首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The existence of T cells restricted for the MHC I-like molecule CD1 is well established, but the function of these cells is still obscure; one implication is that CD1-dependent T cells regulate autoimmunity. In this study, we investigate their role in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, using CD1-deficient mice on a C57BL/6 background. We show that CD1-/- mice develop a clinically more severe and chronic EAE compared with CD1+/+ C57BL/6 mice, which was histopathologically confirmed with increased demyelination and CNS infiltration in CD1-/- mice. Autoantigen rechallenge in vitro revealed similar T cell proliferation in CD+/+ and CD1-/- mice but an amplified cytokine response in CD1-/- mice as measured by both the Th1 cytokine IFN-gamma and the Th2 cytokine IL-4. Investigation of cytokine production at the site of inflammation showed a CNS influx of TGF-beta1-producing cells early in the disease in CD1+/+ mice, which was absent in the CD1-/- mice. Passive transfer of EAE using an autoreactive T cell line induced equivalent disease in both groups, which suggested additional requirements for activation of the CD1-dependent regulatory pathway(s). When immunized with CFA before T cell transfer, the CD1-/- mice again developed an augmented EAE compared with CD1+/+ mice. We suggest that CD1 exerts its function during CFA-mediated activation, regulating development of EAE both through enhancing TGF-beta1 production and through limiting autoreactive T cell activation, but not necessarily via effects on the Th1/Th2 balance.  相似文献   

2.
Microglial cells are monocytic lineage cells that reside in the CNS and have the capacity to become activated during various pathological conditions. Although it was demonstrated that activation of microglial cells could be achieved in vitro by the engagement of CD40-CD40L interactions in combination with proinflammatory cytokines, the exact factors that mediate activation of microglial cells in vivo during CNS autoimmunity are ill-defined. To investigate the role of CD40 in microglial cell activation during experimental autoimmune encephalomyelitis (EAE), we used bone marrow chimera mice that allowed us to distinguish microglial cells from peripheral macrophages and render microglial cells deficient in CD40. We found that the first step of microglial cell activation was CD40-independent and occurred during EAE onset. The first step of activation consisted of microglial cell proliferation and up-regulation of the activation markers MHC class II, CD40, and CD86. At the peak of disease, microglial cells underwent a second step of activation, which was characterized by a further enhancement in activation marker expression along with a reduction in proliferation. The second step of microglial cell activation was CD40-dependent and the failure of CD40-deficient microglial cells to achieve a full level of activation during EAE was correlated with reduced expansion of encephalitogenic T cells and leukocyte infiltration in the CNS, and amelioration of clinical symptoms. Thus, our findings demonstrate that CD40 expression on microglial cells is necessary to complete their activation process during EAE, which is important for disease progression.  相似文献   

3.
Tyrosine phosphorylation of junctional components has been proposed as a mechanism for modulating cell-cell adhesion. Although a correlation exists between the tyrosine phosphorylation of the adherens junction protein beta-catenin and loss of classical cadherin-mediated adhesion, the effects of tyrosine phosphorylation on the function of the adherens junction and desmosome-associated protein plakoglobin is unknown. In the present study, we investigated the effects of epidermal growth factor receptor (EGFR) tyrosine kinase activation on the subcellular distribution of plakoglobin and its association with its junctional binding partners. Long term epidermal growth factor (EGF) treatment of A431 cells revealed a modest decrease in the cytoskeleton-associated pool of plakoglobin (Pg) and a corresponding increase in the cytosolic pool of Pg. After short term EGF treatment, plakoglobin was rapidly phosphorylated, and tyrosine-phosphorylated Pg was distributed predominantly in a membrane-associated Triton X-100-soluble pool, along with a co-precipitating high molecular weight tyrosine-phosphorylated protein identified as desmoglein 2. Analysis of deletion and point mutants defined the primary EGFR-dependent targets as one or more of three C-terminal tyrosine residues. Whereas phosphorylated Pg remained associated with the desmoglein tail after both short and long term EGFR activation, no phosphorylated Pg was found associated with the N-terminal Pg-binding domain (DPNTP) of the intermediate filament-associated protein, desmoplakin. Together these results are consistent with the possibility that EGF-dependent tyrosine phosphorylation of Pg may modulate cell-cell adhesion by compromising the link between desmosomal cadherins and the intermediate filament cytoskeleton.  相似文献   

