首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogenetic relationships among feather mites of the subfamily Avenzoariinae (Acari: Analgoidea: Avenzoariidae) were reconstructed by parsimony analysis of a combined data matrix. We analyzed 41 morphological characters and 246 molecular characters from a fragment of the 16S rDNA. Morphological trees were well supported at deep branches (genera and above), but showed much less support and resolution within genera. Molecular analyses produced trees with better resolution and support on terminal branches and worse support on basal branches. I(MF) index for the combined matrix pointed to the significant congruence of both data subsets with the whole of the data. The topology of the combined tree was close to the morphological tree in the deep branches and had well-resolved terminal branches as in the molecular tree. This suggests a considerable level of complimentarity between the two data sets. An analysis of association patterns of the mites and their hosts was conducted based on the results of the combined analyses for the Avenzoariinae and a phylogeny of their charadriiform hosts (compiled from various bird phylogeny hypotheses). The trees could be reconciled by the invoking of 12-13 cospeciation events, 6-7 duplications, 2 host shifts, and 26-29 sorting events. This suggests a high degree of cospeciation.  相似文献   

2.
Feather mites are highly specialized plumage and skin ectoparasites that are variously adapted for inhabiting certain microhabitats on a bird's body. Different feather mite taxa of higher (familial) rank adapted to the same microhabitats display similar main morphological adaptations even if they are rather distantly related to one another. Hypotheses on the evolution of general adaptations in morphology of feather mites during colonization and establishment in different microhabitats are presented. According to recent data, feather mites are a paraphyletic group consisting of three superfamilies: Analgoidea, Pterolichoidea and Freyanoidea. We present our view on the general feather mite phylogeny course at the familial rank for the Analgoidea by means of cladistic analysis. Co-speciation of parasites with their hosts is postulated as a main factor driving feather mite evolution. Examples are given of non-coevolutionary events, for example recolonization from one host species onto another, extinction and multiple speciation.  相似文献   

3.
Ecological correlates of feather mite prevalence in passerines   总被引:1,自引:0,他引:1  
The relationship between host ecology and feather mite prevalence was analysed in birds. Feather mites are small arthropods (fam. Pterolichoidea and Analgoidea) commonly found on birds, although the nature of their interactions with the host (commensalism, mutualism or parasitism), still remains unclear. Host body mass and migratory behaviour were unrelated to feather mite prevalence. Contrary to expectation, there was no differences in mite prevalence between colonial and solitary-breeding species. However, winter sociality was associated with increased prevalence, suggesting that winter and breeding sociality affected the distribution patterns of feather mites in different ways. Plumage dichromatism was negatively correlated with feather mite prevalence, a result that is opposite to that predicted by the Hamilton and Zuk hypothesis for the evolution of host secondary sexual characteristics in relation to parasitism.  相似文献   

4.
Host–symbiont relationships are ubiquitous in nature, yet evolutionary and ecological processes that shape these intricate associations are often poorly understood. All orders of birds engage in symbioses with feather mites, which are ectosymbiotic arthropods that spend their entire life on hosts. Due to their permanent obligatory association with hosts, limited dispersal and primarily vertical transmission, we hypothesized that the cospeciation between feather mites and hosts within one avian family (Parulidae) would be perfect (strict cospeciation). We assessed cophylogenetic patterns and tested for congruence between species in two confamiliar feather mite genera (Proctophyllodidae: Proctophyllodes, Amerodectes) found on 13 species of migratory warblers (and one other closely related migratory species) in the eastern United States. Based on COI sequence data, we found three Proctophyllodes lineages and six Amerodectes lineages. Distance‐ and event‐based cophylogenetic analyses suggested different cophylogenetic trajectories of the two mite genera, and although some associations were significant, there was little overall evidence supporting strict cospeciation. Host switching is likely responsible for incongruent phylogenies. In one case, we documented prairie warblers Setophaga discolor harboring two mite species of the same genus. Most interestingly, we found strong evidence that host ecology may influence the likelihood of host switching occurring. For example, we documented relatively distantly related ground‐nesting hosts (ovenbird Seiurus aurocapilla and Kentucky warbler Geothlypis formosa) sharing a single mite species, while other birds are shrub/canopy or cavity nesters. Overall, our results suggest that cospeciation is not the case for feather mites and parulid hosts at this fine phylogenetic scale, and raise the question if cospeciation applies for other symbiotic systems involving hosts that have complex life histories. We also provide preliminary evidence that incorporating host ecological traits into cophylogenetic analyses may be useful for understanding how symbiotic systems have evolved.  相似文献   

