首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many bacteriophages, such as T4, T7, RB49, and phi29, have complex, sometimes multilayered, tails that facilitate an almost 100% success rate for the viral particles to infect host cells. In bacteriophage T4, there is a baseplate, which is a multiprotein assembly, at the distal end of the contractile tail. The baseplate communicates to the tail that the phage fibers have attached to the host cell, thereby initiating the infection process. Gene product 8 (gp8), whose amino acid sequence consists of 334 residues, is one of at least 16 different structural proteins that constitute the T4 baseplate and is the sixth baseplate protein whose structure has been determined. A 2.0A resolution X-ray structure of gp8 shows that the two-domain protein forms a dimer, in which each monomer consists of a three-layered beta-sandwich with two loops, each containing an alpha-helix at the opposite sides of the sandwich. The crystals of gp8 were produced in the presence of concentrated chloride and bromide ions, resulting in at least 11 halide-binding sites per monomer. Five halide sites, situated at the N termini of alpha-helices, have a protein environment observed in other halide-containing protein crystal structures. The computer programs EMfit and SITUS were used to determine the positions of six gp8 dimers within the 12A resolution cryo-electron microscopy image reconstruction of the baseplate-tail tube complex. The gp8 dimers were found to be located in the upper part of the baseplate outer rim. About 20% of the gp8 surface is involved in contacts with other baseplate proteins, presumed to be gp6, gp7, and gp10. With the structure determination of gp8, a total of 53% of the volume of the baseplate has now been interpreted in terms of its atomic structure.  相似文献   

2.
L M Kozloff  M Lute    L K Crosby 《Journal of virology》1975,16(6):1391-1400
Two different proteins with high affinities for the pteridine ring of folic acid have been used to determine the location of this portion of the folate molecule in the tail plate of T4D and other T-even bacteriophage particles. The two proteins used were (i) antibody specific for folic acid and (ii) the folate-binding protein from bovine milk. Both proteins were examined for their effect on various intact and incomplete phage particles. Intact T2H was weakly inactivated by the antiserum but not by the milk protein. No other intact T-even phage, including T4D, was affected by these two proteins. When incomplete T4D particles were exposed in an in vitro morphogenesis system, it was found that neither of the two proteins affected either the addition of the long tail fibers to fiberless particles or the addition of tail cores to tail plates. On the other hand, these two proteins specifically blocked the addition of T4D gene 11 product to the bottom of T4D baseplates. After the addition of the gene 11 protein, these two reagents did not inhibit the further addition of the gene 12 protein to the baseplate. It can be concluded that the phage folic acid is a tightly bound baseplate constituent and that the pteridine portion of the folic acid is largely covered by the gene 11 protein.  相似文献   

3.
BACKGROUND: The T4 bacteriophage consists of a head, filled with double-stranded DNA, and a complex contractile tail required for the ejection of the viral genome into the Escherichia coli host. The tail has a baseplate to wh?ch are attached six long and six short tail fibers. These fibers are the sensing devices for recognizing the host. When activated by attachment to cell receptors, the fibers cause a conformational transition in the baseplate and subsequently in the tail sheath, which initiates DNA ejection. The baseplate is a multisubunit complex of proteins encoded by 15 genes. Gene product 9 (gp9) is the protein that connects the long tail fibers to the baseplate and triggers the tail contraction after virus attachment to a host cell. RESULTS: The crystal structure of recombinant gp9, determined to 2.3 A resolution, shows that the protein of 288 amino acid residues assembles as a homotrimer. The monomer consists of three domains: the N-terminal domain generates a triple coiled coil; the middle domain is a mixed, seven-stranded beta sandwich with a topology not previously observed; and the C-terminal domain is an eight-stranded, antiparallel beta sandwich having some resemblance to 'jelly-roll' viral capsid protein structures. CONCLUSIONS: The biologically active form of gp9 is a trimer. The protein contains flexible interdomain hinges, which are presumably required to facilitate signal transmission between the long tail fibers and the baseplate. Structural and genetic analyses show that the C-terminal domain is bound to the baseplate, and the N-terminal coiled-coil domain is associated with the long tail fibers.  相似文献   

