首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus cereus, B. thuringiensis and B. anthracis are closely related medically and economically important bacterial species that belong to the B. cereus group. Members of the B. cereus group carry genes encoding several important virulence factors, including enterotoxins, phospholipases and exotoxins. Since it is difficult to differentiate among B. cereus group members, and because Bacillus virulence factors are very important for pathogenesis, we explored the use of microarray-based detection of virulence factor genes as a tool for strain identification and for determining virulence. Our method requires an initial multiplex PCR amplification step, followed by identification of the PCR amplicons by hybridization to an oligonucleotide microarray containing genes for all three types of Bacillus virulence factors including B. anthracis virulence factors. The DNA chip described here contains 21 identical arrays used for analysis of seven samples in triplicates. Using the arrays, we found that virulence factors are present in several combinations in the strains analyzed. This work also demonstrates the potential of oligonucleotide microarrays for medical, food safety and biodefense analysis of microbial pathogens.  相似文献   

2.
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms.  相似文献   

3.
Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp. israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.  相似文献   

4.
5.
Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.  相似文献   

6.
DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together.  相似文献   

7.
8.
Aims:  To evaluate different methods that are useful for rapid and definitive discrimination of Bacillus anthracis from other bacteria of the Bacillus cereus group in environmental samples like letters claimed to contain anthrax spores.
Methods and Results:  Characterized strains and bacteria from environmental samples were analysed by microbiological and molecular methods (PCR and restriction analysis). Environmental isolates often shared several microbiological features with B. anthracis , e.g. lack of β -haemolysis and phospholipase C activity, and only the gamma phage assay was specific for B. anthracis . PCR assays targeting markers from the virulence plasmids exclusively detected B. anthracis , but other PCR targets were also detected in nonanthrax isolates. Additionally, the restriction pattern in an Alu I restriction analysis of the SG-749 fragment is not 100% specific. The loci used for multiple-locus variable-number tandem repeat analysis of B. anthracis are also present in other members of the B. cereus group, but amplicon sizes are usually different.
Conclusions:  Environmental samples often contain borderline isolates closely related to B. anthracis both on microbiological and genetic levels. Real-time PCR targeting plasmidal and chromosomal markers should be used for rapid and definitive exclusion of a virulent strain of B. anthracis in such samples.
Significance and Impact of the Study:  This study gives an overview of the current microbiological and molecular methods used for identification of B. anthracis and shows that most assays have limits when borderline isolates present in environmental samples are analysed.  相似文献   

9.
10.
A total of 293 dairy products purchased from local markets were examined to determine the incidence of and characterize Bacillus cereus. Isolations were made on mannitol-egg yolk-polymyxin B agar medium and confirmed by several staining and biochemical tests. B. cereus occurred in 17% of fermented milks, 52% of ice creams, 35% of soft ice creams, 2% of pasteurized milks and pasteurized fruit- or nut-flavored reconstituted milks, and 29% of milk powders, mostly in fruit- or nut-flavored milk mixes. The average population of B. cereus in these dairy products was 15 to 280 CFU/ml or CFU/g (range, 5 to 800). The characteristics of these B. cereus isolates in terms of heat resistance, biochemical reactions, and antibiotic susceptibility were similar to previously reported data except for a higher utilization of sucrose. Some isolates were especially resistant to carbenicillin, nalidixic acid, streptomycin, and tetracycline. The MICs for the isolates were also determined. All of the tested isolates lysed rabbit erythrocytes; 98% showed verotoxicity, 68% showed cytotonic toxicity for CHO cells, and 3 of 11 selected isolates that showed strong hemolysin activity killed adult mice.  相似文献   