4.
Small groups of blastoderm cells were transplanted from wild-type donor embryos into genetically marked host embryos of the same age. Donor cells were injected either into an homologous or an ectopic region of the recipient, and both donor and recipient embryos were allowed to develop. Donor flies were examined for defects in external structures. Recipients were scored for patches of donor-type marked tissue derived from the injected cells. After ectopic transfer, the donor cells recovered in chimaeric recipients differentiated structures consistent with the donor site of cell removal. No apparent fate change was observed. In the rare cases when both individuals of a donor/host pair survived, a direct correspondence could be made between the deleted region in the donor and the chimaeric patch in the host. The results show that blastoderm cells are stably determined to within a segment.  相似文献   

5.
Interferon regulatory factor 7 (IRF-7) is implicated in the regulation of Epstein-Barr virus (EBV) latency. EBV transforms primary B cells, and the major EBV oncoprotein, latent membrane protein 1 (LMP-1), is required for the process. LMP-1 both induces the expression of IRF-7 and activates the IRF-7 protein by phosphorylation and nuclear translocation. Here we report that the expression of IRF-7 is increased in EBV-immortalized B lymphocytes compared with that in primary B cells. IRF-7 was phosphorylated and predominantly localized in the nucleus in the immortalized cells. The expression of IRF-7 was detected in 19 of 27 specimens of primary lymphomas of the human central nervous system by immunohistochemical analysis. The association between LMP-1 and IRF-7 was statistically highly significant for these specimens. An appreciable amount of the IRF-7 expressed in lymphoma cells was localized in the nucleus. Furthermore, IRF-7 promoted the anchorage-independent growth of NIH 3T3 cells. LMP-1 and IRF-7 showed additive effects on the growth transformation of NIH 3T3 cells. IRF-7-expressing NIH 3T3 cells formed tumors in athymic mice. Thus, IRF-7 has oncogenic properties and, along with LMP-1, may mediate or potentiate the EBV transformation process in the pathogenesis of EBV-associated lymphomas.  相似文献   

6.
NK cells play a critical role in the rejection of xenografts. In this study, we report on an investigation of the effect of complement regulatory protein, a decay accelerating factor (DAF: CD55), in particular, on NK cell-mediated cytolysis. Amelioration of human NK cell-mediated pig endothelial cell (PEC) and pig fibroblast cell lyses by various deletion mutants and point substitutions of DAF was tested, and compared with their complement regulatory function. Although wild-type DAF and the delta-short consensus repeat (SCR) 1-DAF showed clear inhibition of both complement-mediated and NK-mediated PEC lyses, delta-SCR2-DAF and delta-SCR3-DAF failed to suppress either process. However, delta-SCR4-DAF showed a clear complement regulatory effect, but had no effect on NK cells. Conversely, the point substitution of DAF (L147 x F148 to SS and KKK(125-127) to TTT) was half down-regulated in complement inhibitory function, but the inhibition of NK-mediated PEC lysis remained unchanged. Other complement regulatory proteins, such as the cell membrane-bound form factor H, fH-PI, and C1-inactivator, C1-INH-PI, and CD59 were also assessed, but no suppressive effect on NK cell-mediated PEC lysis was found. These data suggest, for DAF to function on NK cells, SCR2-4 is required but no relation to its complement regulatory function exists.  相似文献   