4.
The length of the T4 tail is precisely regulated in vivo at the time of polymerization of the tail core protein onto the baseplate. Since no mutations which alter tail length have been identified, a study of in vivo-assembled tail cores was begun to determine whether the structural properties of assembled cores would reveal the mechanism of length regulation. An assembly intermediate consisting of a core attached to a baseplate (core-baseplate) was purified from cells infected with a T4 mutant in gene 15. When core-base plates were treated with guanidine hydrochloride, cores were released from baseplates. The released cores had the same mean length as cores attached to baseplates. Electron micrographs of these cores showed partial penetration of negative stain into one end, and, at the opposite end, a modified tip which often appeared as a short fiber projecting from the core. When cores were purified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two minor proteins and the major core protein were detected. One minor protein, the product of gene 48 (gp48), was present in at least 72% of the amount found in core-baseplates, relative to the amount of the major core protein. These findings suggest that cores contain a fibrous structure, possibly composed of gp48, which may form a "ruler" that specifies the length of the T4 tail.  相似文献   

5.
Adsorption of T4 bacteriophage to the Escherichia coli host cell is mediated by six long and six short tail fibres. After at least three long tail fibres have bound, short tail fibres extend and bind irreversibly to the core region of the host cell lipopolysaccharide (LPS), serving as inextensible stays during penetration of the cell envelope by the tail tube. The short tail fibres consist of a parallel, in-register, trimer of gene product 12 (gp12). The 1.9 A crystal structure of a heat and protease-stable fragment of gp12 reveals three new folds: a central right-handed triple beta-helix, a globular C-terminal domain containing a beta-sandwich and an N-terminal beta-structure reminiscent of but different from the adenovirus triple beta-spiral. The centre of the C-terminal domain shows weak homology to gp11, a trimeric protein connecting the short fibre to the base-plate, suggesting that the trimerisation motifs of gp11 and gp12 are similar. Repeating sequence motifs suggest that the N-terminal beta-structure extends further towards the N terminus and is conserved in the long tail fibre proteins gp34 and gp37.  相似文献   

6.
Association of gp10 and gp11 (gp=gene product) is the first step in the assembly pathway of the wedge part of the baseplate of bacteriophage T4. The gp10-gp11 complex constitutes the six tail pins at the corners of the baseplate hexagon on the distal side. The stoichiometry of the subunits, gp10 and gp11, of this complex was determined in combination with sedimentation equilibrium, Edman degradation of the complex and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). From the results of Edman degradation and SDS-PAGE, the molar ratio of gp10 and gp11 was approximately 1. On the other hand, the molecular weight of the purified gp10-gp11 complex was determined by sedimentation equilibrium to be 284000+/-7000, which is in good agreement with the expected value of 269840 if the stoichiometry is 3:3. Furthermore, comparison of the results in the presence and in the absence of reducing reagent, 2-mercaptoethanol (2-ME), in SDS-PAGE revealed that two molecules of gp10 in the complex formed a disulfide bond, while the third gp10 molecule does not participate in the disulfide bond formation.  相似文献   

7.
Bacteriophage T4 late gene product 11 (gp11), the three-dimensional structure of which has been solved by us to 2.0 A resolution, is a part of the virus' baseplate. The gp11 polypeptide chain consists of 219 amino acid residues and the functionally active protein is a three-domain homotrimer. In this work, we have studied the role of gp11 N-terminal domain in the formation of a functionally active trimer. Deletion variants of gp11 and monoclonal antibodies recognizing the native conformation of gp11 trimer have been selected. Long deletions up to a complete removal of the N-terminal domain, containing 64 residues, do not affect the gp11 trimerization, but considerably change the protein structure and lead to the loss of its ability to incorporate into the baseplate. However, the deletion of the first 17 N-terminal residues results in functionally active protein that can complete the 11(-)-defective phage particles in in vitro complementation assay. This region of the polypeptide chain is probably essential for gp11-gp10 stable complex formation at the early stages of phage baseplate assembly in vivo. A study of the gp10 deletion variants suggests that the central domain of gp10 trimer is responsible for the interaction with gp11.  相似文献   

