共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of molecular biology》2023,435(5):167971
In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1, 2, 3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4, 5, 6, 7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, ~25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates. 相似文献
2.
Membrane-bound organelles and membraneless organelles (MLOs) coordinate various biological processes within eukaryotic cells. Among these, stress granules (SGs) are significant cytoplasmic MLOs that form in response to cellular stress, exhibiting liquid-like properties alongside stable substructures. SGs interact with diverse organelles, thereby influencing cellular pathways that are critical in both health and disease contexts. This review discusses the interplay between SGs and organelles and explores the methodologies employed to analyze interactions between SGs and other MLOs. Furthermore, it highlights the pivotal roles SGs play in regulating cellular responses and the pathogenesis of amyotrophic lateral sclerosis. Gaining insights into these interactions is essential for deciphering the mechanisms underlying both physiological processes and pathological conditions. 相似文献
3.
5.
Deborah M. Kim-Holzapfel Raja Dey Brian C. Richardson Danushka Arachchige Kanamata Reddy Humberto De Vitto Janarjan Bhandari Jarrod B. French 《The Journal of biological chemistry》2023,299(3)
Human uridine 5′-monophosphate synthase (HsUMPS) is a bifunctional enzyme that catalyzes the final two steps in de novo pyrimidine biosynthesis. The individual orotate phosphoribosyl transferase and orotidine monophosphate domains have been well characterized, but little is known about the overall structure of the protein and how the organization of domains impacts function. Using a combination of chromatography, electron microscopy, and complementary biophysical methods, we report herein that HsUMPS can be observed in two structurally distinct states, an enzymatically active dimeric form and a nonactive multimeric form. These two states readily interconvert to reach an equilibrium that is sensitive to perturbations of the active site and the presence of substrate. We determined that the smaller molecular weight form of HsUMPS is an S-shaped dimer that can self-assemble into relatively well-ordered globular condensates. Our analysis suggests that the transition between dimer and multimer is driven primarily by oligomerization of the orotate phosphoribosyl transferase domain. While the cellular distribution of HsUMPS is unaffected, quantification by mass spectrometry revealed that de novo pyrimidine biosynthesis is dysregulated when this protein is unable to assemble into inactive condensates. Taken together, our data suggest that HsUMPS self-assembles into biomolecular condensates as a means to store metabolic potential for the regulation of metabolic rates. 相似文献
6.
7.
8.
9.
10.
Cells are segregated into two distinct compartment groups to optimize cellular function. The first is characterized by lipid membranes that encapsulate specific regions and regulate macromolecular flux. The second, known collectively as membraneless organelles (MLOs), lacks defining lipid membranes and exhibits self‐organizing properties. MLOs are enriched with specific RNAs and proteins that catalyze essential cellular processes. A prominent sub‐class of MLOs are known as nuclear bodies, which includes nucleoli, paraspeckles, and other droplets. These microenvironments contain specific RNAs, exhibit archetypal liquid–liquid phase separation characteristics, and harbor intrinsically disordered, multivalent hub proteins. We present an analysis of nuclear body protein disorder that suggests MLO proteomes are significantly more disordered than structured cellular features. We also outline common MLO ultrastructural features, exemplified by the three sub‐compartments present inside the nucleolus. A core‐shell configuration, or phase within a phase, is displayed by several nuclear bodies and may be functionally important. Finally, we summarize evidence indicating extensive RNA and protein sharing between distinct nuclear bodies, suggesting functional cooperation and similar nucleation principles. Considering the substantial accumulation of specific coding and noncoding RNA classes inside MLOs, evidence that RNA buffers specific phase transition events, and the absence of a clear correlation between total intrinsic protein disorder and MLO accumulation, we conclude that RNA biogenesis may play a key role in MLO formation, internal organization, and function. This article is categorized under:
- RNA Export and Localization > RNA Localization
- RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications
11.
12.
13.
Considerable advances in understanding the protein features favoring prion formation in yeast have facilitated the development of effective yeast prion prediction algorithms. Here we discuss a recent study in which we systematically explored the utility of the yeast prion prediction algorithm PAPA for designing mutations to modulate the aggregation activity of the human prion-like protein hnRNPA2B1. Mutations in hnRNPA2B1 cause multisystem proteinopathy in humans, and accelerate aggregation of the protein in vitro. Additionally, mutant hnRNPA2B1 forms cytoplasmic inclusions when expressed in Drosophila, and the mutant prion-like domain can substitute for a portion of a yeast prion domain in supporting prion activity in yeast. PAPA was quite successful at predicting the effects of PrLD mutations on prion activity in yeast and on in vitro aggregation propensity. Additionally, PAPA successfully predicted the effects of most, but not all, mutations in the PrLD of the hnRNPA2B1 protein when expressed in Drosophila. These results suggest that PAPA is quite effective at predicting the effects of mutations on intrinsic aggregation propensity, but that intracellular factors can influence aggregation and prion-like activity in vivo. A more complete understanding of these intracellular factors may inform the next generation of prion prediction algorithms. 相似文献
14.
