首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study we systematically examined the differences between the proteomes of Metazoa and other eukaryotes. Metazoans (Homo sapiens, Ceanorhabditis elegans and Drosophila melanogaster) were compared with a plant (Arabidopsis thaliana), fungi (Saccharomyces cerevisiae and Schizosaccaromyces pombe) and Encephalitozoan cuniculi. We identified 159 gene families that were probably lost in the Metazoan branch and 1263 orthologous families that were specific to Metazoa and were likely to have originated in their last common ancestor (LCA). We analyzed the evolutionary rates of pan-eukaryotic protein families and identified those with higher rates in animals. The acceleration was shown to occur in: (i) the LCA of Metazoa or (ii) independently in the Metazoan phyla. A high proportion of the accelerated Metazoan protein families was found to participate in translation and ribosome biogenesis, particularly mitochondrial. By functional analysis we show that no metabolic pathway in animals evolved faster than in other organisms. We conclude that evolution in the LCA of Metazoa was extensive and proceeded largely by gene duplication and/or invention rather than by modification of extant proteins. Finally, we show that the rate of evolution of a gene family in animals has a clear, but not absolute, tendency to be conserved.  相似文献   

3.
The wine yeast, Saccharomyces cerevisiae, is the best understood microbial eukaryote at the molecular and cellular level, yet its natural geographic distribution is unknown. Here we report the results of a field survey for S. cerevisiae,S. paradoxus and other budding yeast on oak trees in Europe. We show that yeast species differ in their geographic distributions, and investigated which ecological variables can predict the isolation rate of S. paradoxus, the most abundant species. We find a positive association between trunk girth and S. paradoxus abundance suggesting that older trees harbor more yeast. S. paradoxus isolation frequency is also associated with summer temperature, showing highest isolation rates at intermediate temperatures. Using our statistical model, we estimated a range of summer temperatures at which we expect high S. paradoxus isolation rates, and show that the geographic distribution predicted by this optimum temperature range is consistent with the worldwide distribution of sites where S. paradoxus has been isolated. Using laboratory estimates of optimal growth temperatures for S. cerevisiae relative to S. paradoxus, we also estimated an optimum range of summer temperatures for S. cerevisiae. The geographic distribution of these optimum temperatures is consistent with the locations where wild S. cerevisiae have been reported, and can explain why only human‐associated S. cerevisiae strains are isolated at northernmost latitudes. Our results provide a starting point for targeted isolation of S. cerevisiae from natural habitats, which could lead to a better understanding of climate associations and natural history in this important model microbe.  相似文献   

4.
Studying how novel phenotypes originate and evolve is fundamental to the field of evolutionary biology as it allows us to understand how organismal diversity is generated and maintained. However, determining the basis of novel phenotypes is challenging as it involves orchestrated changes at multiple biological levels. Here, we aim to overcome this challenge by using a comparative species framework combining behavioral, gene expression, and genomic analyses to understand the evolutionary novel egg-laying substrate-choice behavior of the invasive pest species Drosophila suzukii. First, we used egg-laying behavioral assays to understand the evolution of ripe fruit oviposition preference in D. suzukii compared with closely related species D. subpulchrella and D. biarmipes as well as D. melanogaster. We show that D. subpulchrella and D. biarmipes lay eggs on both ripe and rotten fruits, suggesting that the transition to ripe fruit preference was gradual. Second, using two-choice oviposition assays, we studied how D. suzukii, D. subpulchrella, D. biarmipes, and D. melanogaster differentially process key sensory cues distinguishing ripe from rotten fruit during egg-laying. We found that D. suzukii’s preference for ripe fruit is in part mediated through a species-specific preference for stiff substrates. Last, we sequenced and annotated a high-quality genome for D. subpulchrella. Using comparative genomic approaches, we identified candidate genes involved in D. suzukii’s ability to seek out and target ripe fruits. Our results provide detail to the stepwise evolution of pest activity in D. suzukii, indicating important cues used by this species when finding a host, and the molecular mechanisms potentially underlying their adaptation to a new ecological niche.  相似文献   

5.
We perform Brownian dynamics simulations and Smoluchowski continuum modeling of the bifunctional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (P. falciparum DHFR-TS) with the objective of understanding the electrostatic channeling of dihydrofolate generated at the TS active site to the DHFR active site. The results of Brownian dynamics simulations and Smoluchowski continuum modeling suggest that compared to Leishmania major DHFR-TS, P. falciparum DHFR-TS has a lower but significant electrostatic-mediated channeling efficiency (∼15–25%) at physiological pH (7.0) and ionic strength (150 mM). We also find that removing the electric charges from key basic residues located between the DHFR and TS active sites significantly reduces the channeling efficiency of P. falciparum DHFR-TS. Although several protozoan DHFR-TS enzymes are known to have similar tertiary and quaternary structure, subtle differences in structure, active-site geometry, and charge distribution appear to influence both electrostatic-mediated and proximity-based substrate channeling.  相似文献   