5.
Understanding what shapes variation in genetic diversity among species remains a major challenge in evolutionary ecology, and it has been seldom studied in parasites and other host‐symbiont systems. Here, we studied mtDNA variation in a host‐symbiont non‐model system: 418 individual feather mites from 17 feather mite species living on 17 different passerine bird species. We explored how a surrogate of census size, the median infrapopulation size (i.e., the median number of individual parasites per infected host individual), explains mtDNA genetic diversity. Feather mite species genetic diversity was positively correlated with mean infrapopulation size, explaining 34% of the variation. As expected from the biology of feather mites, we found bottleneck signatures for most of the species studied but, in particular, three species presented extremely low mtDNA diversity values given their infrapopulation size. Their star‐like haplotype networks (in contrast with more reticulated networks for the other species) suggested that their low genetic diversity was the consequence of severe bottlenecks or selective sweeps. Our study shows for the first time that mtDNA diversity can be explained by infrapopulation sizes, and suggests that departures from this relationship could be informative of underlying ecological and evolutionary processes.  相似文献   

6.
Feather mites are arthropods that live on or in the feathers of birds, and are among the commonest avian ectosymbionts. However, the nature of the ecological interaction between feather mites and birds remains unclear, some studies reporting negative effects of feather mites on their hosts and others reporting positive or no effects. Here we use a large dataset comprising 20 189 measurements taken from 83 species of birds collected during 22 yr in 151 localities from seven countries in Europe and North Africa to explore the correlation between feather mite abundance and body condition of their hosts. We predicted that, if wing‐dwelling feather mites are parasites, a negative correlation with host body condition should be found, while a mutualistic interaction should yield positive correlation. Although negative relationships between feather mite abundance and host body condition were found in a few species of birds, the sign of the correlation was positive in most bird species (69%). The overall effect size was only slightly positive (r =0.066). The effect of feather mite abundance explained <10% of variance in body condition in most species (87%). Results suggest that feather mites are not parasites of birds, but rather that they hold a commensalistic relationship where feather mites may benefit from feeding on uropygial gland secretions of their hosts and birds do not seem to obtain a great benefit from the presence of feather mites.  相似文献   

7.
Feather mites (Astigmata) are specialized parasites living on the plumage and skin of birds. The paper presents data on infestation of some passerines (Passeriformes) by feather mites in the south of Western Siberia (Omsk and Tyumen Provinces). We found 24 species of feather mites belonging to the families Analgidae, Dermoglyphidae, Pteronyssidae, Trouessartiidae, and Proctophyllodidae on 16 bird species. Among them, 19 species are common parasites of the passerine birds examined; five species were detected on atypical hosts. Ten mite species were recorded for the first time on the passerine species examined. Analysis of the distribution of abundant and common mite species on their hosts has demonstrated that the majority of the bird parasites possess a specific distribution pattern in the host plumage with preference for certain feather types. We have also obtained new data on host associations of several mite species.  相似文献   

8.
ISMAEL GALVÁN  & JUAN J. SANZ 《Ibis》2006,148(4):687-697
Plumicolous feather mites are ectosymbiotic organisms that live on bird feathers. Despite their abundance and prevalence among birds, the ecology of the interaction between these organisms and their hosts is poorly known. As feather mites feed on oil that birds spread from their uropygial gland, it has been hypothesized, but never tested, that the number of feather mites increases with the size of the uropygial gland of their hosts. In this study the number of feather mites is considered with respect to uropygial gland size in a breeding population of Great Tits Parus major in order to test this hypothesis. As predicted, the number of feather mites correlated positively with the uropygial gland size of their hosts, showing for the first time that uropygial gland size can explain the variance in feather mite load among conspecifics. Previous studies relating feather mite load to plumage colour have suggested that feather mites may be parasitic or neutral. To confirm this, the yellowness of breast feathers was also assessed. However, the results ran in the opposite direction to that expected, showing a positive correlation between mite load and plumage yellowness, which suggests that further work is needed to give clear evidence for a specific nature of feather mites. However, Great Tits with higher mite loads had lower hatching and breeding success, which may support the idea that feather mites are parasites, although this effect must be taken with caution because it was only found in males. Age or sex effects were not found on the number of feather mites, and it is proposed that hormonal levels may not be sufficient to explain the variation in feather mite loads. Interestingly, a positive correlation was detected between uropygial gland size and plumage brightness, which could be a novel factor to take into account in studies of plumage colour.  相似文献   