11.
rpoB and gyr genes (and their fragments) of chromosomal DNA of bacteria from Bacillus cereus group - B. anthracis, B. cereus, and B. thuringiensis - which are the potential markers for their genotyping were sequenced and phylogenetic trees were constructed. Sets of primers for species-specific detection of B. anthracis, B. cereus, and B. thuringiensis by multiplex polymerase chain reaction were designed. Also primers sets, which allow to differentiate strains of B. anthracis with various plasmid profiles (containing both plasmids (pXO1+, pXO2+), and without one (pXO1+, pXO2- or pXO1-, pXO2+) or both plasmids (pXO1-, pXO2-), determining pathogenic characteristics of the strains, were developed. For multiplex PCR primer sets were optimized on the annealing temperature of primers and amplicon length. Itwas shown that phylogenetic tree can be applied as an indicator of reliability and accuracy of taxonomical classification of microorganisms' species and subspecies. Comparison of pXO1 and pXO2 plasmid sequences of B. anthracis showed that these plasmids contain 18 and 4 palindrome sequences respectively which can potentially form thermodynamically stable hairpin-loop structures.  相似文献   

12.
Emetic Bacillus cereus strains produce a potent cereulide cytotoxin, which can cause acute and fatal cases of food poisoning. We isolated 18 emetic B. cereus strains from a food poisoning event, and from clinical and non-random food surveillance in China and phenotypic characteristics of haemolysis, starch hydrolysis, salicin fermentation, gelatin liquefaction, cytotoxicity, and susceptibility to antibiotics were assessed. All isolates were positive for haemolysis and gelatin liquefaction, and negative for starch hydrolysis and salicin fermentation. Their haemolytic potentials were intermediate to Bacillus anthracis and B. cereus ATCC 14579 (a non-emetic strain). All isolates were cytotoxic to CHO, Hep-2, and Vero cells, and were sensitive to ampicillin. The homogeneous phenotypes of emetic isolates from China are similar to the corresponding traits of European and Japanese isolates that have been characterized, suggesting highly similar phenotypes of emetic B. cereus worldwide.  相似文献   

13.
Representative strains of the Bacillus cereus group of bacteria, including Bacillus anthracis (11 isolates), B. cereus (38 isolates), Bacillus mycoides (1 isolate), Bacillus thuringiensis (53 isolates from 17 serovars), and Bacillus weihenstephanensis (2 isolates) were assigned to 59 sequence types (STs) derived from the nucleotide sequences of seven alleles, glpF, gmk, ilvD, pta, pur, pycA, and tpi. Comparisons of the maximum likelihood (ML) tree of the concatenated sequences with individual gene trees showed more congruence than expected by chance, indicating a generally clonal structure to the population. The STs followed two major lines of descent. Clade 1 comprised B. anthracis strains, numerous B. cereus strains, and rare B. thuringiensis strains, while clade 2 included the majority of the B. thuringiensis strains together with some B. cereus strains. Other species were allocated to a third, heterogeneous clade. The ML trees and split decomposition analysis were used to assign STs to eight lineages within clades 1 and 2. These lineages were defined by bootstrap analysis and by a preponderance of fixed differences over shared polymorphisms among the STs. Lineages were named with reference to existing designations: Anthracis, Cereus I, Cereus II, Cereus III, Kurstaki, Sotto, Thuringiensis, and Tolworthi. Strains from some B. thuringiensis serovars were wholly or largely assigned to a single ST, for example, serovar aizawai isolates were assigned to ST-15, serovar kenyae isolates were assigned to ST-13, and serovar tolworthi isolates were assigned to ST-23, while other serovars, such as serovar canadensis, were genetically heterogeneous. We suggest a revision of the nomenclature in which the lineage and clone are recognized through name and ST designations in accordance with the clonal structure of the population.  相似文献   

14.
Genomics of the Bacillus cereus group of organisms   总被引:11,自引:0,他引:11  
Members of the Bacillus cereus group of organisms include Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis. Collectively, these organisms represent microbes of high economic, medical and biodefense importance. Given this significance, this group contains the highest number of closely related fully sequenced genomes, giving the unique opportunity for thorough comparative genomic analyses. Much of the disease and host specificity of members of this group can be attributed to their plasmids, which vary in size and number. Chromosomes exhibit a high level of synteny and protein similarity, with limited differences in gene content, questioning the speciation of the group members. Genomic data have spurred functional studies that combined microarrays and proteomics. Recent advances are reviewed in this article and highlight the advantages of genomic approaches to the study of this important group of bacteria.  相似文献   

