首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the hypothesis that Na(+)/H(+) exchanger (NHE) regulatory factor 2 (NHERF2) is necessary for multiple aspects of acute regulation of NHE3 in intact mouse small intestine, distal ileal NHE3 activity was determined using two-photon microscopy/SNARF-4F in a NHERF2-null mouse model. The NHERF2-null mouse ileum had shorter villi, deeper crypts, and decreased epithelial cell number. Basal rates of NHE3 activity were reduced in NHERF2-null mice, which was associated with a reduced percentage of NHE3 in the apical domain and an increase in intracellular NHE3 amount but no change in total level of NHE3 protein. cAMP, cGMP, and elevated Ca(2+) due to apical exposure to UTP all inhibited NHE3 activity in wild-type mouse ileum but not in NHERF2-null mice, while inhibition by hyperosmolarity occurred normally. The cAMP-increased phosphorylation of NHE3 at aa 552; levels of PKAIIα and cGMP-dependent protein kinase II (cGKII); and elevation of Ca(2+) were similar in wild-type and NHERF2-null mouse ileum. Luminal lysophosphatidic acid (LPA) stimulated NHE3 in wild-type but not in NHERF2-null ileum. In conclusion, 1) there are subtle structural abnormalities in the small intestine of NHERF2-null mouse which include fewer villus epithelial cells; 2) the decreased basal NHE3 activity and reduced brush border NHE3 amount in NHERF2-null mice show that NHERF2 is necessary for normal basal trafficking or retention of NHE3 in the apical domain; 3) hyperosmolar inhibition of NHE3 occurs similarly in wild-type and NHERF2-null ileum, demonstrating that some inhibitory mechanisms of NHE3 are not NHERF2 dependent; 4) cAMP inhibition of NHE3 is NHERF2 dependent at a step downstream of cAMP/PKAII phosphorylation of NHE3 at aa 552; 5) cGMP- and UTP-induced inhibition of NHE3 are NHERF2 dependent at steps beyond cGKII and the UTP-induced increase of intracellular Ca(2+); and 6) LPA stimulation of NHE3 is also NHERF2 dependent.  相似文献   

2.
The sodium-hydrogen exchanger regulatory factor (NHERF) is an essential cofactor for cAMP-mediated inhibition of the Na(+)/H(+) exchanger isoform, NHE3, in renal brush border membranes. NHERF is also an ezrin-binding protein. To define the functional importance of ezrin binding for NHERF's function as a NHE3 regulator, we transfected stable PS120 cells expressing NHE3 with plasmids encoding WT and truncated mouse NHERF proteins. Co-immunoprecipitation established that in PS120 cells, NHE3 bound to full-length NHERF(1-355), the C-terminal domain, NHERF(147-355), and NHERF(1-325), which lacks the proposed ezrin-binding domain. The N-terminal domain, NHERF(1-146), failed to bind the antiporter. Ezrin was also co-immunoprecipitated with NHERF(1-355) but not with NHERF(1-325). 8Br-cAMP inhibited NHE3 activity in cells that expressed NHERF(1-355) or NHERF(147-355) but had no effect on the formation of NHE3-NHERF or NHERF-ezrin complexes. Na(+)/H(+) exchange was unaffected by 8Br-cAMP in cells that expressed NHERF(1-146) or NHERF(1-325). NHE3 phosphorylation in vivo was enhanced by 8Br-cAMP only in cells where NHERF bound to both NHE3 and ezrin. The data suggest that NHERF functions as a scaffold to link NHE3 with ezrin and that this multiprotein complex is essential for cAMP-mediated phosphorylation of NHE3 and the inhibition of Na(+)/H(+) exchange.  相似文献   