Prion-like domains are low complexity, intrinsically disordered domains that compositionally resemble yeast prion domains. Many prion-like domains are involved in the formation of either functional or pathogenic protein aggregates. These aggregates range from highly dynamic liquid droplets to highly ordered detergent-insoluble amyloid-like aggregates. To better understand the amino acid sequence features that promote conversion to stable, detergent-insoluble aggregates, we used the prediction algorithm PAPA to identify predicted aggregation-prone prion-like domains with a range of compositions. While almost all of the predicted aggregation-prone domains formed foci when expressed in cells, the ability to form the detergent-insoluble aggregates was highly correlated with glutamine/asparagine (Q/N) content, suggesting that high Q/N content may specifically promote conversion to the amyloid state in vivo. We then used this data set to examine cross-seeding between prion-like proteins. The prion protein Sup35 requires the presence of a second prion, [PIN+], to efficiently form prions, but this requirement can be circumvented by the expression of various Q/N-rich protein fragments. Interestingly, almost all of the Q/N-rich domains that formed SDS-insoluble aggregates were able to promote prion formation by Sup35, highlighting the highly promiscuous nature of these interactions. 相似文献
15.
Frare E Polverino De Laureto P Zurdo J Dobson CM Fontana A 《Journal of molecular biology》2004,340(5):1153-1165
Amyloid fibrils obtained after incubating hen egg-white lysozyme (HEWL) at pH 2.0 and 65 degrees C for extended periods of time have been found to consist predominantly of fragments of the protein corresponding to residues 49-100, 49-101, 53-100 and 53-101, derived largely from the partial acid hydrolysis of Asp-X peptide bonds. These internal fragments of HEWL encompass part of the beta-domain and all the residues forming the C-helix in the native protein, and contain two internal disulfide bridges Cys64-Cys80 and Cys76-Cys94. The complementary protein fragments, including helices A, B and D of the native protein, are not significantly incorporated into the network of fibrils, but remain largely soluble, in agreement with their predicted lower propensities to aggregate. Further analysis of the properties of different regions of HEWL to form amyloid fibrils was carried out by studying fragments produced by limited proteolysis of the protein by pepsin. Here, we show that only fragment 57-107, but not fragment 1-38/108-129, is able to generate well-defined amyloid fibrils under the conditions used. This finding is of particular importance, as the beta-domain and C-helix of the highly homologous human lysozyme have been shown to unfold locally in the amyloidogenic variant D67H, which is associated with the familial cases of systemic amyloidosis linked to lysozyme deposition. The identification of the highly amyloidogenic character of this region of the polypeptide chain provides strong support for the involvement of partially unfolded species in the initiation of the aggregation events that lead to amyloid deposition in clinical disease. 相似文献
16.
In cells at steady state, two forms of cell compartmentalization coexist: membrane‐bound organelles and phase‐separated membraneless organelles that are present in both the nucleus and the cytoplasm. Strikingly, cellular stress is a strong inducer of the reversible membraneless compartments referred to as stress assemblies. Stress assemblies play key roles in survival during cell stress and in thriving of cells upon stress relief. The two best studied stress assemblies are the RNA‐based processing‐bodies (P‐bodies) and stress granules that form in response to oxidative, endoplasmic reticulum (ER), osmotic and nutrient stress as well as many others. Interestingly, P‐bodies and stress granules are heterogeneous with respect to both the pathways that lead to their formation and their protein and RNA content. Furthermore, in yeast and Drosophila, nutrient stress also leads to the formation of many other types of prosurvival cytoplasmic stress assemblies, such as metabolic enzymes foci, proteasome storage granules, EIF2B bodies, U‐bodies and Sec bodies, some of which are not RNA‐based. Nutrient stress leads to a drop in cytoplasmic pH, which combined with posttranslational modifications of granule contents, induces phase separation. 相似文献
17.
Edward M. Courchaine Andrew E.S. Barentine Korinna Straube Dong-Ryoung Lee Joerg Bewersdorf Karla M. Neugebauer 《Cell》2021,184(14):3612-3625.e17
- Download : Download high-res image (219KB)
- Download : Download full-size image
18.
《Molecular cell》2020,77(6):1237-1250.e4
- Download : Download high-res image (237KB)
- Download : Download full-size image
19.
20.
大量的实验表明,在细胞质膜中,由于不同成分具有不同的生物化学特性,发生相分离而局部形成微区.不同的微区可行使不同的功能.近年来一种富含胆固醇、鞘脂类以及大量的受体和信号分子的液态有序相的微区,即脂筏(lipid rafts),由于被发现参与信号转导和一些物质的生理循环过程而备受关注.随着实验手段的提高,人们对生物膜在分子水平上认识的不断深化,脂筏结构和功能的物理、化学基础研究方面也取得了初步的进展. 相似文献