7.
It is widely hypothesized that individual differences in central nervous system (CNS) serotonergic activity underlie dimensional variation in "impulsive" vs. "inhibited" social behavior in both humans and nonhuman primates. To assess relative impulsivity in a social context, a behavioral challenge involving animals' exposure to a social stranger (termed the "Intruder Challenge") was recently validated in adolescent and adult male vervet monkeys (Cercopithecus aethiops sabaeus). Among these animals, monkeys that quickly approached the intruder were found to have lower cerebrospinal fluid (CSF) concentrations of the serotonin (5-HT) metabolite, 5-hydroxyindoleacetic acid, than less impulsive animals. In the present study we extended these observations to determine whether approach to a social stranger, as operationalized by the Intruder Challenge, is similarly associated with diminished CNS serotonergic function in female cynomolgus monkeys (Macaca fascicularis). Study animals were 25 adult monkeys that had been housed for 2 years in stable social groups. In each animal, the rise in plasma prolactin concentration induced by acute administration of the 5-HT agonist, fenfluramine, was used to assess "net" central serotonergic responsivity. When exposed later to an unfamiliar female of the same species in a catch-cage placed for 20 min within the subjects' home enclosure, monkeys that approached to within 1 m of the intruder (median latency to approach=3 min) were found to have significantly smaller prolactin responses to fenfluramine (diminished serotonergic responsivity) compared to "inhibited" animals that failed to approach the intruder (t=2.9, df=23, P<0.009; rpb=-0.51). Neither approach behavior nor the animals' fenfluramine-induced prolactin responses covaried significantly with nondirected expressions of arousal (or anxiety) or with aggressive behaviors exhibited during testing. We conclude that in female cynomolgus monkeys, social impulsivity (vs. inhibition) correlates inversely with individual differences in CNS serotonergic activity, as assessed by neuroendocrine challenge.  相似文献   

8.
Oval cells are facultative liver progenitor cells, which are invoked during chronic liver injury in order to replenish damaged hepatocytes and bile duct cells. Previous studies have observed inflammation and cytokine production in the liver during chronic injury. Further, it has been proposed that inflammatory growth factors may mediate the proliferation of oval cells during disease progression. We have undertaken a detailed examination of inflammation and cytokine production during a time course of liver injury and repair, invoked by feeding mice a choline-deficient, ethionine-supplemented (CDE) diet. We show that immediately following initial liver injury, B220-expressing leucocytes transiently infiltrate the liver. This inflammatory response occurred immediately before oval cell numbers began to expand in the liver, suggesting that the two events may be linked. Two waves of liver cytokine production were observed during the CDE time course. The first occurred shortly following commencement of the diet, suggesting that it may represent a hepatic acute phase response. However, examination of acute phase marker expression in CDE-fed mice did not support this hypothesis. The second wave of cytokine expression correlated with the expansion of oval cell numbers in the liver, suggesting that these factors may mediate oval cell proliferation. No inflammatory signalling was detected following withdrawal of the injury stimulus. In summary, our results document a close correlation between inflammation, cytokine production and the expansion of oval cells in the liver during experimental chronic injury.  相似文献   

9.
The serotonin transporter (5-HTT) regulates serotonergic neurotransmission by determining the magnitude and duration of serotonergic responses. We have recently described a polymorphism in the 5-HTT gene promoter (5-HTTLPR) which influences the function of the 5-HTT and is associated with several psychiatric disorders. Immortalized B lymphocytes express the 5-HTT, and a B lymphocyte line has been shown to express the receptor for brain-derived neurotrophic factor, trkB. Since brain-derived neurotrophic factor (BDNF) is a specific growth and differentiation factor for serotonergic neurons, we assessed whether BDNF is able to modulate 5-HTT function in B lymphoblasts. Nerve growth factor (NGF), another neurotrophin which acts via the trkA receptor, was also studied. Eight immortalized B lymphoblast lines were generated and genotyped for the 5-HTTLPR. After treatment with BDNF or NGF, 5-HT uptake and proliferation of the cell lines were assessed. Two of the B cell lines showed a dose-dependent reduction of 5-HT uptake after exposure to BDNF. Both of these cell lines were homozygous for the long allele of the 5-HTTLPR. NGF did not influence 5-HT uptake or cellular proliferation in any of the cell lines. Thus, BDNF but not NGF may influence 5-HT uptake in some B lymphocytes. The fact that regulation of the 5-HTT was observed preferentially in cells of the long/long genotype indicates that presence of a short allele confers reduced regulatory capacity on the 5-HTT. In conclusion, B lymphoblasts represent a practical model for functional regulation of the 5-HTT by neurotrophins in serotonergic neurons.  相似文献   

