首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Oxalobacter formigenes and its potential role in human health   总被引:2,自引:0,他引:2  
Oxalate degradation by the anaerobic bacterium Oxalobacter formigenes is important for human health, helping to prevent hyperoxaluria and disorders such as the development of kidney stones. Oxalate-degrading activity cannot be detected in the gut flora of some individuals, possibly because Oxalobacter is susceptible to commonly used antimicrobials. Here, clarithromycin, doxycycline, and some other antibiotics inhibited oxalate degradation by two human strains of O. formigenes. These strains varied in their response to gut environmental factors, including exposure to gastric acidity and bile salts. O. formigenes strains established oxalate breakdown in fermentors which were preinoculated with fecal bacteria from individuals lacking oxalate-degrading activity. Reducing the concentration of oxalate in the medium reduced the numbers of O. formigenes bacteria. Oxalate degradation was established and maintained at dilution rates comparable to colonic transit times in healthy individuals. A single oral ingestion of O. formigenes by adult volunteers was, for the first time, shown to result in (i) reduced urinary oxalate excretion following administration of an oxalate load, (ii) the recovery of oxalate-degrading activity in feces, and (iii) prolonged retention of colonization.  相似文献   

2.
Oxalobacter formigenes and Its Potential Role in Human Health   总被引:2,自引:0,他引:2       下载免费PDF全文
Oxalate degradation by the anaerobic bacterium Oxalobacter formigenes is important for human health, helping to prevent hyperoxaluria and disorders such as the development of kidney stones. Oxalate-degrading activity cannot be detected in the gut flora of some individuals, possibly because Oxalobacter is susceptible to commonly used antimicrobials. Here, clarithromycin, doxycycline, and some other antibiotics inhibited oxalate degradation by two human strains of O. formigenes. These strains varied in their response to gut environmental factors, including exposure to gastric acidity and bile salts. O. formigenes strains established oxalate breakdown in fermentors which were preinoculated with fecal bacteria from individuals lacking oxalate-degrading activity. Reducing the concentration of oxalate in the medium reduced the numbers of O. formigenes bacteria. Oxalate degradation was established and maintained at dilution rates comparable to colonic transit times in healthy individuals. A single oral ingestion of O. formigenes by adult volunteers was, for the first time, shown to result in (i) reduced urinary oxalate excretion following administration of an oxalate load, (ii) the recovery of oxalate-degrading activity in feces, and (iii) prolonged retention of colonization.  相似文献   

3.
Aims:  Oxalobacter formigenes is an oxalate-degrading intestinal bacterium that has been found in humans, cattle, sheep, rats and dogs. Its presence in the intestinal tract may be a protective factor against calcium oxalate urolithiasis because of its ability to degrade oxalate. The objective of this study was to determine whether O. formigenes could be detected in the faeces of healthy cats.
Methods and Results:  A convenience sample of 28 cats was enrolled. Faecal samples were tested for oxc , a gene specific for O. formigenes , by real-time PCR. This gene was detected in 5/28 (18%) cats; however, the prevalence increased to 86% (24/28) with a modification of the methodology.
Conclusions:  Demonstrating the presence of O. formigenes in the faeces of healthy cats for the first time in this study.
Significance and Impact of the Study:  Future investigation of the role of this organism in the pathophysiology of calcium oxalate urolithiasis in cats is indicated.  相似文献   

4.
The generation of transmembrane ion gradients by Oxalobacter formigenes cells metabolizing oxalate was studied. The magnitudes of both the transmembrane electrical potential (delta psi) and the pH gradient (internal alkaline) decreased with increasing external pH; quantitatively, the delta psi was the most important component of the proton motive force. As the extracellular pH of metabolizing cells was increased, intracellular pH increased and remained alkaline relative to the external pH, indicating that O. formigenes possesses a limited capacity to regulate internal pH. The generation of a delta psi by concentrated suspensions of O. formigenes cells was inhibited by the K+ ionophore valinomycin and the protonophore carbonyl cyanide-m-chlorophenylhydrazone, but not by the Na+ ionophore monensin. The H+ ATPase inhibitor N,N'-dicyclohexyl-carbodiimide inhibited oxalate catabolism but did not dissipate the delta psi. The results support the concept that energy from oxalate metabolism by O. formigenes is conserved not as a sodium ion gradient but rather, at least partially, as a transmembrane hydrogen ion gradient produced during the electrogenic exchange of substrate (oxalate) and product (formate) and from internal proton consumption during oxalate decarboxylation.  相似文献   

