occurs after efferent innervation along the cochlear spiral between P2 and P4. In contrast to OM expression, alphaPV immunoreactivity is expressed in both inner hair cells (IHCs) and OHCs at birth. Following olivocochlear efferent innervation, OHCs demonstrate weak OM immunoreactivity beginning at P5 and diminished alphaPV immunoreactivity after P10. In organ cultures isolated prior to the efferent innervation of OHCs, OM immunoreactivity failed to develop in OHCs, but alphaPV immunoreactivity remained present in both IHCs and OHCs. In contrast, organ cultures isolated after efferent innervation of OHCs show OHCs with low levels of OM immunoreactivity and high levels of alphaPV immunoreactivity. This study suggests that OM and alphaPV are differentially regulated in OHCs during cochlear development. Our findings further raise the possibility that the expression of PV proteins in OHCs may be influenced by efferent innervation.  相似文献   

7.
Down syndrome is one of the most common congenital disorders leading to a wide range of health problems in humans, including frequent otitis media. The Tc1 mouse carries a significant part of human chromosome 21 (Hsa21) in addition to the full set of mouse chromosomes and shares many phenotypes observed in humans affected by Down syndrome with trisomy of chromosome 21. However, it is unknown whether Tc1 mice exhibit a hearing phenotype and might thus represent a good model for understanding the hearing loss that is common in Down syndrome. In this study we carried out a structural and functional assessment of hearing in Tc1 mice. Auditory brainstem response (ABR) measurements in Tc1 mice showed normal thresholds compared to littermate controls and ABR waveform latencies and amplitudes were equivalent to controls. The gross anatomy of the middle and inner ears was also similar between Tc1 and control mice. The physiological properties of cochlear sensory receptors (inner and outer hair cells: IHCs and OHCs) were investigated using single-cell patch clamp recordings from the acutely dissected cochleae. Adult Tc1 IHCs exhibited normal resting membrane potentials and expressed all K(+) currents characteristic of control hair cells. However, the size of the large conductance (BK) Ca(2+) activated K(+) current (I(K,f)), which enables rapid voltage responses essential for accurate sound encoding, was increased in Tc1 IHCs. All physiological properties investigated in OHCs were indistinguishable between the two genotypes. The normal functional hearing and the gross structural anatomy of the middle and inner ears in the Tc1 mouse contrast to that observed in the Ts65Dn model of Down syndrome which shows otitis media. Genes that are trisomic in Ts65Dn but disomic in Tc1 may predispose to otitis media when an additional copy is active.  相似文献   

8.
The expression of two calcium‐binding proteins of the parvalbumin (PV) family, the α isoform (αPV) and the β isoform known as oncomodulin (OM), was investigated in the rat cochlea during postnatal development and related to cholinergic efferent innervation. Using RT‐PCR analysis, we found that OM expression begins between postnatal day 2 (P2) and P4, and peaks as early as P10, while αPV mRNA begins expression before birth and remains highly expressed into the adult period. Both in situ hybridization and immunoreactivity confirm that OM is uniquely expressed by the outer hair cells (OHCs) in the rat cochlea and occurs after efferent innervation along the cochlear spiral between P2 and P4. In contrast to OM expression, αPV immunoreactivity is expressed in both inner hair cells (IHCs) and OHCs at birth. Following olivocochlear efferent innervation, OHCs demonstrate weak OM immunoreactivity beginning at P5 and diminished αPV immunoreactivity after P10. In organ cultures isolated prior to the efferent innervation of OHCs, OM immunoreactivity failed to develop in OHCs, but αPV immunoreactivity remained present in both IHCs and OHCs. In contrast, organ cultures isolated after efferent innervation of OHCs show OHCs with low levels of OM immunoreactivity and high levels of αPV immunoreactivity. This study suggests that OM and αPV are differentially regulated in OHCs during cochlear development. Our findings further raise the possibility that the expression of PV proteins in OHCs may be influenced by efferent innervation. © 2003 Wiley Periodicals, Inc. J Neurobiol 58: 479–492, 2004  相似文献   