6.
It was long thought that solely three different transposable elements (TEs)—the I-element, the P-element, and hobo—invaded natural Drosophila melanogaster populations within the last century. By sequencing the “living fossils” of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.  相似文献   

7.
The critical thermal increments are calculated for oxygen consumption in the pupae of the "wild type" fruit fly, Drosophila melanogaster, and are found to be of two types: µ = 11,500 and 16,800; above 15°C. the first value is obtained, the second, below this temperature.  相似文献   

8.
The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2) from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3) and purified on a Ni2+ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The KM of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The Vmax was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg2+ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.  相似文献   

9.
Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5°C and 32.5°C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes 33 hours at 17.5°C, and accelerates with increasing temperature to a low of 16 hours at 27.5°C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5°C and have drastically slowed development by 30°C. Despite ranging from 13 hours for D. erecta at 30°C to 46 hours for D. virilis at 17.5°C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the progress of embryogenesis that has been tuned by natural selection as each species diverges.  相似文献   

10.

Background

Malaria presents a diagnostic challenge in areas where both Plasmodium falciparum and P.vivax are co-endemic. Bivalent Rapid Diagnostic tests (RDTs) showed promise as diagnostic tools for P.falciparum and P.vivax. To assist national malaria control programme in the selection of RDTs, commercially available seven malaria RDTs were evaluated in terms of their performance with special reference to heat stability.

Methodology/Principal Findings

This study was undertaken in four forested districts of central India (July, 2011– March, 2012). All RDTs were tested simultaneously in field along with microscopy as gold standard. These RDTs were stored in their original packing at 25°C before transport to the field or they were stored at 35°C and 45°C upto 100 days for testing the performance of RDTs at high temperature. In all 2841 patients with fever were screened for malaria of which 26% were positive for P.falciparum, and 17% for P.vivax. The highest sensitivity of any RDT for P.falciparum was 98% (95% CI; 95.9–98.8) and lowest sensitivity was 76% (95% CI; 71.7–79.6). For P.vivax highest and lowest sensitivity for any RDT was 80% (95% CI; 94.9 - 83.9) and 20% (95% CI; 15.6–24.5) respectively. Heat stability experiments showed that most RDTs for P.falciparum showed high sensitivity at 45°C upto 90 days. While for P.vivax only two RDTs maintained good sensitivity upto day 90 when compared with RDTs kept at room temperature. Agreement between observers was excellent for positive and negative readings for both P.falciparum and P.vivax (Kappa >0.6–0.9).

Conclusion

This is first field evaluation of RDTs regarding their temperature stability. Although RDTs are useful as diagnostic tool for P.falciparum and P.vivax even at high temperature, the quality of RDTs should be regulated and monitored more closely.  相似文献   

11.
Haloalkane dehalogenases are enzymes that catalyze the cleavage of the carbon-halogen bond by a hydrolytic mechanism. Genomes of Mycobacterium tuberculosis and M. bovis contain at least two open reading frames coding for the polypeptides showing a high sequence similarity with biochemically characterized haloalkane dehalogenases. We describe here the cloning of the haloalkane dehalogenase genes dmbA and dmbB from M.bovis 5033/66 and demonstrate the dehalogenase activity of their translation products. Both of these genes are widely distributed among species of the M. tuberculosis complex, including M. bovis, M. bovis BCG, M.africanum, M. caprae, M. microti, and M. pinnipedii, as shown by the PCR screening of 48 isolates from various hosts. DmbA and DmbB proteins were heterologously expressed in Escherichia coli and purified to homogeneity. The DmbB protein had to be expressed in a fusion with thioredoxin to obtain a soluble protein sample. The temperature optimum of DmbA and DmbB proteins determined with 1,2-dibromoethane is 45°C. The melting temperature assessed by circular dichroism spectroscopy of DmbA is 47°C and DmbB is 57°C. The pH optimum of DmbA depends on composition of a buffer with maximal activity at 9.0. DmbB had a single pH optimum at pH 6.5. Mycobacteria are currently the only genus known to carry more than one haloalkane dehalogenase gene, although putative haloalkane dehalogenases can be inferred in more then 20 different bacterial species by comparative genomics. The evolution and distribution of haloalkane dehalogenases among mycobacteria is discussed.  相似文献   