5.
细菌影响泌尿系结石形成的作用机制及其化学基础   总被引:2,自引:0,他引:2  
人体内影响泌尿系结石形成的细菌有2类:一类诱发尿石形成,主要是通过分解尿素使尿液pH升高、加重尿路感染、降低尿石抑制剂浓度、破坏尿路粘膜酸性粘多糖保护层从而促进晶体滞留;另一类抑制尿石的形成,这些细菌(主要为食草酸杆菌、乳酸杆菌和粪肠球菌等草酸分解菌)参与外源性草酸代谢,降低尿草酸浓度。探讨了该领域所面临的问题和将来的发展方向。  相似文献   

6.
Oxalobacter colonization of rat intestine was previously shown to promote enteric oxalate secretion and elimination, leading to significant reductions in urinary oxalate excretion (Hatch et al. Kidney Int 69: 691-698, 2006). The main goal of the present study, using a mouse model of primary hyperoxaluria type 1 (PH1), was to test the hypothesis that colonization of the mouse gut by Oxalobacter formigenes could enhance enteric oxalate secretion and effectively reduce the hyperoxaluria associated with this genetic disease. Wild-type (WT) mice and mice deficient in liver alanine-glyoxylate aminotransferase (Agxt) exhibiting hyperoxalemia and hyperoxaluria were used in these studies. We compared the unidirectional and net fluxes of oxalate across isolated, short-circuited large intestine of artificially colonized and noncolonized mice. In addition, plasma and urinary oxalate was determined. Our results demonstrate that the cecum and distal colon contribute significantly to enteric oxalate excretion in Oxalobacter-colonized Agxt and WT mice. In colonized Agxt mice, urinary oxalate excretion was reduced 50% (to within the normal range observed for WT mice). Moreover, plasma oxalate concentrations in Agxt mice were also normalized (reduced 50%). Colonization of WT mice was also associated with marked (up to 95%) reductions in urinary oxalate excretion. We conclude that segment-specific effects of Oxalobacter on intestinal oxalate transport in the PH1 mouse model are associated with a normalization of plasma oxalate and urinary oxalate excretion in otherwise hyperoxalemic and hyperoxaluric animals.  相似文献   

7.
Oxalate:formate exchange. The basis for energy coupling in Oxalobacter   总被引:21,自引:0,他引:21  
In the Gram-negative anaerobe, Oxalobacter formigenes, the generation of metabolic energy depends on the transport and decarboxylation of oxalate. We have now used assays of reconstitution to study the movements of oxalate and to characterize the exchange of oxalate with formate, its immediate metabolic derivative. Membranes of O. formigenes were solubilized with octyl-beta-D-glucopyranoside in the presence of 20% glycerol and Escherichia coli phospholipid, and detergent extracts were reconstituted by detergent dilution. [14C]Oxalate was taken up by proteoliposomes loaded with unlabeled oxalate, but not by similarly loaded liposomes or by proteoliposomes containing sulfate in place of oxalate. Oxalate transport did not depend on the presence of sodium or potassium, nor was it affected by valinomycin (1 microM), nigericin (1 microM), or a proton conductor, carbonylcyanide-p-trifluoromethoxyphenylhydrazone (5 microM) when potassium was at equal concentration on either side of the membrane. Such data suggest the presence of an overall neutral oxalate self-exchange, independent of common cations or anions. Kinetic analysis of the reaction in proteoliposomes gave a Michaelis constant (Kt) for oxalate transport of 0.24 mM and a maximal velocity (Vmax) of 99 mumol/min/mg of protein. A direct exchange of oxalate and formate was indicated by the observations that formate inhibited oxalate transport and that delayed addition of formate released [14C]oxalate accumulated during oxalate exchange. Moreover, [14C]formate was taken up by oxalate-loaded proteoliposomes (but not liposomes), and this heterologous reaction could be blocked by external oxalate. Further studies, using formate-loaded proteoliposomes, suggested that the heterologous exchange was electrogenic. Thus, for assays in which N-methylglucamine served as both internal and external cation, formate-loaded particles took up oxalate at a rate of 2.4 mumol/min/mg of protein. When external or internal N-methylglucamine was replaced by potassium in the presence of valinomycin, there was, respectively, a 7-fold stimulation or an 8-fold inhibition of oxalate accumulation, demonstrating that net negative charge moved in parallel with oxalate during the heterologous exchange. The work summarized here suggests the presence of an unusually rapid and electrogenic oxalate2-:formate1- antiport in membranes of O. formigenes. Since a proton is consumed during the intracellular decarboxylation that converts oxalate into formate plus CO2, antiport of oxalate and formate would play a central role in a biochemical cycle consisting of (a) oxalate influx, (b) oxalate decarboxylation, and (c) formate efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Six strains of Oxalobacter formigenes (anaerobic oxalate-degrading bacteria) were examined for their ability to colonize the gastrointestinal tracts of adult laboratory rats. These rats did not harbor O. formigenes. Strain OxCR6, isolated from the cecal contents of a laboratory rat that was naturally colonized by oxalate-degrading bacteria, colonized the ceca and colons of adult rats fed a diet that contained 4.5% sodium oxalate. Five days after rats were inoculated intragastrically with 10(9) viable cells of strain OxCR6, oxalate degradation rates in cecal and colonic contents increased by 19 and 40 times, respectively. Viable counts of strain OxCR6 from these rats averaged 10(8)/g (dry weight) of cecal contents. Strain OxCR6 was not detected in the cecal contents of inoculated rats fed diets that contained less than 3.0% sodium oxalate. Strains of O. formigenes isolated from the cecal contents of swine, guinea pigs, and wild rats and from human feces also colonized the ceca of laboratory rats; a ruminal strain failed to colonize the rat cecum.  相似文献   