9.
Salicylate-induced ototoxicity leading to sensorineural hearing loss (SNHL) and tinnitus is well documented. However, the exact mechanisms are poorly defined. Caspase-3 is a member of the class of effector caspases and has been activated in nearly every model of apoptosis. To examine its role in salicylate-induced injury, we subjected guinea pigs to treatment with a specific inhibitor zDEVD-FMK via the round window niche (RWN) followed by a systemic injection of salicylate at a dose of 200 mg·kg−1·d−1 i.p. for 10 consecutive days. For those animals administered with salicylate, immunohistochemical studies revealed that caspase-3 was activated in the spiral ganglion neurons (SGNs) and method of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) to identify neuronal apoptosis showed that fragmented nuclei were distributed in Rosenthal’s canal. Topical administration of the zDEVD-FMK at a concentration of 500 mM blocked caspase-3 activation and had an effect in reducing the number of TUNEL-positive auditory neurons. In contrast, the inhibitor at a concentration of 125 or 250 mM caused no variation in the expression of activated caspase-3, or in the ratio of TUNEL-positive neurons. These results indicate that caspase-3 is a crucial mediator of apoptosis induced by salicylate in the primary auditory neuron in vivo, and suggest that the specific inhibitor at a relatively high concentration may be therapeutically beneficial in salicylate-induced apoptosis.  相似文献   

10.
11.
12.
The organ of Corti contains two different types of auditory receptors; the inner (IHCs) and outer (OHCs) hair cells. This dualism is further represented in their innervation, IHCs being innervated by type I neurons, and OHCs by type II neurons (in man, named small ganglion cells). Two efferent systems are also present. Here, we have analyzed the expression of the 57-kDa neuron-specific intermediate filament protein peripherin (PP) in human cochlea. In the human organ of Corti, PP seems to be specifically expressed in OHC afferents. Small or type II spiral ganglion cell bodies also intensely express PP. Thus, PP can be used as a marker for the characterization of the innervation of the OHC system in man.  相似文献   

13.
Apoptotic death of hair cells (HCs) in the cochlea has been found following exposure to intense noise. The current study was designed to examine the mitochondrial energetic function of HCs during the course of noise-induced apoptosis. Two aspects of the mitochondrial energetic function, succinate dehydrogenase (SDH) activity and mitochondrial membrane potential (MMP), were examined in HCs of chinchilla cochleae following exposure to a series of 75 pairs of impulse noises at 155 dB pSPL. The results showed that nuclear condensation and uptake of propidium iodide or trypan blue appeared at 10 min after the noise exposure, indicating a rapid progression of HC apoptosis. However, SDH activity was preserved at this time point. As the time elapsed (1 hr or 24 hrs) after the noise exposure, all newly-generated apoptotic HCs showed strong SDH activity, indicating the preservation of SDH activity during the course of apoptosis. Examination of MMP with rhodamine 123 staining revealed that MMP was sustained in the apoptotic HCs having mild nuclear condensation, even after the occurrence of cell membrane leakage. MMP was reduced with further progression of nuclear condensation. These results suggest the presence of a delayed mitochondrial dysfunction in apoptotic HCs following exposure to intense noise. Research was supported by the Grant NIDCD 1R03 DC006181-01A1.  相似文献   

14.
Mice that lack caspase-3, which functions in apoptosis, were generated by gene targeting and shown to undergo hearing loss. The ABR threshold of the caspase-3(-/-) mice was significantly elevated compared to that of caspase-3(+/+) mice at 15 days of age and was progressively elevated further by 30 days. Distortion product otoacoustic emissions were not detectable in caspase-3(-/-) mice at 15 days of age. Caspase-3(-/-) mice exhibited marked degeneration of spiral ganglion neurons and a loss of inner and outer hair cells in the cochlea at 30 days of age, although no such changes were apparent at 15 days. The degenerating neurons manifested features, including cytoplasmic vacuolization, distinct from those characteristic of apoptosis. Spiral ganglion neurons and cochlear hair cells thus appear to require caspase-3 for survival but not for initial development. The mapping of both the human caspase-3 gene and the locus responsible for an autosomal dominant, nonsyndromic form of hearing loss (DFNA24) to chromosome 4q35 suggests that the caspase-3(-/-) mice may represent a model of this human condition.  相似文献   