12.
Disease transmission can be strongly influenced by the manner in which conspecifics are connected across a landscape and the effects of land use upon these dynamics. In northern Botswana, the territorial and group‐living banded mongoose (Mungos mungo) lives across urban and natural landscapes and is infected with a novel Mycobacterium tuberculosis complex pathogen, M. mungi. Using microsatellite markers amplified from DNA derived from banded mongoose fecal and tissue samples (n = 168), we evaluated population genetic structure, individual dispersal, and gene flow for 12 troops. Genetic structure was detectable and moderately strong across groups (F ST = 0.086), with K = 7 being the best‐supported number of genetic clusters. Indications of admixture in certain troops suggest formation of new groups through recent fusion events. Differentiation was higher for troops inhabiting natural areas (F ST = 0.102) than for troops in urban landscapes (F ST = 0.081). While this suggests increased levels of gene flow between urban‐dwelling troops, the inclusion of a smaller number of study troops from natural land types may have influenced these findings. Of those individuals confirmed infected with M. mungi, the majority (73%, n = 11) were assigned to their natal group which is consistent with previous observations linking lower levels of dispersal with infection. Twenty‐one probable dispersing individuals were identified, with all suspected migrants originating from troops within the urban landscape. Findings suggest that urbanized landscapes may increase gene flow and dispersal behavior with a concomitant increase in the risk of pathogen spread. As urban landscapes expand, there is an increasing need to understand how land use and pathogen infection may change wildlife behavior and disease transmission potential.  相似文献   

13.
1. Most wild stocks of Drosophila melanogaster can be bred indefinitely on banana agar at a temperature of 31°C. There is no relation between the geographical origin of these stocks and their ability to tolerate this temperature. 2. A single wild stock has been found which will breed for only one generation at temperatures above 29°C. The offspring hatched at 31°C. will breed normally at 24°C. This difference from other wild stocks is apparently genetic, but its genetic basis has not yet been worked out. 3. The mutant stocks of D. melanogaster tested by us will breed for only one generation at 31°C. and their offspring at this temperature are also fertile at 24°C. This condition is apparently a physiological effect of the presence of any of the mutant genes in a homozygous condition. 4. Similar tests indicate that wild stocks of D. virilis and Chymomyza procnemis will breed at 31°C., while D. simulans, D. immigrans, and D. funebris will not. The last two species are northern forms not commonly found in the tropics. 5. Both male and female flies from mutant stocks hatched at 31°C. produce offspring at this temperature if mated to flies hatched at 24°C. Their germ cells are therefore capable of development, and the cause of their failure to develop at 31°C. when inbred must lie either in the failure of the germ cells to reach each other or in the fertilization process itself.  相似文献   

14.
A nuclear recessive mutant in Saccharomyces cerevisiae, mhr1-1, is defective in mitochondrial genetic recombination at 30°C and shows extensive vegetative petite induction by UV irradiation at 30°C or when cultivated at a higher temperature (37°C). It has been postulated that mitochondrial DNA (mtDNA) is oxidatively damaged by by-products of oxidative respiration. Since genetic recombination plays a critical role in DNA repair in various organisms, we tested the possibility that MHR1 plays a role in the repair of oxidatively damaged mtDNA using an enzyme assay. mtDNA isolated from cells grown under standard (aerobic) conditions contained a much higher level of DNA lesions compared with mtDNA isolated from anaerobically grown cells. Soon after a temperature shift from 30 to 37°C the number of mtDNA lesions increased 2-fold in mhr1-1 mutant cells but not in MHR1 cells. Malonic acid, which decreased the oxidative stress in mitochondria, partially suppressed both petite induction and the temperature-induced increase in the amount of mtDNA damage in mhr1-1 cells at 37°C. Thus, functional mitochondria require active MHR1, which keeps the extent of spontaneous oxidative damage in mtDNA within a tolerable level. These observations are consistent with MHR1 having a possible role in mtDNA repair.  相似文献   

15.
16.
Suspensions of the yeast Saccharomyces cerevisiae gave reproducible rates of O2 uptake over a period of 6 months. The relation of rate of consumption of O2 to temperature was tested over a wide range of temperatures, and the constant in the formulation of the relationship is found to be reproducible. The values of this constant (µ) have been obtained for five separate series of experiments by three methods of estimation. The variability of µ has the following magnitudes: the average deviation of a single determination expressed as per cent of the mean is ±2 per cent in the range 30–15°, and ±0.8 per cent in the range 15–3°C. This constancy of metabolic activity measured as a function of temperature can then be utilized for more precise investigations of processes controlling the velocity of oxidations of substrates, and of respiratory systems controlled by intracellular respiratory pigments. The data plotted according to the Arrhemus equation give average values of the constant µ as follows: for the range 35–30°, µ = 8,290; 30–15°, µ = 12,440 ±290; 15–3°, µ = 19,530 ±154. The critical temperatures are at 29.0° and 15.7°C. A close similarity exists between these temperature characteristics (µ) and values in the series usually obtained for respiratory activities in other organisms. This fact supports the view that a common system of processes controls the velocities of physiological activities in yeast and in other organisms.  相似文献   