15.
Yu C  Wang Y  Xu CC  He J  Zhang QY  Yu ZN 《遗传》2011,33(10):1057-1066
微生物基因组测序和高通量分析方法获得了大量的数据和信息,利用这些信息研究代谢网络成为当前的一个新热点。文章在比较和分析重构代谢网络不同方法的基础上,利用蜡状芽胞杆菌群中已测序的9株蜡状芽胞杆菌、6株炭疽芽胞杆菌、6株苏云金芽胞杆菌基因组,对它们的碳水化合物代谢途径、氨基酸代谢途径和能量代谢途径进行比较与分析,找出它们的共性和特性。这3种菌都存在必需的糖酵解、三羧酸循环、丙氨酸代谢、组氨酸代谢及能量代谢等途径;同时它们还存在特殊的代谢途径,蜡状芽胞杆菌对单糖的利用率较高;炭疽芽胞杆菌的氨基酸降解和转运途径较丰富;苏云金芽胞杆菌中存在催化谷氨酸转化的代谢旁路等。代谢途径的分析为深入研究它们的食物毒素、炭疽毒素和杀虫毒素提供了新思路。  相似文献   

16.
AIM: To determine the autolytic phenotype of five species in the Bacillus cereus group. METHODS AND RESULTS: The autolytic rate of 96 strains belonging to five species in the B. cereus group was examined under starvation conditions at pH 6, 6.5 and 8.5 in different buffers. The autolytic rate was strain-dependent with a wide variability at pH 6, but higher and more uniform at pH 6.5. At pH 8.5, and respect to the extent of autolysis at pH 6.5, it was relatively low for most of the strains with the lowest values between 13 and 52% in Bacillus mycoides and Bacillus pseudomycoides. Peptidoglycan hydrolase patterns evaluated by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis using cells of Bacillus thuringiensis ssp. tolworthi HD125 as an indicator, revealed complex profiles with lytic bands of about 90, 63, 46, 41, 38, 32, 28 and 25 kDa in B. cereus, B. thuringiensis and Bacillus weihenstephanensis. Bacillus mycoides and B. pseudomycoides had simpler profiles with lytic bands of 63, 46 and 38 kDa. Changes in the autolytic pattern were observed for cells harvested at the stationary phase of growth (72 h) showing an increase in the intensity of the 25 kDa band in the case of B. cereus, B. thuringiensis and B. weihenstephanensis, while no changes were observed for B. mycoides. Using Micrococcus lysodeicticus and Listeria monocytogenes as indicators lytic activity was retained by proteins of 63, 46, 38, 32 and 25 kDa and a new one of about 20 kDa in B. mycoides. Growth in the different media did not affect the autolytic pattern. NaCl abolished the activity of all the peptidoglycan hydrolases except for those of B. mycoides and B. weihenstephanensis. Lytic activity was retained in the presence of MgCl(2), MnCl(2) and EDTA and increased at basic pH. CONCLUSIONS: Bacillus cereus/B. thuringiensis/B. weihenstephanensis showed a high extent of autolysis around neutral pH, even though they presented relatively complex autolysin profiles at alkaline pH. Bacillus mycoides/B. pseudomycoides had a higher extent of autolysis at acidic pH and a simpler autolysin pattern. SIGNIFICANCE AND IMPACT OF THE STUDY: Information on the autolytic phenotype expand the phenotypic characterization of the different species in the B. cereus group.  相似文献   