15.
Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.  相似文献   

16.
Mammalian hearing involves the mechanoelectrical transduction (MET) of sound-induced fluid waves in the cochlea. Essential to this process are the specialised sensory cochlear cells, the inner (IHCs) and outer hair cells (OHCs). While genetic hearing loss is highly heterogeneous, understanding the requirement of each gene will lead to a better understanding of the molecular basis of hearing and also to therapeutic opportunities for deafness. The Neuroplastin (Nptn) gene, which encodes two protein isoforms Np55 and Np65, is required for hearing, and homozygous loss-of-function mutations that affect both isoforms lead to profound deafness in mice. Here we have utilised several distinct mouse models to elaborate upon the spatial, temporal, and functional requirement of Nptn for hearing. While we demonstrate that both Np55 and Np65 are present in cochlear cells, characterisation of a Np65-specific mouse knockout shows normal hearing thresholds indicating that Np65 is functionally redundant for hearing. In contrast, we find that Nptn-knockout mice have significantly reduced maximal MET currents and MET channel open probabilities in mature OHCs, with both OHCs and IHCs also failing to develop fully mature basolateral currents. Furthermore, comparing the hearing thresholds and IHC synapse structure of Nptn-knockout mice with those of mice that lack Nptn only in IHCs and OHCs shows that the majority of the auditory deficit is explained by hair cell dysfunction, with abnormal afferent synapses contributing only a small proportion of the hearing loss. Finally, we show that continued expression of Neuroplastin in OHCs of adult mice is required for membrane localisation of Plasma Membrane Ca2+ ATPase 2 (PMCA2), which is essential for hearing function. Moreover, Nptn haploinsufficiency phenocopies Atp2b2 (encodes PMCA2) mutations, with heterozygous Nptn-knockout mice exhibiting hearing loss through genetic interaction with the Cdh23ahl allele. Together, our findings provide further insight to the functional requirement of Neuroplastin for mammalian hearing.  相似文献   

17.
In the inner ear, there is considerable evidence that extracellular adenosine 5′-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca2+ concentration ([Ca2+]i) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca2+]i in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca2+ response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca2+ signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca2+ signalling in SGNs and supporting cells.  相似文献   

18.
The outer hair cell (OHC) of the mammalian inner ear exhibits an unusual form of somatic motility that can follow membrane-potential changes at acoustic frequencies. The cellular forces that produce this motility are believed to amplify the motion of the cochlear partition, thereby playing a key role in increasing hearing sensitivity. To better understand the role of OHC somatic motility in cochlear micromechanics, we developed an excised cochlea preparation to visualize simultaneously the electrically-evoked motion of hundreds of cells within the organ of Corti (OC). The motion was captured using stroboscopic video microscopy and quantified using cross-correlation techniques. The OC motion at approximately 2-6 octaves below the characteristic frequency of the region was complex: OHC, Deiter's cell, and Hensen's cell motion were hundreds of times larger than the tectorial membrane, reticular lamina (RL), and pillar cell motion; the inner rows of OHCs moved antiphasic to the outer row; OHCs pivoted about the RL; and Hensen's cells followed the motion of the outer row of OHCs. Our results suggest that the effective stimulus to the inner hair cell hair bundles results not from a simple OC lever action, as assumed by classical models, but by a complex internal motion coupled to the RL.  相似文献   

19.
The outer hair cells of the cochlea occur in three distinct and geometrically precise rows and, unusually, display both sensing and motor properties. As well as sensing sound, outer hair cells (OHCs) undergo cycle-by-cycle length changes in response to stimulation. OHCs are central to the way in which the cochlea processes and amplifies sounds, but how they do so is presently unknown. In explanation, this paper proposes that outer hair cells act like a single-port surface acoustic wave (SAW) resonator in which the interdigital electrodes--the three distinctive rows--exhibit the required electromechanical and mechanoelectrical properties. Thus, frequency analysis in the cochlea might occur through sympathetic resonance of a bank of interacting cells whose microscopic separation largely determines the resonance frequency. In this way, the cochlea could be tuned from 20 Hz at the apex, where the spacing is largest, to 20 kHz at the base, where it is smallest. A suitable candidate for a wave that could mediate such a short-wavelength interaction--a 'squirting wave' known in ultrasonics--has recently been described. Such a SAW resonator could thereby underlie the 'cochlear amplifier'--the device whose action is evident to auditory science but whose identity has not yet been established.  相似文献   

20.
Cover: The cover shows that in the Organ of Corti, there are 4 rows of HCs, 1 row of IHCs and 3 rows of OHCs. Please see review in this issue by Di Domenico et al, pages 2494–2499.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号