首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The worldwide surplus of glycerol generated as inevitable byproduct of biodiesel fuel and oleochemical production is resulting in the shutdown of traditional glycerol-producing/refining plants and new applications are needed for this now abundant carbon source. In this article we report our finding that Escherichia coli can ferment glycerol in a pH-dependent manner. We hypothesize that glycerol fermentation is linked to the availability of CO(2), which under acidic conditions is produced by the oxidation of formate by the enzyme formate hydrogen lyase (FHL). In agreement with this hypothesis, glycerol fermentation was severely impaired by blocking the activity of FHL. We demonstrated that, unlike CO(2), hydrogen (the other product of FHL-mediated formate oxidation) had a negative impact on cell growth and glycerol fermentation. In addition, supplementation of the medium with CO(2) partially restored the ability of an FHL-deficient strain to ferment glycerol. High pH resulted in low CO(2) generation (low activity of FHL) and availability (most CO(2) is converted to bicarbonate), and consequently very inefficient fermentation of glycerol. Most of the fermented glycerol was recovered in the reduced compounds ethanol and succinate (93% of the product mixture), which reflects the highly reduced state of glycerol and confirms the fermentative nature of this process. Since glycerol is a cheap, abundant, and highly reduced carbon source, our findings should enable the development of an E. coli-based platform for the anaerobic production of reduced chemicals from glycerol at yields higher than those obtained from common sugars, such as glucose.  相似文献   

2.
In the genome‐engineering era, it is increasingly important that researchers have access to a common set of platform strains that can serve as debugged production chassis and the basis for applying new metabolic engineering strategies for modeling and characterizing flux, engineering complex traits, and optimizing overall performance. Here, we describe such a platform strain of E. coli engineered for ethanol production. Starting with a fully characterized host strain (BW25113), we site‐specifically integrated the genes required for homoethanol production under the control of a strong inducible promoter into the genome and deleted the genes encoding four enzymes from competing pathways. This strain is capable of producing >30 g/L of ethanol in minimal media with <2 g/L produced of any fermentative byproduct. Using this platform strain, we tested previously identified ethanol tolerance genes and found that while tolerance was improved under certain conditions, any effect on ethanol production or tolerance was lost when grown under production conditions. Thus, our findings reinforce the need for a metabolic engineering “commons” that could provide a set of platform strains for use in more sophisticated genome‐engineering strategies. Towards this end, we have made this production strain available to the scientific community. Biotechnol. Bioeng. 2013; 110: 1520–1526. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
4.
Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, the iclR gene was deleted to redirect the carbon flux through the glyoxylate shunt. In addition, the fumA, fumB, and fumC genes were also deleted to enhance fumaric acid formation. The resulting strain was able to produce 1.45 g/L of fumaric acid from 15 g/L of glucose in flask culture. Based on in silico flux response analysis, this base strain was further engineered by plasmid‐based overexpression of the native ppc gene, encoding phosphoenolpyruvate carboxylase (PPC), from the strong tac promoter, which resulted in the production of 4.09 g/L of fumaric acid. Additionally, the arcA and ptsG genes were deleted to reinforce the oxidative TCA cycle flux, and the aspA gene was deleted to block the conversion of fumaric acid into L ‐aspartic acid. Since it is desirable to avoid the use of inducer, the lacI gene was also deleted. To increase glucose uptake rate and fumaric acid productivity, the native promoter of the galP gene was replaced with the strong trc promoter. Fed‐batch culture of the final strain CWF812 allowed production of 28.2 g/L fumaric acid in 63 h with the overall yield and productivity of 0.389 g fumaric acid/g glucose and 0.448 g/L/h, respectively. This study demonstrates the possibility for the efficient production of fumaric acid by metabolically engineered E. coli. Biotechnol. Bioeng. 2013; 110: 2025–2034. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
异戊二烯作为一种重要的化工原料,主要用于合成橡胶。此外,还广泛应用于医药或化工中间体、食品、粘合剂及航空燃料等领域。利用微生物法生产异戊二烯因具有环境友好、利用廉价的可再生原料、可持续发展等优势而成为当今研究的热点。这里介绍了大肠杆菌生产异戊二烯的代谢途径及关键酶,从代谢工程的角度出发综述了目前为提高大肠杆菌异戊二烯产量所应用到的方法和策略,并对今后的发展方向进行了展望。  相似文献   