17.
The epidemiology of Bacillus cereus strains responsible for food poisoning is scantly known, mostly because the genotypic and toxigenic properties of the B. cereus strains isolated during food-poisoning outbreaks have been never catalogued. The occurrence of two simultaneous food-poisoning outbreaks gave us the opportunity to wonder whether (i) the identity of individual strains isolated from clinical, environmental, and food samples could be established by random amplified polymorphic DNA (RAPD)-PCR and multiplex RAPD-PCR, and (ii) the toxigenic potential of the isolates could be determined by testing their ability to secrete hemolysin BL, phosphatidylcholine-specific phospholipase C, and cereulide, as well as by determining the presence of the genes encoding enterotoxins NHE, T, and FM/S, cytotoxin K, sphingomyelinase, and phosphatidylinositol-specific phospholipase C. This is the first report demonstrating that the combination of several phenotypic and genotypic traits provides a powerful tool for tracing the source of infection of toxigenic B. cereus strains relevant for epidemiological survey.  相似文献   

18.
A total of 293 dairy products purchased from local markets were examined to determine the incidence of and characterize Bacillus cereus. Isolations were made on mannitol-egg yolk-polymyxin B agar medium and confirmed by several staining and biochemical tests. B. cereus occurred in 17% of fermented milks, 52% of ice creams, 35% of soft ice creams, 2% of pasteurized milks and pasteurized fruit- or nut-flavored reconstituted milks, and 29% of milk powders, mostly in fruit- or nut-flavored milk mixes. The average population of B. cereus in these dairy products was 15 to 280 CFU/ml or CFU/g (range, 5 to 800). The characteristics of these B. cereus isolates in terms of heat resistance, biochemical reactions, and antibiotic susceptibility were similar to previously reported data except for a higher utilization of sucrose. Some isolates were especially resistant to carbenicillin, nalidixic acid, streptomycin, and tetracycline. The MICs for the isolates were also determined. All of the tested isolates lysed rabbit erythrocytes; 98% showed verotoxicity, 68% showed cytotonic toxicity for CHO cells, and 3 of 11 selected isolates that showed strong hemolysin activity killed adult mice.  相似文献   

19.
A total of 119 Bacillus thuringiensis strains (83 type strains and 26 native isolates), as well as five B. cereus group species, were analyzed by repetitive extragenic palindromic sequence-based PCR analysis (Rep-PCR) fingerprinting. Primers Bc-REP-1 and Bc-REP-2 were specifically designed according to an extragenic 26-bp repeated sequence found in the six B. cereus group genomes reported. A total of 47 polymorphic bands were detected, and the patterns varied from 5 to 13 bands in number and from 0.2 to 3.8 kb in size. Virtually each type strain showed a distinctive B. cereus (Bc)-Rep-PCR pattern, except for B. thuringiensis serovars dakota (H serotype 15 [H15]) and sotto (H4a,4b), as well as serovars amagiensis (H29) and seoulensis (H35), which shared the same patterns. As expected, serovar entomocidus (H6) and its biovar subtoxicus showed an identical pattern; similarly, serovars sumiyoshiensis (H3a,3d) and fukuokaensis (H3a,3d,3e), which share two antigenic determinants, also showed identical Bc-Rep-PCR patterns. Interestingly, serovars israelensis (H14) and malaysiensis (H36), which share several phenotypic attributes, also showed identical Bc-Rep-PCR patterns. Native, coleopteran-active strains, including the self-agglutinated LBIT-74 strain, showed Bc-Rep-PCR patterns identical or very similar to that of the tenebrionis strain. Likewise, native mosquitocidal strains (including some self-agglutinated strains) also showed patterns identical or very similar to that of the serovar israelensis IPS-82 strain. Additionally, native beta-exotoxin-producing strains from serovar thuringiensis showed patterns identical to that of the B. thuringiensis type strain. The B. cereus group-specific Bc-Rep-PCR fingerprinting technique was shown to be highly discriminative, fast, easy, and able to identify B. thuringiensis serotypes, including nonflagellar and self-agglutinated strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号