9.
10.
We had proposed earlier that the anaerobe Oxalobacter formigenes sustains a proton-motive force by exploiting a secondary carrier rather than a primary proton pump. In this view, a carrier protein would catalyze the exchange of extracellular oxalate, a divalent anion, and intracellular formate, the monovalent product of oxalate decarboxylation. Such an electrogenic exchange develops an internally negative membrane potential, and since the decarboxylation reaction consumes an internal proton, the combined activity of the carrier and the soluble decarboxylase would constitute an "indirect" proton pump with a stoichiometry of 1H+ per turnover. This model is now verified by identification and purification of OxlT, the protein responsible for the anion exchange reaction. Membranes of O. formigenes were solubilized at pH 7 with 1.25% octyl glucoside in 20 mM 3-(N-morpholino)propanesulfonic acid/K, in the presence of 0.4% Escherichia coli phospholipids and with 20% glucerol present as the osmolyte stabilant. Rapid methods for reconstitution were developed to monitor the distribution of OxlT during biochemical fractionation, allowing its purification by sequential anion and cation exchange chromatography. OxlT proved to be a single hydrophobic polypeptide, of 38 kDa mobility during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with a turnover number estimated as at least 1000/s. The properties of OxlT point to an indirect proton pump as the mechanism by which a proton-motive force arises in O. formigenes, and one may reasonably argue that indirect proton pumps take part in bacterial events such as acetogenesis, malolactate fermentation, and perhaps methanogenesis.  相似文献   

11.
Cell-free lysates of the strict anaerobe Oxalobacter formigenes contained the following enzymatic activities: oxalyl coenzyme A reductase, glyoxylate carboligase, tartronic semialdehyde reductase, and glycerate kinase. NAD(P)-linked formate dehydrogenase, serine-glyoxylate aminotransferase, and NAD(P) transhydrogenase activities were not detected. These results support the hypothesis that O. formigenes assimilates carbon from oxalate by using the glycerate pathway, whereby oxalate is reduced to 3-phosphoglycerate before entering common biosynthetic pathways.  相似文献   

12.
Animal and human studies have provided compelling evidence that colonization of the intestine with Oxalobacter formigenes reduces urinary oxalate excretion and lowers the risk of forming calcium oxalate kidney stones. The mechanism providing protection appears to be related to the unique ability of O. formigenes to rely on oxalate as a major source of carbon and energy for growth. However, much is not known about the factors that influence colonization and host-bacterium interactions. We have colonized mice with O. formigenes OxCC13 and systematically investigated the impacts of diets with different levels of calcium and oxalate on O. formigenes intestinal densities and urinary and intestinal oxalate levels. Measurement of intestinal oxalate levels in mice colonized or not colonized with O. formigenes demonstrated the highly efficient degradation of soluble oxalate by O. formigenes relative to other microbiota. The ratio of calcium to oxalate in diets was important in determining colonization densities and conditions where urinary oxalate and fecal oxalate excretion were modified, and the results were consistent with those from studies we have performed with colonized and noncolonized humans. The use of low-oxalate purified diets showed that 80% of animals retained O. formigenes colonization after a 1-week dietary oxalate deprivation. Animals not colonized with O. formigenes excreted two times more oxalate in feces than they had ingested. This nondietary source of oxalate may play an important role in the survival of O. formigenes during periods of dietary oxalate deprivation. These studies suggest that the mouse will be a useful model to further characterize interactions between O. formigenes and the host and factors that impact colonization.  相似文献   