10.
We report the isolation of a cDNA clone encoding a neuropeptide precursor named preproGFAD from the central nervous system (CNS) of the snail Helix lucorum. Analysis of the expression of this gene shows that it is neurospecific and expressed in several groups of CNS neurons. Most notable is the expression of preproGFAD gene in the right mesocerebrum, where the neurons controlling mating behavior are located. The expression in this particular region is observed in adult animals but not in juvenile ones. The preprohormone is 108 amino acids long and contains a hydrophobic leader peptide and eight Lys-Arg recognition sites for endoproteolysis. The post-translational processing of the prohormone may lead to the generation of seven tetrapeptides, Gly-Phe-Ala-Asp-COOH (GFAD). This peptide has the same sequence as two previously isolated peptides from a related snail, Achatina fulica. The first of them (achatin-I) contains D-Phe; the second (achatin-II) is its L-Phe-containing stereoisomer. Injection of synthetic D-GFAD in nanomolar concentrations into intact animals caused an increase of the heartbeat rate and opening of the genital atrium. In preparations containing CNS with intact innervation of reproductive organs, bath application of D-GFAD caused extensive movements of the penis but not of other reproductive organs. Intracellular activation of individual neurons expressing the preproGFAD gene also elicited penis movements. D-GFAD also suppressed activity of neurons modulating feeding behavior. Our data therefore indicate that the preproGFAD gene encodes the precursor of a neuropeptide that participates in the regulation of male mating behavior. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 183–197, 1998  相似文献   

11.
To characterize the effects of the familial Alzheimer's disease-causing Swedish mutations of amyloid precursor protein (SwAPP) on the vulnerability of central nervous system neurons, we induced epileptic seizures in transgenic mice expressing SwAPP. The transgene expression did not change the seizure threshold, but consistently more neurons degenerated in brains of SwAPP mice as compared with wild-type littermates. The degenerating neurons were stained both by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling and by Gallyas silver impregnation. A susceptible population of neurons accumulated intracellular Abeta and immunoreacted with antibodies against activated caspase-3. To demonstrate that increased Abeta levels mediated the increased vulnerability, we infused antibodies against Abeta and found a significant reduction in neuronal loss that was paralleled by decreased brain levels of Abeta. Because the SwAPP mice exhibited no amyloid plaques at the age of these experiments, transgenic overproduction of Abeta in brain rendered neurons susceptible to damage much earlier than the onset of amyloid plaque formation. Our data underscore the possibility that Abeta is toxic, that it increases the vulnerability of neurons to excitotoxic events produced by seizures, and that lowering Abeta by passive immunization can protect neurons from Abeta-related toxicity.  相似文献   

12.
A number of genes that are involved in somitogenesis in vertebrates are cyclically expressed in the presomitic mesoderm. These include homologues of the Drosophila genes fringe and hairy. We have analysed here two genes that belong to these classes in the zebrafish, namely the apparent orthologues of lunatic fringe (l-fng) and of c-hairy1 (called her9). However, unlike the respective mouse and chicken genes, they are not expressed cyclically in the presomitic mesoderm. Instead, both genes are mainly expressed in the central nervous system. her9 is predominantly expressed in the fore- and midbrain, and transiently in the hindbrain. Thus, the previously identified and only very distantly related her1 gene of zebrafish has more similarities to the expression of the c-hairy1 gene than its apparent orthologue her9, indicating that sequence similarity and similarity of function are not necessarily linked in this case. l-fng expression is found in alternating pre-rhombomeres, comparable to the equivalent mouse gene expression and in the anterior compartments of the mature somites, which was also shown for the chicken l-fng gene. The latter expression indicates that it might be involved in boundary definition and cell fate decision processes, rather than in pre-patterning of the somites. Interestingly, a similar role has previously been inferred for the grasshopper homologue of l-fng. This suggests that the function of l-fng in boundary definition of the somites might be ancestral, while its recruitment to the pre-patterning process of the somites might be a derived feature in higher vertebrates.  相似文献   