3.
Na(+)/H(+) exchanger 3 (NHE3) is the epithelial-brush border isoform responsible for most intestinal and renal Na(+) absorption. Its activity is both up- and down-regulated under normal physiological conditions, and it is inhibited in most diarrheal diseases. NHE3 is phosphorylated under basal conditions and Ser/Thr phosphatase inhibitors stimulate basal exchange activity; however, the kinases involved are unknown. To identify kinases that regulate NHE3 under basal conditions, NHE3 was immunoprecipitated; LC-MS/MS of trypsinized NHE3 identified a novel phosphorylation site at S(719) of the C terminus, which was predicted to be a casein kinase 2 (CK2) phosphorylation site. This was confirmed by an in vitro kinase assay. The NHE3-S719A mutant but not NHE3-S719D had reduced NHE3 activity due to less plasma membrane NHE3. This was due to reduced exocytosis plus decreased plasma membrane delivery of newly synthesized NHE3. Also, NHE3 activity was inhibited by the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole DMAT when wild-type NHE3 was expressed in fibroblasts and Caco-2 cells, but the NHE3-S(719) mutant was fully resistant to DMAT. CK2 bound to the NHE3 C-terminal domain, between amino acids 590 and 667, a site different from the site it phosphorylates. CK2 binds to the NHE3 C terminus and stimulates basal NHE3 activity by phosphorylating a separate single site on the NHE3 C terminus (S(719)), which affects NHE3 trafficking.  相似文献   

4.
NHERF1, NHERF2, and NHERF3 belong to the NHERF (Na+/H+ exchanger regulatory factor) family of PSD-95/Discs-large/ZO-1 (PDZ) scaffolding proteins. Individually, each NHERF protein has been shown to be involved in the regulation of multiple receptors or transporters including Na+/H+ exchanger 3 (NHE3). Although NHERF dimerizations have been reported, results have been inconsistent, and the physiological function of NHERF dimerizations is still unknown. The current study semiquantitatively compared the interaction strength among all possible homodimerizations and heterodimerizations of these three NHERF proteins by pulldown and co-immunoprecipitation assays. Both methods showed that NHERF2 and NHERF3 heterodimerize as the strongest interaction among all NHERF dimerizations. In vivo NHERF2/NHERF3 heterodimerization was confirmed by FRET and FRAP (fluorescence recovery after photobleach). NHERF2/NHERF3 heterodimerization is mediated by PDZ domains of NHERF2 and the C-terminal PDZ domain recognition motif of NHERF3. The NHERF3-4A mutant is defective in heterodimerization with NHERF2 and does not support the inhibition of NHE3 by carbachol. This suggests a role for NHERF2/NHERF3 heterodimerization in the regulation of NHE3 activity. In addition, both PDZ domains of NHERF2 could be simultaneously occupied by NHERF3 and another ligand such as NHE3, α-actinin-4, and PKCα, promoting formation of NHE3 macrocomplexes. This study suggests that NHERF2/NHERF3 heterodimerization mediates the formation of NHE3 macrocomplexes, which are required for the inhibition of NHE3 activity by carbachol.  相似文献   

5.
It has been shown that when CFTR and NHE3 are co-expressed on the apical membrane of the A6-NHE3 cell monolayers, the two transporters interact via a shared regulatory complex composed of NHERF2, ezrin, and PKA. We observe here that co-expression of NHE3 reduced both PKA-dependent apical CFTR expression and its activation once in place by approximately 50%. To analyze the role of NHERF2 in this process, we transfected NHE3 expressing and non-expressing A6 monolayers with NHERF2 cDNA in which its binding domains had been deleted. When only CFTR is expressed on the apical membrane, deletion of any of the NHERF2 binding domains inhibited both PKA-dependent apical CFTR expression and its activation, while when NHE3 was co-expressed with CFTR PDZ2 deletion was without effect on CFTR sorting and activity. This suggests that when the PDZ2 domain is "sequestered" by interacting with NHE3 it can no longer participate in CFTR functional expression.  相似文献   

6.
Na(+)/H(+)-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na(+)-dependent processes to acid extrusion, 2) sensitivity to Na(+)/H(+) exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pH(i)) was measured on suspensions of isolated acidified murine duodenal epithelial cells loaded with 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Expression of NHE isoforms was studied by RT-PCR and Western blot analysis. Reduction of extracellular Na(+) concentration ([Na(+)](o)) during pH(i) recovery decreased H(+) efflux to minimally 12.5% of control with a relatively high apparent Michaelis constant for extracellular Na(+). The Na(+)/H(+) exchange inhibitors ethylisopropylamiloride and amiloride inhibited H(+) efflux maximally by 57 and 80%, respectively. NHE1, NHE2, and NHE3 were expressed at the mRNA level (RT-PCR) as well as at the protein level (Western blot analysis). On the basis of the effects of low [Na(+)](o) and inhibitors we propose that acid extrusion in duodenal epithelial cells involves Na(+)/H(+) exchange by isoforms NHE1, NHE2, and NHE3.  相似文献   