6.
We have previously reported the development of a 100% genetically defined engineered Escherichia coli strain capable of producing L ‐valine from glucose with a high yield of 0.38 g L ‐valine per gram glucose (0.58 mol L ‐valine per mol glucose) by batch culture. Here we report a systems biological strategy of employing flux response analysis in bioprocess development using L ‐valine production by fed‐batch culture as an example. Through the systems‐level analysis, the source of ATP was found to be important for efficient L ‐valine production. There existed a trade‐off between L ‐valine production and biomass formation, which was optimized for the most efficient L ‐valine production. Furthermore, acetic acid feeding strategy was optimized based on flux response analysis. The final fed‐batch cultivation strategy allowed production of 32.3 g/L L ‐valine, the highest concentration reported for E. coli. This approach of employing systems‐level analysis of metabolic fluxes in developing fed‐batch cultivation strategy would also be applicable in developing strategies for the efficient production of other bioproducts. Biotechnol. Bioeng. 2011; 108:934–946. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.  相似文献   

8.
9.
Menaquinone-8 (MK-8, vitamin K) is composed of a non-polar side chain and a polar head group. Escherichia coli was chosen and metabolically engineered as a microbial platform for production of MK-8. MK-8 content in E. coli was significantly enhanced by modulating two precursor pools, which supply a non-polar side chain and a polar head group, and further increased by blocking formation of the competitor ubiquinone-8 (Q-8). Overexpression of E. coli IspA, DXR, or IDI increased MK-8 content up to twofold. A similar positive effect was also observed when E. coli MenA, MenB, MenC, MenD, MenE, MenF, or UbiE was overexpressed. The Q-8-deficient ubiCA mutant enhanced MK-8 content by 30% compared to wild-type E. coli. When MenA or MenD was overexpressed, MK-8 content was enhanced fivefold compared with wild-type E. coli.  相似文献   

10.
11.
A five carbon linear chain diamine, cadaverine (1,5‐diaminopentane), is an important platform chemical having many applications in chemical industry. Bio‐based production of cadaverine from renewable feedstock is a promising and sustainable alternative to the petroleum‐based chemical synthesis. Here, we report development of a metabolically engineered strain of Escherichia coli that overproduces cadaverine in glucose mineral salts medium. First, cadaverine degradation and utilization pathways were inactivated. Next, L ‐lysine decarboxylase, which converts L ‐lysine directly to cadaverine, was amplified by plasmid‐based overexpression of the cadA gene under the strong tac promoter. Furthermore, the L ‐lysine biosynthetic pool was increased by the overexpression of the dapA gene encoding dihydrodipicolinate synthase through the replacement of the native promoter with the strong trc promoter in the genome. The final engineered strain was able to produce 9.61 g L−1 of cadaverine with a productivity of 0.32 g L−1 h−1 by fed‐batch cultivation. The strategy reported here should be useful for the bio‐based production of cadaverine from renewable resources. Biotechnol. Bioeng. 2011; 108:93–103. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
13.
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel‐like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high‐yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high‐yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain‐length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain‐lengths and functionalities. Biotechnol. Biotechnol. Bioeng. 2014;111: 849–857. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
利用代谢工程手段理性改造野生大肠杆菌的莽草酸(Shikimic acid,SA)合成途径及相关代谢节点,以构建高产莽草酸的工程菌株.根据细胞代谢网络分析,利用Red-Xer重组系统连续删除了野生型大肠杆菌CICIMB0013的莽草酸激酶基因(aroL、aroK),葡萄糖磷酸转移酶系统(PTS)的关键组分EIICBglc的编码基因(ptsG)以及奎宁酸/莽草酸脱氢酶基因(ydiB)并系统评价了基因删除对细胞的生长、葡萄糖代谢和莽草酸积累的影响.aroL、aroK的删除阻断了莽草酸进一步转化成为莽草酸-3-磷酸,初步提高莽草酸的累积.删除ptsG基因使大肠杆菌PTS系统部分缺失,细胞通过GalP-glk(半乳糖透性酶-葡萄糖激酶)途径,利用ATP将葡萄糖磷酸化后进入细胞.利用该途径运输葡萄糖能够减少PEP的消耗,使得更多的碳代谢流进入莽草酸合成途径,从而显著提高了莽草酸的产量.在此基础上删除ydiB基因,阻止了莽草酸合成的前体物质3-脱氢奎宁酸转化为副产物奎宁酸(Quinic acid,QA),进一步提高了莽草酸的累积.初步发酵显示4个基因缺失的大肠杆菌代谢工程菌生产莽草酸的能力比原始菌提高了90多倍.  相似文献   