8.
The tail lysozyme complex of bacteriophage T4   总被引:1,自引:0,他引:1  
The tail baseplate of bacteriophage T4 contains a structurally essential, three-domain protein encoded by gene 5 in which the middle domain possesses lysozyme activity. The gene 5 product (gp5) undergoes post-translational cleavage, allowing the resultant N-terminal domain (gp5*) to assemble into the baseplate as a trimer. The lysozyme activity of the undissociated cleaved gp5 is inhibited until infection has been initiated, when the C-terminal portion of the molecule is detached and the rest of the molecule dissociates into monomers. The 3D structure of the undissociated cleaved gp5, complexed with gp27 (another component of the baseplate), shows that it is a cell-puncturing device that functions to penetrate the outer cell membrane and to locally dissolve the periplasmic cell wall.  相似文献   

9.
Most bacterial viruses need a specialized machinery, called “tail,” to inject their genomes inside the bacterial cytoplasm without disrupting the cellular integrity. Bacteriophage T7 is a well characterized member of the Podoviridae family infecting Escherichia coli, and it has a short noncontractile tail that assembles sequentially on the viral head after DNA packaging. The T7 tail is a complex of around 2.7 MDa composed of at least four proteins as follows: the connector (gene product 8, gp8), the tail tubular proteins gp11 and gp12, and the fibers (gp17). Using cryo-electron microscopy and single particle image reconstruction techniques, we have determined the precise topology of the tail proteins by comparing the structure of the T7 tail extracted from viruses and a complex formed by recombinant gp8, gp11, and gp12 proteins. Furthermore, the order of assembly of the structural components within the complex was deduced from interaction assays with cloned and purified tail proteins. The existence of common folds among similar tail proteins allowed us to obtain pseudo-atomic threaded models of gp8 (connector) and gp11 (gatekeeper) proteins, which were docked into the corresponding cryo-EM volumes of the tail complex. This pseudo-atomic model of the connector-gatekeeper interaction revealed the existence of a common molecular architecture among viruses belonging to the three tailed bacteriophage families, strongly suggesting that a common molecular mechanism has been favored during evolution to coordinate the transition between DNA packaging and tail assembly.  相似文献   

10.
Identification of P48 and P54 as components of bacteriophage T4 baseplates.   总被引:13,自引:8,他引:5  
The involvement of two bacteriophage T4 gene products in the initiation of T4 tail tube and sheath polymerization on mature baseplates has been studied by radioautography of acrylamide gels of various partially completed tail structures. The products of genes 48 and 54 (P48[the nomenclature P48 refers to the protein product of bacteriophage T4 gene 48] and P54), which are known to be required for the synthesis of mature baseplates, have been shown to be structural components of the baseplate. These gene products have molecular weights of 42,000 and 33,000, respectively. The addition of P54 to the baseplate not only permits the polymerization of the core protein, P19, onto the baseplate, but also caused the disappearance of a polypeptide of molecular weight about 15,000 from the supernatant fraction of infected cells. Another gene product, P27, has been identified in the crude extracts of infected cells. This gene product, which is required for the synthesis of baseplate structures, has the same mobility as one of the unidentified structural polypeptides of the baseplate and is therefore probably also a baseplate component.  相似文献   

11.
Bacteriophage Mu is a double-stranded DNA phage that consists of an icosahedral head, a contractile tail with baseplate and six tail fibers, similar to the well-studied T-even phages. The baseplate of bacteriophage Mu, which recognizes and attaches to a host cell during infection, consists of at least eight different proteins. The baseplate protein, gp44, is essential for bacteriophage Mu assembly and the generation of viable phages. To investigate the role of gp44 in baseplate assembly and infection, the crystal structure of gp44 was determined at 2.1A resolution by the multiple isomorphous replacement method. The overall structure of the gp44 trimer is similar to that of the T4 phage gp27 trimer, which forms the central hub of the T4 baseplate, although these proteins share very little primary sequence homology. Based on these data, we confirm that gp44 exists as a trimer exhibiting a hub-like structure with an inner diameter of 25A through which DNA can presumably pass during infection. The molecular surface of the gp44 trimer that abuts the host cell membrane is positively charged, and it is likely that Mu phage interacts with the membrane through electrostatic interactions mediated by gp44.  相似文献   