7.
Elevated intracellular Ca2+ ([Ca2+]i) inhibition of NHE3 is reconstituted by NHERF2, but not NHERF1, by a mechanism involving the formation of multiprotein signaling complexes. To further evaluate the specificity of the NHERF family in calcium regulation of NHE3 activity, the current study determined whether NHERF3 reconstitutes elevated [Ca2+]i regulation of NHE3. In vitro, NHERF3 bound the NHE3 C terminus between amino acids 588 and 667. In vivo, NHE3 and NHERF3 associate under basal conditions as indicated by co-immunoprecipitation, confocal microscopy, and fluorescence resonance energy transfer. Treatment of PS120/NHE3/NHERF3 cells, but not PS120/NHE3 cells, with the Ca2+ ionophore, 4-bromo-A23187 (0.5 μm): 1) inhibited NHE3 Vmax activity; 2) decreased NHE3 surface amount; 3) dissociated NHE3 and NHERF3 at the plasma membrane by confocal immunofluorescence and fluorescence resonance energy transfer. Similarly, in Caco-2BBe cells, NHERF3 and NHE3 colocalized in the BB under basal conditions but after elevation of [Ca2+]i by carbachol, this overlap was abolished. NHERF3 short hairpin RNA knockdown (>50%) in Caco-2BBe cells significantly reduced basal NHE3 activity by decreasing BB NHE3 amount. Also, carbachol-mediated inhibition of NHE3 activity was abolished in Caco-2BBe cells in which NHERF3 protein expression was significantly reduced. In summary: 1) NHERF3 colocalizes and directly binds NHE3 at the plasma membrane under basal conditions; 2) NHERF3 reconstitutes [Ca2+]i inhibition of NHE3 activity and dissociates from NHE3 in fibroblasts and polarized intestinal epithelial cells with elevated [Ca2+]i; 3) NHERF3 short hairpin RNA significantly reduced NHE3 basal activity and brush border expression in Caco-2BBe cells. These results demonstrate that NHERF3 reconstitutes calcium inhibition of NHE3 activity by anchoring NHE3 basally and releasing it with elevated Ca2+.In normal digestive physiology, the brush border (BB)2 Na+/H+ exchanger, NHE3, mediates the majority of the NaCl and NaHCO3 absorption in the ileum (1). Sequential inhibition and stimulation of NHE3 occur as part of digestive physiology. Short-term regulation of NHE3 activity is achieved through a variety of factors that affect NHE3 turnover number and/or surface expression and often involve a role for the cytoskeleton and accessory proteins, including the multi-PDZ domain containing proteins, NHERF1 and NHERF2 (1, 2). However, many details of this regulation are not understood.The NHERF (Na+/H+ exchanger regulatory factor) family of multi-PDZ domain containing proteins consists of four evolutionarily related members, all of which are expressed in epithelial cells of the mammalian small intestine (2). NHERF1 and NHERF2 have been previously shown to contribute to acute NHE3 stimulation and inhibition (310). Recently, two additional PDZ domain containing proteins, termed NHERF3/PDZK1 and NHERF4/PDZK2/IKEPP, have been demonstrated to possess sequence homology with NHERF1 and NHERF2 (1114). However, unlike NHERF1 and NHERF2, which are comprised of two tandem PDZ domains flanked by a C-terminal ezrin/radixin/moesin binding domain, NHERF3 and NHERF4 consist of four PDZ domains but no other protein-protein interacting domains (12).NHERF3 was initially identified by a yeast two-hybrid screen from a human kidney cDNA library using the membrane-associated protein MAP17, as bait (12). NHERF3 is expressed in the brush border of epithelial cells of the kidney proximal tubule and the small intestine (12). NHERF3 associates with and, in a few cases, has been shown to regulate the activity of multiple apical membrane ion transporters including the cystic fibrosis transmembrane regulator (CFTR), urate anion exchanger 1 (URAT1), sodium-phosphate cotransporter type IIa (NaPiIIa), proton-coupled peptide transporter (PEPT2), and organic cation/carnitine cotransporter (OCTN2) (1519). Furthermore, NHERF3 directly binds the C terminus of NHE3 (20). Recent studies have begun evaluating the effect of NHERF3 on mouse intestinal Na+ and Cl transport. Basal electroneutral sodium absorption was decreased by >40% in the NHERF3 null mouse jejunum (21) and by >80% in the colon (22). In addition, Cinar et al. (22) demonstrated that cAMP and [Ca2+]i inhibition of NHE3 activity was abolished in the NHERF3 null mouse colon. However, the mechanism by which NHERF3 regulates NHE3 activity was not resolved.Several physiological and pathophysiological agonists, acting through [Ca2+]i-induced second messenger systems, are known to inhibit electroneutral NaCl absorption in the small intestine (1, 23). Elevation of [Ca2+]i has previously been demonstrated to inhibit NHE3 activity in a NHERF2-, but not NHERF1-dependent manner (5). NHERF2 regulation of NHE3 involves the formation of multiprotein complexes at the plasma membrane that include NHE3, NHERF2, α-actinin-4, and PKCα, which induce endocytic removal of NHE3 from the plasma membrane by a PKC-dependent mechanism (5, 24). Because multiple PDZ proteins exist in the apical pole of epithelial cells (2), the current study was designed to determine whether NHERF3 could reconstitute Ca2+ regulation of NHE3 activity and to define how that occurred.  相似文献   