15.
进化代谢选育高渗透压耐受型产琥珀酸大肠杆菌   总被引:1,自引:0,他引:1  
在以碳酸钠为酸中和剂的大肠杆菌两阶段发酵产琥珀酸的过程中,由于Na+的积累造成发酵体系中渗透压的提高,严重抑制了琥珀酸的产物浓度。为了增强大肠杆菌对渗透压的耐受性,考察了利用进化代谢方法筛选高渗透压耐受型高产琥珀酸大肠杆菌菌株的可行性。进化代谢系统作为一种菌株突变装置,可以使菌体在连续培养条件下以最大的生长速率生长。以NaCl为渗透压调节剂,通过在连续培养装置中逐步提高NaCl浓度使菌体在高渗透压条件下快速生长,最终得到了一株高渗透压耐受型琥珀酸生产菌株Escherichia coli XB4。以碳酸钠为酸中和剂,在7 L发酵罐中利用Escherichia coli XB4进行两阶段发酵,厌氧培养60 h后,琥珀酸产量达到了69.5 g/L,琥珀酸生产速率达到了1.81 g/(L.h),分别比出发菌株提高了18.6%和20%。  相似文献   

16.
17.
18.
氨基酸发酵是我国发酵工业的支柱产业,近年来,随着代谢工程的快速发展,氨基酸的代谢工程育种蓬勃发展。传统的正向代谢工程、基于组学分析与计算机模拟的反向代谢工程以及借鉴自然进化的进化代谢工程,都有越来越多的应用。在氨基酸的工业生产中涌现出了一系列具有高效生产、抗逆性强等优良性状的菌株。日益剧烈的市场竞争对菌株的选育提出了新的要求,如开发高附加值氨基酸品种、菌株代谢的动态调控、适应新工艺的要求等。文中介绍了氨基酸生产相关的代谢工程研究进展以及未来的发展趋势。  相似文献   

19.
抗噬菌体工程菌的筛选   总被引:1,自引:0,他引:1  
噬菌体污染常引起溶菌,造成人力物力浪费。应用自发突变的原理成功地从溶菌液中筛选到抗噬菌体的工程菌株;在发酵罐中培养,该菌株生长行为和表达水平没有变化。  相似文献   

20.
The development and validation of new methods to help direct rational strain design for metabolite overproduction remains an important problem in metabolic engineering. Here we show that computationally predicted E. coli strain designs, calculated from a genome-scale metabolic model, can lead to successful production strains and that adaptive evolution of the engineered strains can lead to improved production capabilities. Three strain designs for lactate production were implemented yielding a total of 11 evolved production strains that were used to demonstrate the utility of this integrated approach. Strains grown on 2 g/L glucose at 37 degrees C showed lactate titers ranging from 0.87 to 1.75 g/L and secretion rates that were directly coupled to growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号