12.
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis.  相似文献   

13.
About 130 kb of sequence information was obtained from the coliphage JS98 isolated from the stool of a pediatric diarrhea patient in Bangladesh. The DNA shared up to 81% base pair identity with phage T4. The most conserved regions between JS98 and T4 were the structural genes, but their degree of conservation was not uniform. The head genes showed the highest sequence conservation, followed by the tail, baseplate, and tail fiber genes. Many tail fiber genes shared only protein sequence identity. Except for the insertion of endonuclease genes in T4 and gene 24 duplication in JS98, the structural gene maps of the two phages were colinear. The receptor-recognizing tail fiber proteins gp37 and gp38 were only distantly related to T4, but shared up to 83% amino acid identity to other T6-like phages, suggesting lateral gene transfer. A greater degree of variability was seen between JS98 and T4 over DNA replication and DNA transaction genes. While most of these genes came in the same order and shared up to 76% protein sequence identity, a few rearrangements, insertions, and replacements of genes were observed. Many putative gene insertions in the DNA replication module of T4 were flanked by intron-related endonuclease genes, suggesting mobile DNA elements. A hotspot of genome diversification was located downstream of the DNA polymerase gene 43 and the DNA binding gene 32. Comparative genomics of 100-kb genome sequence revealed that T4-like phages diversify more by the accumulation of point mutations and occasional gene duplication events than by modular exchanges.  相似文献   

14.
The assembly activity and electrophoretic mobility of a T4 bacteriophage baseplate protein, P11, have been found to be affected by digestion with the proteases trypsin, subtilisin and carboxypeptidase Y. Analysis of the trypsin limit-digestion product of P11 by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and size analysis by high performance liquid chromatography indicate that there is a decrease of approximately 5000 in the molecular weight of the P11 molecule or a loss of 2500 in Mr from each of the gp11 subunits of the dimer. During protease treatment P11 demonstrates a time-dependent loss in the ability to interact with the baseplate protein P10 to form the P(10/11) complex, the first assembly intermediate of the T4 baseplate 1/6th arm. Similar treatments of the P(10/11) complex indicate that P11 in the complex is not affected by these proteases. Concomitant with the loss of assembly activity is a change in the electrophoretic mobility of P11 on non-denaturing polyacrylamide gels from a single band to a series of more mobile bands suggesting sequential loss of positive charge. P11 assembly activity is completely lost after removal of the first positive charge. These results suggest that the carboxyl termini of the two gp11 subunits of the P11 molecule are involved in the interaction of P11 with P10 to form the P(10/11) complex. Analysis of the portion of gp11 removed by carboxypeptidase Y demonstrates that there are up to 13 aliphatic and aromatic carboxyl-terminal amino acids.  相似文献   

15.
Direct evidence has been obtained that the tail-associated lysozyme of bacteriophage T4 (tail-lysozyme) is gp5, which is a protein component of the hub of the baseplate. Tails were treated with 3 M guanidine hydrochloride containing 1% Triton X-100, and the tail-lysozyme was separated from other tail components by preparative isoelectric focusing electrophoresis as a peak with a pI of 8.4. The molecular weight as determined from sodium dodecyl sulfate electrophoresis was 42,000. The tail-lysozyme was unambiguously identified as gp5 when the position of the lysozyme was compared with that of gp5 of tube-baseplates from 5ts1/23amH11/eL1ainfected Escherichia coli cells by two-dimensional gel electrophoresis. The tail-lysozyme has N-acetylmuramidase activity and the same substrate specificity as gene e lysozyme; the optimum pH is around 5.8, about 1 pH unit lower than for the e lysozyme. We assume that the tail-lysozyme plays an essential role in locally digesting the peptidoglycan layer to let the tube penetrate into the periplasmic space. The tail-lysozyme is presumably also responsible for "lysis from without."  相似文献   