8.
Understanding the signal transduction systems governing invasion is fundamental for the design of therapeutic strategies against metastasis. Na(+)/H(+) exchanger regulatory factor (NHERF1) is a postsynaptic density 95/disc-large/zona occludens (PDZ) domain-containing protein that recruits membrane receptors/transporters and cytoplasmic signaling proteins into functional complexes. NHERF1 expression is altered in breast cancer, but its effective role in mammary carcinogenesis remains undefined. We report here that NHERF1 overexpression in human breast tumor biopsies is associated with metastatic progression, poor prognosis, and hypoxia-inducible factor-1alpha expression. In cultured tumor cells, hypoxia and serum deprivation increase NHERF1 expression, promote the formation of leading-edge pseudopodia, and redistribute NHERF1 to these pseudopodia. This pseudopodial localization of NHERF1 was verified in breast biopsies and in three-dimensional Matrigel culture. Furthermore, serum deprivation and hypoxia stimulate the Na(+)/H(+) exchanger, invasion, and activate a protein kinase A (PKA)-gated RhoA/p38 invasion signal module. Significantly, NHERF1 overexpression was sufficient to induce these morphological and functional changes, and it potentiated their induction by serum deprivation. Functional experiments with truncated and binding groove-mutated PDZ domain constructs demonstrated that NHERF1 regulates these processes through its PDZ2 domain. We conclude that NHERF1 overexpression enhances the invasive phenotype in breast cancer cells, both alone and in synergy with exposure to the tumor microenvironment, via the coordination of PKA-gated RhoA/p38 signaling.  相似文献   

9.
Pi uptake in the small intestine occurs predominantly through the NaPi-2b (SLC34a2) co-transporter. NaPi-2b is regulated by changes in dietary Pi but the mechanisms underlying this regulation are largely undetermined. Sequence analyses show NaPi-2b has a PDZ binding motif at its C terminus. Immunofluorescence imaging shows NaPi-2b and two PDZ domain containing proteins, NHERF1 and PDZK1, are expressed in the apical microvillar domain of rat small intestine enterocytes. Co-immunoprecipitation studies in rat enterocytes show that NHERF1 associates with NaPi-2b but not PDZK1. In HEK co-expression studies, GFP-NaPi-2b co-precipitates with FLAG-NHERF1. This interaction is markedly diminished when the C-terminal four amino acids are truncated from NaPi-2b. FLIM-FRET analyses using tagged proteins in CACO-2BBE cells show a distinct phasor shift between NaPi-2b and NHERF1 but not between NaPi-2b and the PDZK1 pair. This shift demonstrates that NaPi-2b and NHERF1 reside within 10 nm of each other. NHERF1−/− mice, but not PDZK1−/− mice, had a diminished adaptation of NaPi-2b expression in response to a low Pi diet. Together these studies demonstrate that NHERF1 associates with NaPi-2b in enterocytes and regulates NaPi-2b adaptation.  相似文献   