9.
The high relevance of host‐switching for the diversification of highly host‐specific symbionts (i.e., those commonly inhabiting a single host species) demands a better understanding of host‐switching dynamics at an ecological scale. Here, we used DNA metabarcoding to study feather mites on passerine birds in Spain, sequencing mtDNA (COI) for 25,540 individual mites (representing 64 species) from 1,130 birds (representing 71 species). Surprisingly, 1,228 (4.8%) mites from 84 (7.4%) birds were found on host species that were not the expected to be a host according to a recent bird–feather mite associations catalog. Unexpected associations were widespread across studied mite (40.6%) and bird (43.7%) species and showed smaller average infrapopulation sizes than typical associations. Unexpected mite species colonized hosts being distantly related to the set of their usual hosts, but with similar body size. The network of bird–mite associations was modular (i.e., some groups of bird and mite species tended to be more associated with each other than with the others), with 75.9% of the unexpected associations appearing within the module of the typical hosts of the mite species. Lastly, 68.4% of mite species found on unexpected hosts showed signatures of genetic differentiation, and we found evidence for reproduction or the potential for it in many of the unexpected associations. Results show host colonization as a common phenomenon even for these putatively highly host‐specific symbionts. Thus, host‐switching by feather mites, rather than a rare phenomenon, appears as a relatively frequent phenomenon shaped by ecological filters such as host morphology and is revealed as a fundamental component for a dynamic coevolutionary and codiversification scenario.  相似文献   

10.
The "condition-specific competition hypothesis" proposes that coexistence of 2 species is possible when spatial or temporal variations in environmental conditions exist and each species responds differently to those conditions. The distribution of different species of feather mites on their hosts is known to be affected by intrinsic host factors such as structure of feathers and friction among feathers during flight, but there is also evidence that external factors such as humidity and temperature can affect mite distribution. Some feather mites have the capacity to move through the plumage rather rapidly, and within-host variation in intensity of sunlight could be one of the cues involved in these active displacements. We analyzed both the within- and between-feather spatial distribution of 2 mite species, Trouessartia bifurcata and Dolichodectes edwardsi , that coexist in flight feathers of the moustached warbler Acrocephalus melanopogon. A complex spatial segregation between the 2 species was observed at 3 spatial levels, i.e., "feather surfaces," "between feathers," and "within feathers." Despite certain overlapping distribution among feathers, T. bifurcata dominated proximal and medial regions on dorsal faces, while D. edwardsi preferred disto-ventral feather areas. An experiment to check the behavioral response of T. bifurcata to sunlight showed that mites responded to light exposure by approaching the feather bases and even leaving its dorsal face. Spatial heterogeneity across the 3 analyzed levels, together with response to light and other particular species adaptations, may have played a role in the coexistence and segregation of feather mites competing for space and food in passerine birds.  相似文献   