13.
Recent comparative studies on expression patterns of homeobox genes in the development between ascidians and vertebrates have come to suggest a possibility that a common basic mechanism may exist in the patterning of the central nervous system (CNS). The ems/emx genes have been demonstrated to be involved in the formation and patterning of the anterior CNS in Drosophila and vertebrate embryos. In the present study, we have isolated and analyzed expression of Hremx, the ascidian homologue of ems/emx with particular attention to whether it is expressed in the larval ascidian CNS. Expression of Hremx was detected in the anterior trunk and lateral tail epidermis but not in the anterior CNS. The two expression domains of the epidermis responded in different ways upon treatment with retinoic acid: the anterior expression domain was unaltered, while the posterior expression domain extended to the anterior. The present result suggests that Hremx may have a function in anterior patterning but not in the patterning of the CNS in the ascidian embryo. We suggest the possibility that the function of ems/emx genes in the patterning of the anterior CNS in Drosophila and vertebrate embryos might have been acquired independently in the lineages to Drosophila and vertebrates.  相似文献   

14.
Macrophage migration inhibitory factor (MIF) is a cytokine that plays a critical role in the regulation of macrophage effector functions and T cell activation. However, its role in the pathogenesis of T cell-mediated autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE), has remained unresolved. In this study, we report that anti-MIF Ab treatment of SJL mice with acute EAE improved the disease severity and accelerated the recovery. Furthermore, the anti-MIF treatment impaired the homing of neuroantigen-reactive pathogenic T cells to the CNS in a VCAM-1-dependent fashion. Interestingly, MIF blockade also decreased the clonal size of the neuroantigen-specific Th1 cells and increased their activation threshold. Taken together, the results demonstrate an important role for MIF in the pathogenesis of EAE/multiple sclerosis and suggest that MIF blockade may be a promising new strategy for the treatment of multiple sclerosis.  相似文献   

15.
Members of the PDGF family have multiple roles during embryogenesis and in a variety of pathological situations in the adult. One of the major sites of PDGF-B expression in adult mammals are postmitotic CNS neurons. Combined with reported neurotrophic and neuroprotective effects of exogenously administered PDGFs, this has led to the speculation that PDGF-B may have a role in CNS development, in maintenance, or in response to CNS injury. To test these hypotheses, we developed mice in which PDGF-B was ablated genetically in postmitotic neurons at sites where PDGF-B is normally expressed. We found that these mice develop to adulthood without apparent defects. We demonstrate PDGF-B expression in the postnatal mouse hippocampus and forebrain cortex. We show that neuron-specific knockout of PDGF-B does not influence the astroglial and angiogenic responses to injury in the hippocampus or forebrain cortex. We conclude that the role of neuron-derived PDGF-B remains obscure. A role for neuron-derived PDGF-B, if existing, might be redundant with other CNS growth factors. Alternatively, other and more specific analyses of CNS functions in the normal and injured states will be required to demonstrate such a role.  相似文献   

16.
Regulating the differentiation and persistence of encephalitogenic T cells is critical for the development of experimental autoimmune encephalomyelitis (EAE). We reported recently that CD5 has an engagement-dependent prosurvival activity in T cells that played a direct role in the induction and progression EAE. We predicted that CD5 regulates T cell apoptosis/survival through the activation of CK2, a prosurvival serine/threonine kinase that associates with the receptor. To test this hypothesis, we generated mice expressing CD5 with the inability to bind and activate CK2 and assessed their susceptibility to EAE. We found mice deficient in CD5-CK2 signaling pathway were mostly resistant to the development of EAE. Resistance to EAE was associated with a dramatic decrease in a population of effector infiltrating Th cells that coexpress IFN-gamma and IL-17 and, to a lesser extent, cells that express IFN-gamma or IL-17 in draining lymph nodes and spinal cords. We further show that T cells deficient in CD5-CK2 signaling hyperproliferate following primary stimulation; however, following restimulation, they rapidly develop nonresponsiveness and exhibit elevated activation-induced cell death. Our results provide a direct role for CD5-CK2 pathway in T cell activation and persistence of effector T cells in neuroinflammatory disease. This study predicts that targeting of IFN-gamma(+)/IL-17(+) infiltrating Th cells will be useful for the treatment of multiple sclerosis and other systemic autoimmune diseases.  相似文献   