10.
Acute hormonalmodulation of NHE3 activity is partly mediated by kinases, includingprotein kinase C (PKC). We examined the role of NHE3 phosphorylation inregulating its activity in response to PKC activation by phorbol12-myristate 13-acetate (PMA). In pooled NHE-deficient fibroblaststransfected with NHE3, PMA increased NHE3 activity and phosphorylation.When six potential PKC target serines were mutated, NHE3phosphorylation was drastically reduced and PMA failed to regulate NHE3phosphorylation or function. To examine whether NHE3 phosphorylation issufficient for functional regulation by PKC, we exploited theheterogeneous response of NHE3 activity to PMA in individual clones oftransfectants. Clones with stimulatory, inhibitory, or null responsesto PMA were observed. Despite the diverse functional response, changesin NHE3 phosphorylation as revealed by tryptic phosphopeptide maps weresimilar in all clones. We conclude that although phosphorylationappears to be necessary, it is insufficient to mediate PKC regulationof NHE3 function and factors extrinsic to the NHE3 protein must be involved.  相似文献   

11.
12.
The high incidence of obesity-related pathologies, led to the study of the mechanisms involved in preadipose cell proliferation and differentiation. Here, we demonstrate that modulation of erbB2, plays a fundamental role during proliferation and adipogenic induction of preadipocytes. Using 3T3-L1 cells as model, we demonstrate that EGF (10 nM, 5 min) in addition to stimulate receptor tyrosine phosphorylation of both erbB2 and EGFR, is able to induce the heterodimer erbB2-EGFR. We treated proliferating 3T3-L1 cells with two inhibitors, AG 825 (IC(50) 0.35 microM, 54 times more selective for erbB2 than for EGFR, IC(50) 19 microM), and AG 879 (IC(50) of 1 microM for erbB2 versus 500 microM for EGFR). We found that both inhibited the proliferation on a dose-dependent basis, reaching a 30% maximal inhibition at 100 microM (P < 0.001) for AG825, and a 20% maximal inhibition at 10 microM (P < 0.001) for AG 879. These results involve erbB2 in 3T3-L1 proliferation. When studying the differentiation process, we found that the action of MIX-Dexa immediately activates MEK, JNK and p38 kinases. We observed that PD98059 and SP600125 (MEK-ERK and JNK inhibitors, respectively) added 1 h prior to the MIX-Dexa induction produced a decrease in erbB2 expression after 6 h, which is even greater than the one produced by the inducers, MIX-Dexa. This work supports erbB2 as a key factor in 3T3-L1 adipogenesis, acting mostly and not only during the proliferative phase but also during the differentiation through modulation of both its expression and activity.  相似文献   

13.
A previous study showed that approximately 25-50% of rabbit ileal brush border (BB) Na(+)/H(+) exchanger NHE3 is in lipid rafts (LR) (Li, X., Galli, T., Leu, S., Wade, J. B., Weinman E. J., Leung, G., Cheong, A., Louvard, D., and Donowitz, M. (2001) J. Physiol. (Lond.) 537, 537-552). Here, we examined the role of LR in NHE3 transport activity using a simpler system: opossum kidney (OK) cells (a renal proximal tubule epithelial cell line) containing NHE3. approximately 50% of surface (biotinylated) NHE3 in OK cells distributed in LR by density gradient centrifugation. Disruption of LR with methyl-beta-cyclodextrin (MbetaCD) decreased NHE3 activity and increased K'(H+)(i), but K(m)((Na+)) was not affected. The MbetaCD effect was completely reversed by repletion of cholesterol, but not by an inactive analog of cholesterol (cholestane-3beta,5alpha,6beta-triol). The MbetaCD effect was specific for NHE3 activity because it did not alter Na(+)-dependent l-Ala uptake. MbetaCD did not alter OK cell BB topology and did not change the surface amount of NHE3, but greatly reduced the rate of NHE3 endocytosis. The effects of inhibiting phosphatidylinositol 3-kinase and of MbetaCD on NHE3 activity were not additive, indicating a common inhibitory mechanism. In contrast, 8-bromo-cAMP and MbetaCD inhibition of NHE3 was additive, indicating different mechanisms for inhibition of NHE3 activity. Approximately 50% of BB NHE3 and only approximately 11% of intracellular NHE3 in polarized OK cells were in LR. In summary, the BB pool of NHE3 in LR is functionally active because MbetaCD treatment decreased NHE3 basal activity. The LR pool is necessary for multiple kinetic aspects of normal NHE3 activity, including V(max) and K'(H+)(i), and also for multiple aspects of NHE3 trafficking, including at least basal endocytosis and phosphatidylinositol 3-kinase-dependent basal exocytosis. Because the C-terminal domain of NHE3 is necessary for its regulation and because the changes in NHE3 kinetics with MbetaCD resemble those with second messenger regulation of NHE3, these results suggest that the NHE3 C terminus may be involved in the MbetaCD sensitivity of NHE3.  相似文献   