11.
The term synhospitality means the association of two or more closely related parasite species with one host species (Eichler, 1966). The cases of two or three synhospitalic species are known from the same host species, and especially ones where parasites were recorded from different parts of the host range, are quite common. The most ordinary reason causing synhospitality in permanent parasites is the host switching. Nevertheless, there are a number of synhospitality cases, where the parasite complex is monophyletic because evolved on a single host species. The special term--"phylogenetic synhospitality" (FS) is proposed for these cases of synhospitality. Most known cases of FS in acariform mites, permanent parasites of vertebrates, are analysed. It is found out that both astigmatan and prostigmatan parasite mites demonstrate a numbers of FS. The majority of these examples represent parasitism of two or three synhospitalic parasite species. Impressive examples of FS involving a number of synhospitalic species is shown by only astigmatan mites inhabiting the fur of mammals or plumage of birds. Most known examples involving four or more mite species are discussed: 51 mite species of the genus Schizocarpus (Chirodiscidae) parasitizing Castor fiber and C. canadensis (Castoridae); 6 species of Listrophorus spp. (Listrophoridae) from Ondatra zibethicus (Cricetidae); 23 species of Listrophoroides s. 1. (Atopomelidae) from Maxomys surifer (Muridae); 21 species of Cytostethum (Atomelidae) from Potorous tridactylus (Potoridae); 4 species of Listrophoroides (Afrolistrophoroides) from Malacomys longipes (Muridae); 7 species of Fainalges (Xolalgidae) from Aratinga holochlora (Psittacidae); 4 species of Zygepigynia (Pteronyssidae) from Chrysocolaptes lucidus (Picidae). The main reason of FS is that, in spite of the Fahrenholz's rule, the speciation of many parasites proceeds much more intensively than in their hosts because of the more rapid replacement of the parasitic generations. The first factor causing FS is the mite speciation it temporary segregated populations of the host (allopatric speciation). In this case, the "multispecies complexes" appeared after the subsequent reintegration of the host populations formerly isolated. The second factor is the speciation due to the specialization of mites to local microhabitats in the fur or plumage of host (sympatric or synxenic speciation). The second way of speciation is most characteristic for mites with highly specialized attaching structures. The phenomenon of FS more resides in ectoparasites of mammals rather than in feather mites in spite of much more structural complicacy of plumage rather than the fur. The high mobility of birds and wide dispersion of their new generations probably embarrass the process of sympatric speciation in their parasites. As a rule, only really significant geographical barriers play role for population isolation in birds. Thus, it could be concluded that two independent factors or their combination lead to FS. (i) The complex and/or disjunctive host range giving a possibility for allopatric speciation in parasites. (ii) The deep mite specialization to local microhabitats on the host body causing sympatric (synxenic) speciation. Fur of mammals and plumage of birds are very complicated in structure and microconditions and provide a considerable number of different microhabitats for mites inhabiting them. The prevalence of one of these two factors depends on the biological peculiarities of both parasites and their hosts. In mites with lesser specialized attaching organs, for example in atopomelids, allopatric speciation dominates. In mites with strongly specialized attaching organs, for example in listrophorids or chirodiscids, both pathways of speciation may take place. In feather mites, sympatric speciation should be more probable due to quite complicate and various structure of feathers in avian hosts. In fur mites, sympatric speciation is more likely in mites parasitizing hosts with peculiar ecology, for example in semiaquatic rodents possessing quite different fur structure in different parts of the body.  相似文献   

12.
Parasites and other symbionts are crucial components of ecosystems, regulating host populations and supporting food webs. However, most symbiont systems, especially those involving commensals and mutualists, are relatively poorly understood. In this study, we have investigated the nature of the symbiotic relationship between birds and their most abundant and diverse ectosymbionts: the vane‐dwelling feather mites. For this purpose, we studied the diet of feather mites using two complementary methods. First, we used light microscopy to examine the gut contents of 1,300 individual feather mites representing 100 mite genera (18 families) from 190 bird species belonging to 72 families and 19 orders. Second, we used high‐throughput sequencing (HTS) and DNA metabarcoding to determine gut contents from 1,833 individual mites of 18 species inhabiting 18 bird species. Results showed fungi and potentially bacteria as the main food resources for feather mites (apart from potential bird uropygial gland oil). Diatoms and plant matter appeared as rare food resources for feather mites. Importantly, we did not find any evidence of feather mites feeding upon bird resources (e.g., blood, skin) other than potentially uropygial gland oil. In addition, we found a high prevalence of both keratinophilic and pathogenic fungal taxa in the feather mite species examined. Altogether, our results shed light on the long‐standing question of the nature of the relationship between birds and their vane‐dwelling feather mites, supporting previous evidence for a commensalistic–mutualistic role of feather mites, which are revealed as likely fungivore–microbivore–detritivore symbionts of bird feathers.  相似文献   

13.
The phylogenetic relationships of all seven known species of Cecidophyopsis mites (Acari: Eriophyidae) with Ribes hosts have been inferred from ribosomal DNA sequences. This analysis found groups of closely related mites. The five gall-forming species, four of which are monophagous and one which has two hosts, were found in two groups. Another group consisted of the two non gall-forming species, one of which has two hosts, while the other is monophagous. The molecular phylogeny of their known Ribes host plants was calculated using the equivalent ribosomal regions as the mites. The structure of the two trees (mites vs hosts) was clearly different, implying that mite speciation did not closely follow speciation events in the plant hosts. Instead, the three groups of Ribes-infesting Cecidophyopsis mites have derived from a common galling ancestor millions of years ago. Each mite group has recently diversified onto different primary hosts. One group of mites has also lost the galling habit. The results have implications for host range changes and the durability of mite-resistance genes in cultivated Ribes.  相似文献   