13.
Intravenously injected 14C labelled oxalate was rapidly removed from the blood stream via the kidney in 2 sheep, 75% being cleared within 8 h. Mean daily urinary oxalate excretions over 5 days were 21-2 and 27-5 mg and the derived plasma oxalate concentrations were 52-6 and 74-4 mug/100 ml, respectively. Oxalate was both filtered and secreted by the renal tubule with oxalate/inulin ratios varying from 1-11 to 1-57 in 6 normal sheep. A large increase in calcium excretion induced by calcium borogluconate infusion over 5 days was accompanied by a small but consistent increase in urinary oxalate excretion relative to calcium. Oxalate in blood was to be found mainly in the plasma, there being a small (8%) proporation within erythrocytes. This is lower than that reported for man, and yet in its excretion of oxalate via the kidney the sheep appears to closely resemble man and dog.  相似文献   

14.
Because of its toxicity, oxalate accumulation from amino acid catabolism leads to acute disorders in mammals. Gut microflora are therefore pivotal in maintaining a safe intestinal oxalate balance through oxalate degradation. Oxalate catabolism was first identified in Oxalobacter formigenes, a specialized, strictly anaerobic bacterium. Oxalate degradation was found to be performed successively by two enzymes, a formyl-CoA transferase (frc) and an oxalate decarboxylase (oxc). These two genes are present in several bacterial genomes including that of Escherichia coli. The frc ortholog in E. coli is yfdW, with which it shares 61% sequence identity. We have expressed the YfdW open reading frame product and solved its crystal structure in the apo-form and in complex with acetyl-CoA and with a mixture of acetyl-CoA and oxalate. YfdW exhibits a novel and spectacular fold in which two monomers assemble as interlaced rings, defining the CoA binding site at their interface. From the structure of the complex with acetyl-CoA and oxalate, we propose a putative formyl/oxalate transfer mechanism involving the conserved catalytic residue Asp169. The similarity of yfdW with bacterial orthologs (approximately 60% identity) and paralogs (approximately 20-30% identity) suggests that this new fold and parts of the CoA transfer mechanism are likely to be the hallmarks of a wide family of CoA transferases.  相似文献   

15.
Oxalate reduces calcium availability of food because it chelates calcium, forming the sparingly soluble salt calcium-oxalate. Nevertheless, fat sand rats (Psammomys obesus; Gerbillinae) feed exclusively on plants containing much oxalate. We measured the effects of calcium intake on oxalate balance by comparing oxalate intake and excretion in wild fat sand rats feeding on their natural, oxalate-rich, calcium-poor diet with commercially-bred fat sand rats feeding on an artificial, calcium-rich, oxalate-poor diet of rodent pellets. We also tested for the presence of the oxalate degrading bacterium Oxalobacter sp. in the faeces of both groups. Fat sand rats feeding on saltbush ingested significantly more oxalate than fat sand rats feeding on pellets (P < 0.001) and excreted significantly more oxalate in urine and faeces (P < 0.01 for both). However the fraction of oxalate recovered in excreta [(oxalate excreted in urine + oxalate excreted in faeces)/oxalate ingested] was significantly higher in pellet-fed fat sand rats (61%) than saltbush-fed fat sand rats (27%). We found O. sp. in the faeces of both groups indicating that fat sand rats harbor oxalate degrading bacteria, and these are able, to some extent, to degrade oxalate in its insoluble form.  相似文献   

16.
The yfdXWUVE operon appears to encode proteins that enhance the ability of Escherichia coli MG1655 to survive under acidic conditions. Although the molecular mechanisms underlying this phenotypic behavior remain to be elucidated, findings from structural genomic studies have shown that the structure of YfdW, the protein encoded by the yfdW gene, is homologous to that of the enzyme that mediates oxalate catabolism in the obligate anaerobe Oxalobacter formigenes, O. formigenes formyl coenzyme A transferase (FRC). We now report the first detailed examination of the steady-state kinetic behavior and substrate specificity of recombinant, wild-type YfdW. Our studies confirm that YfdW is a formyl coenzyme A (formyl-CoA) transferase, and YfdW appears to be more stringent than the corresponding enzyme (FRC) in Oxalobacter in employing formyl-CoA and oxalate as substrates. We also report the effects of replacing Trp-48 in the FRC active site with the glutamine residue that occupies an equivalent position in the E. coli protein. The results of these experiments show that Trp-48 precludes oxalate binding to a site that mediates substrate inhibition for YfdW. In addition, the replacement of Trp-48 by Gln-48 yields an FRC variant for which oxalate-dependent substrate inhibition is modified to resemble that seen for YfdW. Our findings illustrate the utility of structural homology in assigning enzyme function and raise the question of whether oxalate catabolism takes place in E. coli upon the up-regulation of the yfdXWUVE operon under acidic conditions.  相似文献   