14.
15.
16.
The E2 ubiquitin-conjugating enzymes UbcH7 and UbcH5B both show specific binding to the RING (really interesting new gene) domain of the E3 ubiquitin-protein ligase c-Cbl, but UbcH7 hardly supports ubiquitination of c-Cbl and substrate in a reconstituted system. Here, we found that neither structural changes nor subtle differences in the E2-E3 interaction surface are possible explanations for the functional specificity of UbcH5B and UbcH7 in their interaction with c-Cbl. The quick transfer of ubiquitin from the UbcH5B∼Ub thioester to c-Cbl or other ubiquitin acceptors suggests that UbcH5B might functionally be a relatively pliable E2 enzyme. In contrast, the UbcH7∼Ub thioester is too stable to transfer ubiquitin under our assay conditions, indicating that UbcH7 might be a more specific E2 enzyme. Our results imply that the interaction specificity between c-Cbl and E2 is required but not sufficient for transfer of ubiquitin to potential targets.  相似文献   

17.
Na(+)/H(+) exchanger regulatory factor (NHERF) and NHERF2 are PDZ motif proteins that mediate the inhibitory effect of cAMP on Na(+)/H(+) exchanger 3 (NHE3) by facilitating the formation of a multiprotein signaling complex. With the use of antibodies specific for NHERF and NHERF2, immunocytochemical analysis of rat kidney was undertaken to determine the nephron distribution of both proteins and their colocalization with other transporters and with ezrin. NHERF was most abundant in apical membrane of proximal tubule cells, where it colocalized with ezrin and NHE3. NHERF2 was detected in the glomerulus and in other renal vascular structures. In addition, NHERF2 was strongly expressed in collecting duct principal cells, where it colocalized with ROMK. These results indicate a striking difference in the nephron distribution of NHERF and NHERF2 and suggests NHERF is most likely to be the relevant biological regulator of NHE3 in the proximal tubule, while NHERF2 may interact with ROMK or other targets in the collecting duct. The finding that NHERF isoforms occur in different cell types suggests that NHERF and NHERF2 may subserve different functions in the kidney.  相似文献   

18.
The brush border (BB) Na(+)/H(+) exchanger NHE3 is rapidly activated or inhibited by changes in trafficking, which mimics renal and intestinal physiology. However, there is a paradox in that NHE3 has limited mobility in the BB due to its binding to the multi-PDZ domain containing the NHERF family. To allow increased endocytosis, as occurs with elevated intracellular Ca(2+), we hypothesized that NHE3 had to be, at least transiently, released from the BB cytoskeleton. Because NHERF1 and -2 are localized at the BB, where they bind NHE3 as well as the cytoskeleton, we tested whether either or both might dynamically interact with NHE3 as part of Ca(2+) signaling. We employed FRET to study close association of NHE3 and these NHERFs and fluorescence recovery after photobleaching to monitor NHE3 mobility in the apical domain in polarized opossum kidney cells. Under basal conditions, NHERF2 and NHE3 exhibited robust FRET signaling. Within 1 min of A23187 (0.5 μm) exposure, the NHERF2-NHE3 FRET signal was abolished, and BB NHE3 mobility was transiently increased. The dynamics in FRET signal and NHE3 mobility correlated well with a change in co-precipitation of NHE3 and NHERF2 but not NHERF1. We conclude the following. 1) Under basal conditions, NHE3 closely associates with NHERF2 in opossum kidney cell microvilli. 2) Within 1 min of elevated Ca(2+), the close association of NHE3-NHERF2 is abolished but is re-established in ~60 min. 3) The change in NHE3-NHERF2 association is accompanied by an increased BB mobile fraction of NHE3, which contributes to inhibition of NHE3 transport activity via increased endocytosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号