14.
Feather mites are obligatory ectosymbionts of birds that primarily feed on the oily secretions from the uropygial gland. Feather mite abundance varies within and among host species and has various effects on host condition and fitness, but there is little consensus on factors that drive variation of this symbiotic system. We tested hypotheses regarding how within‐species and among‐species traits explain variation in both (1) mite abundance and (2) relationships between mite abundance and host body condition and components of host fitness (reproductive performance and apparent annual survival). We focused on two closely related (Parulidae), but ecologically distinct, species: Setophaga cerulea (Cerulean Warbler), a canopy dwelling open‐cup nester, and Protonotaria citrea (Prothonotary Warbler), an understory dwelling, cavity nester. We predicted that feather mites would be more abundant on and have a more parasitic relationship with P. citrea, and within P. citrea, females and older individuals would harbor greater mite abundances. We captured, took body measurements, quantified feather mite abundance on individuals’ primaries and rectrices, and monitored individuals and their nests to estimate fitness. Feather mite abundance differed by species, but in the opposite direction of our prediction. There was no relationship between mite abundance and any measure of body condition or fitness for either species or sex (also contrary to our predictions). Our results suggest that species biology and ecological context may influence mite abundance on hosts. However, this pattern does not extend to differential effects of mites on measures of host body condition or fitness.  相似文献   

15.
Fitness consequences of ectoparasitism are expressed over the lifetime of their hosts in relation to variation in composition and abundance of the entire ectoparasite community and across all host life history stages. However, most empirical studies have focused on parasite species-specific effects and only during some life history stages. We conducted a systematic, year-long survey of an ectoparasite community in a wild population of house finches Carpodacus mexicanus Müller in south-western Arizona, with a specific focus on ecological and behavioral correlates of ectoparasite prevalence and abundance. We investigated five ectoparasite species: two feather mite genera – both novel for house finches – Strelkoviacarus (Analgidae) and Dermoglyphus (Dermoglyphidae), the nest mite Pellonyssus reedi (Macronyssidae), and the lice Menacanthus alaudae (Menoponidae) and Ricinus microcephalus (Ricinidae). Mite P. reedi and louse Menacanthus alaudae abundance peaked during host breeding season, especially in older birds, whereas feather mite abundance peaked during molt. Overall, breeding birds had more P. reedi than non-breeders, molting males had greater abundance of feather mites than molting females and non-molting males, and young males had more feather mites than older males. We discuss these results in relation to natural history of ectoparasites under study and suggest that ectoparasites might synchronize their life cycles to those of their hosts. Pronounced differences in relative abundance of ectoparasite species among host's life history stages have important implications for evolution of parasite-specific host defenses.  相似文献   

16.
Populations of a host species may exhibit different assemblages of parasites and other symbionts. The loss of certain species of symbionts (lineage sorting, or "missing-the-boat") is a mechanism by which geographical variation in symbiont assemblages can arise. We studied feather mites and lice from Australian brush-turkeys (Aves: Megapodiidae: Alectura lathami) and expected to observe geographical structuring in arthropod assemblages for several reasons. First, because the brush-turkey is a sedentary ground-dwelling bird, we predicted that geographically close host populations should share more similar arthropod assemblages than distant ones. Second, because brush-turkeys do not brood their young, vertical transfer of arthropods is unlikely, and brush-turkeys probably acquire their mites and lice at social maturity through contact with other birds. Young birds could disperse and found new populations without carrying complete sets of symbionts. We predicted that young birds would have fewer species of arthropods than older birds; in addition, we expected that males (which are polygynous) would have more species than females. Birds were sampled from 12 sites (=populations) along the east coast of Queensland, Australia, that were separated by a distance of 12.5-2,005 km. In total, 5 species of mites from the Pterolichidae and 1 species from the Ascouracaridae were found. Two species of lice were collected but in numbers too low to be statistically useful. Differentiation of mite assemblages was evident; in particular, Leipobius sp. showed 100% prevalence in 3 host populations and 0% in the remaining 9. A dendrogram of brush-turkey populations based on mite assemblages showed 2 geographically correlated clusters of sites, plus 1 cluster that contained 2 sites near Brisbane and 1 approximately at a distance of 1,000 km. There was no strong effect of host age or sex on number of mite species carried. Horizontal transfer of feather mites by hippoboscid flies, in addition to physical contact between hosts, may play a role in homogenizing symbiont assemblages within populations.  相似文献   