17.
Formyl-CoA transferase catalyses transfer of CoA from formate to oxalate in the first step of oxalate degradation by Oxalobacter formigenes, a bacterium present in the intestinal flora which is implicated in oxalate catabolism in mammals. Formyl-CoA transferase is a member of a family of CoA-transferases for which no structural information is available. We now report the three-dimensional structure of O.formigenes formyl-CoA transferase, which reveals a novel fold and a very striking assembly of the homodimer. The subunit is composed of a large and a small domain where residues from both the N- and C-termini of the subunit are part of the large domain. The linkers between the domains give the subunit a circular shape with a hole in the middle. The enzyme monomers are tightly interacting and are interlocked. This fold requires drastic rearrangement of approximately 75 residues at the C-terminus for formation of the dimer. The structure of a complex of formyl-CoA transferase with CoA is also reported and sets the scene for a mechanistic understanding of enzymes of this family of CoA-transferases.  相似文献   

18.
Urinary glycoproteins are important inhibitors of calcium oxalate crystallization and adhesion of crystals to renal cells, both of which are key mechanisms in kidney stone formation. This has been attributed to glycosylation of the proteins. In South Africa, the black population rarely form stones (incidence < 1%) compared with the white population (incidence 12-15%). A previous study involving urinary prothrombin fragment 1 from both populations demonstrated superior inhibitory activity associated with the protein from the black group. In the present study, we compared N-linked and O-linked oligosaccharides released from urinary prothrombin fragment 1 isolated from the urine of healthy and stone-forming subjects in both populations to elucidate the relationship between glycosylation and calcium oxalate stone pathogenesis. The O-glycans of both control groups and the N-glycans of the black control samples were significantly more sialylated than those of the white stone-formers. This demonstrates a possible association between low-percentage sialylation and kidney stone disease and provides a potential diagnostic method for a predisposition to kidney stones that could lead to the implementation of a preventative regimen. These results indicate that sialylated glycoforms of urinary prothrombin fragment 1 afford protection against calcium oxalate stone formation, possibly by coating the surface of calcium oxalate crystals. This provides a rationale for the established roles of urinary prothrombin fragment 1, namely reducing the potential for crystal aggregation and inhibiting crystal-cell adhesion by masking the interaction of the calcium ions on the crystal surface with the renal cell surface along the nephron.  相似文献   

19.
20.

Background

Calcium oxalate (CaOx) is the major constituent of about 75% of all urinary stone and the secondary hyperoxaluria is a primary risk factor. Current treatment options for the patients with hyperoxaluria and CaOx stone diseases are limited. Oxalate degrading bacteria might have beneficial effects on urinary oxalate excretion resulting from decreased intestinal oxalate concentration and absorption. Thus, the aim of the present study is to examine the in vivo oxalate degrading ability of genetically engineered Lactobacillus plantarum (L. plantarum) that constitutively expressing and secreting heterologous oxalate decarboxylase (OxdC) for prevention of CaOx stone formation in rats. The recombinants strain of L. plantarum that constitutively secreting (WCFS1OxdC) and non-secreting (NC8OxdC) OxdC has been developed by using expression vector pSIP401. The in vivo oxalate degradation ability for this recombinants strain was carried out in a male wistar albino rats. The group I control; groups II, III, IV and V rats were fed with 5% potassium oxalate diet and 14th day onwards group II, III, IV and V were received esophageal gavage of L. plantarum WCFS1, WCFS1OxdC and NC8OxdC respectively for 2-week period. The urinary and serum biochemistry and histopathology of the kidney were carried out. The experimental data were analyzed using one-way ANOVA followed by Duncan’s multiple-range test.

Results

Recombinants L. plantarum constitutively express and secretes the functional OxdC and could degrade the oxalate up to 70–77% under in vitro. The recombinant bacterial treated rats in groups IV and V showed significant reduction of urinary oxalate, calcium, uric acid, creatinine and serum uric acid, BUN/creatinine ratio compared to group II and III rats (P < 0.05). Oxalate levels in kidney homogenate of groups IV and V were showed significant reduction than group II and III rats (P < 0.05). Microscopic observations revealed a high score (4+) of CaOx crystal in kidneys of groups II and III, whereas no crystal in group IV and a lower score (1+) in group V.

Conclusion

The present results indicate that artificial colonization of recombinant strain, WCFS1OxdC and NC8OxdC, capable of reduce urinary oxalate excretion and CaOx crystal deposition by increased intestinal oxalate degradation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0086-y) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号