17.
18.
Although females are traditionally thought of as the choosy sex, there is increasing evidence in many species that males will preferentially court or mate with certain females over others when given a choice. In the fruit fly, Drosophila melanogaster, males discriminate between potential mating partners based on a number of female traits, including species, mating history, age, and condition. Interestingly, many of these male preferences are affected by the male''s previous sexual experiences, such that males increase courtship toward types of females that they have previously mated with and decrease courtship toward types of females that have previously rejected them. Dmelanogaster males also show courtship and mating preferences for larger females over smaller females, likely because larger females have higher fecundity. It is unknown, however, whether this preference shows behavioral plasticity based on the male''s sexual history as we see for other male preferences. Here, we manipulate the sexual experience of Dmelanogaster males and test whether this manipulation has any effect on the strength of male mate choice for large females. We find that sexually inexperienced males have a robust courtship preference for large females that is unaffected by previous experience mating with, or being rejected by, females of differing sizes. Given that female body size is one of the most common targets of male mate choice across insect species, our experiments with Dmelanogaster may provide insight into how these preferences develop and evolve.  相似文献   

19.
The present study describes the development and evaluation of a duplex polymerase chain reaction (D-PCR) for diagnosis and simultaneous identification of tuberculous meningitis (TBM) and bacterial meningitis (BM) in a single reaction. A D-PCR with primers amplifying portions of the Mycobacterium tuberculosis IS6110 and the eubacteria 16SrDNA sequence in a same reaction mix was developed and tested on DNA extracted from 150 clinical CSF samples from different categories (TBM = 39, BM = 26, control infectious and non-infectious category = 85). The results indicate a clear differentiation between bands for eubacteria and M. tuberculosis with an analytical sensitivity of 103 cfu/ml for eubacteria and 102 cfu/ml for M. tuberculosis. When evaluated in clinical samples, D-PCR overall diagnosed 100 % confirmed TBM and 100 % confirmed BM cases with overall specificity of 96.5 %. D-PCR can be an effective tool for diagnosis and simultaneous identification of TBM or BM in a single PCR reaction. It saves time, cost, labour and sample amount and help in administration of appropriate antimicrobial therapy. The proposed diagnostic assay would be helpful in correct and rapid management of TBM and BM patients.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0517-9) contains supplementary material, which is available to authorized users.  相似文献   

20.
We previously reported the exquisite preservation of the ultrastructures of virulent Mycobacterium tuberculosis cells processed through cryofixation and rapid freeze substitution. Here, we report the “structome” analysis (i.e., the quantitative three-dimensional structural analysis of a whole cell at the electron microscopic level) of virulent M. tuberculosis using serial ultrathin sections prepared after cryofixation and rapid freeze substitution and analyzed by transmission electron microscopy. Five M. tuberculosis cells, which were contained in the serial ultrathin cross sections encompassing from one end to the other, were cut into 24, 36, 69, 55, and 63 serial ultrathin sections, respectively. On average, the cells were 2.71 ± 1.05 μm in length, and the average diameter of the cell was 0.345 ± 0.029 μm. The outer membrane and plasma membrane surface areas were 3.04 ± 1.33 μm2 and 2.67 ± 1.19 μm2, respectively. The cell, outer membrane, periplasm, plasma membrane, and cytoplasm volumes were 0.293 ± 0.113 fl (= μm3), 0.006 ± 0.003 fl, 0.060 ± 0.021 fl, 0.019 ± 0.008 fl, and 0.210 ± 0.091 fl, respectively. The average total ribosome number was 1,672 ± 568, and the ribosome density was 716.5 ± 171.4/0.1 fl. This is the first report of a structome analysis of M. tuberculosis cells prepared as serial ultrathin sections following cryofixation and rapid freeze substitution and examined by transmission electron microscopy. These data are based on the direct measurement and enumeration of exquisitely preserved single-cell structures in transmission electron microscopy images rather than calculations or assumptions from indirect biochemical or molecular biological data. In addition, these data may explain the slow growth of M. tuberculosis and enhance understanding of the structural properties related to the expression of antigenicity, acid-fastness, and the mechanism of drug resistance, particularly in regard to the ratio of target to drug concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号