17.
BACKGROUND: We previously demonstrated the local production of the pleiotropic cytokine interleukin-6 (IL-6) in the central nervous system (CNS) in experimental autoimmune encephalomyelitis (EAE), an animal model for the human disease multiple sclerosis. MATERIALS AND METHODS: To assess the role of IL-6 in autoimmune CNS inflammation, we administered neutralizing antibodies to IL-6 in the EAE model. Their effect was examined at the clinical and histopathological level. Levels of administered antibody and IL-6 bioactivity were followed in serum and cerebrospinal fluid (CSF). RESULTS: Systemically administered antibodies penetrated into the fluid CSF in animals in which EAE was induced. Administration of anti-IL-6 reduced the development of actively induced as well as adoptively transferred EAE and was associated with increased levels of IL-6 activity in the CSF and to a lesser extent in the serum. Anti-IL-6 was still effective when given 1 day before the onset of disease signs in adoptively transferred EAE. The disease-reducing effect of anti-IL-6 was also reflected at the pathological level by the absence of inflammatory infiltrates in the CNS. CONCLUSIONS: Our study indicates that IL-6 plays an important role in autoimmune CNS inflammation. However, due to the complex nature of the in vivo interactions of administered antibodies, the disease-reducing effect of the anti-IL-6 antibodies could be caused by neutralization of IL-6 activity or by enhancement of IL-6 activity via induction of higher IL-6 levels in the CNS.  相似文献   

18.
Chronic exposure of young ovariectomized rats to elevated circulating estradiol causes loss of steroid-induced LH surges. Such LH surges are associated with cFos-induced activation of GnRH neurons; therefore, we hypothesized that chronic estradiol treatment abolishes LH surges by decreasing activation of GnRH neurons. Regularly cycling rats were ovariectomized and immediately received an estradiol implant or remained untreated. Three days or 2 or 4 wk later, the estradiol-treated rats received vehicle or progesterone at 1200 h, and 7 hourly blood samples were collected for RIA of LH. Thereafter, all rats were perfused, and the brains were examined for immunocytochemical localization of cFos and GnRH. The GnRH neurons from untreated ovariectomized rats rarely expressed cFos. As reported, LH surges induced by 3 days of estradiol treatment were associated with a 30% increase in cFos-containing GnRH neurons, and progesterone enhanced both the amplitude of LH surges and the proportion of cFos-immunopositive GnRH neurons. As hypothesized, the abolition of LH surges caused by 2 or more weeks of estradiol was paralleled by a reduction in the percentage of cFos-containing GnRH neurons, and this effect was delayed by progesterone. These results suggest that chronic estradiol abolishes steroid-induced LH surges in part by inactivating GnRH neurons.  相似文献   

19.

Background  

Granulocyte colony-stimulating (G-CSF) factor is a well-known hematopoietic growth factor stimulating the proliferation and differentiation of myeloid progenitors. Recently, we uncovered that G-CSF acts also as a neuronal growth factor in the brain, which promotes adult neural precursor differentiation and enhances regeneration of the brain after insults. In adults, the receptor for G-CSF is predominantly expressed in neurons in many brain areas. We also described expression in neurogenic regions of the adult brain, such as the subventricular zone and the subgranular layer of the dentate gyrus. In addition, we found close co-localization of the G-CSF receptor and its ligand G-CSF. Here we have conducted a systematic expression analysis of G-CSF receptor and its ligand in the developing embryo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号