17.
The fauna of ectoparasitic mites of the subfamily Picobiinae (Acari: Syringophilidae) associated with birds of the North America is revised. A new genus, Charadriineopicobia n. g. is proposed for two quill mite species, Ch. calidris n. sp. from Calidris alba (Pallas) (Charadriiformes: Scolopacidae) and Ch. leucophaeus (Skoracki, Hendricks & Spicer, 2010) n. comb. from Leucophaeus atricilla Linnaeus (Charadriiformes: Laridae). The new genus differs from the closely related Neopicobia Skoracki, 2011 by the presence of one pair of setae in pseudanal series and by clearly discernible chambers in each lateral branch of the peritremes, in both sexes. Additionally, a new species of Picobia Haller, 1878, P. hylocichlae n. sp., parasitising Hylocichla mustelina (Gmelin) (Passeriformes: Turdidae), is described. The species of picobiine mites presently recorded from North America are summarised.  相似文献   

18.
Many factors may affect symbiont distributions within host populations. Intrinsic factors, such as genotype, body condition and age may account for variations in symbiont loads between individuals . However, abiotic factors may also contribute to variations. We investigated correlates of variation in the number of feather mites, Trouessartia sp. (Trouessartiidae), per individual in the Seychelles Warbler Acrocephalus sechellensis on Cousin Island. Warblers from territories exposed to high levels of salt spray had lower feather mite loads than warblers from territories unaffected by salt spray, and juveniles had higher mite loads than adults. When the effects of salt spray were controlled for statistically, incubating birds had lower mite loads than birds in other stages of reproduction. Thus, an extrinsic and two intrinsic factors contribute to predicting feather mite loads.  相似文献   

19.
Water mites of Unionicola spp. are common parasites of freshwater mussels as adults, living on the gills, or mantle and foot of their hosts and using these tissues as sites of oviposition. The present study addresses specialization among North American Unionicola mussel-mites using 2 measures of host specificity: (1) the number of host species used by a species of mite; and (2) a measure that considers the taxonomic distinctness of the hosts utilized by mites, weighted for their prevalence in the different hosts. Results of this study indicate the Unionicola spp. mussel-mites are highly host specific, with most species occurring in association with 1 or 2 species of hosts. If 2 or more host species are utilized, they are typically members of the same genus. These data are consistent with studies examining the dispersal abilities and host recognition behavior for members of the group. When the average values of host specificity for Unionicola subgenera were mapped on a phylogenetic tree for these taxa, a clade comprised of gill mites appeared to be more host specific than a clade consisting of mantle mites. There were, however, no apparent patterns of host specificity within each of the clades. Differences in specificity between the 2 lineages may reflect either a long evolutionary history that gill mites have had with host mussels or the intense competition among gill mites for oviposition sites within unionid mussels, leading to increased host specialization.  相似文献   

20.
1. Damselflies and dragonflies are widely parasitised insects and numerous studies have tried to understand this host–parasite relationship. However, most of these studies have concentrated on a single host species, neglecting the larger pattern within the Odonata order. 2. The aim of this paper was to examine different damselfly and dragonfly species for common endo‐ and ectoparasites and whether a general infection pattern can be found. Additionally, the goal was to investigate whether the phylogeny of the host species could explain these possible infection patterns. To this end, a dataset from the existing literature was compiled and the prevalence of endoparasitic gregarines and ectoparasitic water mites was analysed for 46 different odonate species. 3. Three distinct patterns were found: (i) most of the odonate host species had both gregarines and water mites, rather than only either one or neither; (ii) there appears to be a positive association between gregarine and water mite prevalences across host species; (iii) a weak phylogenetic signal was detected in gregarine prevalence and a strong one in water mite prevalence. 4. It is hypothesised that, due to the infection and transmission mechanisms by which water mites and gregarines infect different odonate host species, parasitism is aggregated to common, high‐density species. However, much research is needed in order to fully understand this relationship between odonates and their parasites, especially within the same host populations and host species assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号