16.
The protein products of at least 21 phage genes are needed for the formation of the tail of bacteriophage T4. Cells infected with amber mutants defective in these genes are blocked in the assembly process. By characterizing the intermediate structures and unassembled proteins accumulating in mutant-infected cells, we have been able to delineate most of the gene-controlled steps in tail assembly. Both the organized structures and unassembled proteins serve as precursors for in vitro tail assembly. We review here studies on the initiation, polymerization, and termination of the tail tube and contractile sheath and the genetic control of these processes. These studies make clear the importance of the baseplate; if baseplate formation is blocked (by mutation) the tube and sheath subunits remain essentially unaggregated, in the form of soluble subunits. Seventeen of the 21 tail genes specify proteins involved in baseplate assembly. The genes map contiguously in two separate clusters, one of nine genes and the other of eight genes. Recent studies show that the hexagonal baseplate is the end-product of two independent subassembly pathways. The proteins of the first gene cluster interact to form a structure which probably represents one-sixth of the outer radius. The products of the other gene cluster interact to form the central part of the baseplate. Most of the phage tail precursor proteins appear to be synthesized in a non-aggregating form; they are converted to a reactive form upon incorporation into preformed substrate complexes, without proteolytic cleavage. Thus reactive sites are limited to growing structures.  相似文献   

17.
Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study.  相似文献   

18.
Tail-associated lysozyme of bacteriophage T4 (tail lysozyme), the product of gene 5 (gp 5), is an essential structural component of the hub of the phage baseplate. It is synthesized as a 63-kDa precursor, which later cleaves to form mature gp 5 with a molecular weight of 43,000. To elucidate the role of the C-terminal region of the precursor protein, gene 5 was cloned and overexpressed and the product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, analytical ultracentrifugation, and circular dichroism. It was shown that the precursor protein tends to be cleaved into two fragments during expression and that the cleavage site is close to or perhaps identical to the cleavage site in the infected cell. The two fragments, however, remained associated. The lysozyme activity of the precursor or the nicked protein is about 10% of that of mature gp 5. Both the N-terminal mature tail lysozyme and the C-terminal fragment were then isolated and characterized by far-UV circular dichroism and analytical ultracentrifugation. The latter remained trimeric after dissociation from the N-terminal fragment and is rich in beta-structure as predicted by an empirical method. To trace the fate of the C-terminal fragment, antiserum was raised against a synthesized peptide of the last 12 C-terminal residues. Surprisingly, the C-terminal fragment was found in the tail and the phage particle by immunoblotting. The significance of this finding is discussed in relation to the molecular assembly and infection process.  相似文献   

19.
Protein interactions in the assembly of the baseplate have been investigated. The baseplate of the phage T4 tail consists of a hub and six wedges which surround the former. Both reversible and irreversible interactions were found. Reversible association includes gp5 and gp27 (gp: gene product) which form a complex in a pH-dependent manner and gp18 polymerization, i.e. the tail sheath formation depends on the ionic strength. These reversible interactions were followed by irreversible or tight binding which pulls the whole association reaction to complete the assembly. The wedge assembly is strictly ordered which means that if one of the seven wedge proteins is missing, the assembly proceeds to that point and the remaining molecules stay non-associated. The strictly sequential assembly pathway is suggested to be materialized by successive conformational change upon binding, which can be shown by proteolytic probe.  相似文献   

20.
Three types of reagents were used to determine the structural role and location of the polyglutamate portion of the Escherichia coli T4D bacteriophage baseplate dihydropteroyl hexaglutamate. These reagents were examined for their effect in vitro on some of the final steps in phage baseplate morphogenesis. The reagents were (i) a series of oligopeptides composed solely of glutamic acid residues but with various chemical linkages and chain lengths; (ii) a homogeneous preparation of carboxypeptidase G1, an exopeptidase that hydrolyzes carboxyl-terminal glutamates (or aspartates) from simple oligopeptides, including the gamma-glutamyl bonds on folyl polyglutamates as well as the bond between the carboxyl group of the p-aminobenzoyl moiety and the amino group of the first glutamic acid residue of folic acid; and (iii) antisera prepared against a polyglutamate hapten. All three types of reagent markedly inhibited the attachment of the phage long tail fibers to the baseplate. Other steps in baseplate assembly such as the addition of T4D gene 11 or gene 12 products were not affected by any of these reagents. These results indicate that the polyglutamate portion of the folate is located near the attachment site on the bacteriophage baseplate for the long tail fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号