首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twelve neonatal calves were experimentally infected with oocysts of Cryptosporidium parvum. Six calves in group A fed hyperimmune colostrum at birth had significantly less diarrhea and shed oocysts for less time than did 6 calves in group B fed colostrum from cows that were not hyperimmune. Calves in group A had diarrhea for 0-4 days (means = 2.3 days), whereas calves in group B had diarrhea for 4-6 days (means = 5.0 days). Calves in group A shed oocysts for 4-9 days (means = 6.2 days), whereas calves in group B shed oocysts for 7-11 days (means = 8.5 days). These findings indicate that passive lacteal immunity conferred partial protection against cryptosporidiosis. Whether such protection was provided by the immunoglobulins that were highly elevated in the colostrum (greater than 1:200,000 for IgG1, IgM, and IgA) and constituted a large part of the circulating antibody in the calves, or by other biologically active factors, such as cytokines, is undetermined.  相似文献   

2.
The purpose of this study was to determine whether gamma-irradiated Cryptosporidium parvum oocysts could elicit protective immunity against cryptosporidiosis in dairy calves. Cryptosporidium parvum Iowa strain oocysts (1 x 10(6) per inoculation) were exposed to various levels of gamma irradiation (350-500 Gy) and inoculated into 1-day-old dairy calves. The calves were examined daily for clinical signs of cryptosporidiosis, and fecal samples were processed for the presence of C. parvum oocysts. At 21 days of age, the calves were challenged by oral inoculation with 1 x 10(5) C. parvum oocysts and examined daily for oocyst shedding and clinical cryptosporidiosis. Calves that were inoculated with C. parvum oocysts exposed to 350-375 Gy shed C. parvum oocysts in feces. Higher irradiation doses (450 or 500 Gy) prevented oocyst development, but the calves remained susceptible to C. parvum challenge infection. Cryptosporidium parvum oocysts exposed to 400 Gy were incapable of any measurable development but retained the capacity to elicit a protective response against C. parvum challenge. These findings indicate that it may be possible to protect calves against cryptosporidiosis by inoculation with C. parvum oocysts exposed to 400-Gy gamma irradiation.  相似文献   

3.
We examined whether periparturient dairy cattle shed Cryptosporidium parvum oocysts within 12 hr of calving on 3 commercial dairy farms endemic for calfhood cryptosporidiosis. Using a diagnostic method that can detect as few as 1 oocyst per gram of feces, we found no evidence of C. parvum oocysts in 86 fecal samples collected within 12 hr of calving from 43 dairy cows.  相似文献   

4.
Most procedures that have been described for purifying Cryptosporidium parvum oocysts are designed to either identify the parasites in clinical specimens or isolate oocysts from a small volume of feces from infected animals. The present study describes a rapid method for purifying high numbers of C. parvum oocysts from feces of infected calves that contains minimal contaminating fecal material and bacteria. The isolation method is based on differential flotation of C. parvum oocysts in NaCl, followed by ether extraction to solubilize lipids in calf feces. This procedure regularly yields > 10(9) purified C. parvum oocysts within 1-2 days of feces collection.  相似文献   

5.
Cryptosporidium parvum is an intracellular protozoan parasite of the mammalian intestine. In rats, C. parvum infection is age related; infants are susceptible, whereas adults are resistant. The transition from susceptibility to resistance usually takes place around the age of weaning. In the present study, infant rats were orally inoculated with a preparation of intestinal scrapings taken from adult rats or cows. Infant rats received the scrapings daily from 3 to 14 days of age, were inoculated with C. parvum oocysts at 9 days of age, and killed at 15 days of age. Fecal samples and intestinal tissues were examined for the presence of C. parvum. Significantly fewer rats were infected in the groups that received intestinal scrapings compared with controls. In addition, infected rats in the treatment groups shed significantly fewer oocysts than those in the control group. Scrapings from the intestinal mucosa of adult cows were also able to protect infant rats from infection, whereas scrapings from intestines of calves were not protective. In sum, these data indicate the presence of a factor in the intestines of adult rats and cows that can transfer protection against C. parvum infection to susceptible infant rats.  相似文献   

6.
Evaluation of dairy calf feces is often used in research and for clinical decision making to assess severity of diarrhea. However, this has not been validated for agreement between dry matter content and observed fecal consistency. Therefore, a comparison of observed fecal consistency score to fecal percent dry matter and Cryptosporidium parvum oocyst shedding was performed to assess the accuracy of observational scoring as a measure of diarrhea and its association with number of oocysts shed. Fecal samples from 20 dairy calves experimentally infected with C. parvum oocysts were collected daily post-infection and scored on a scale from 1 to 4, with 1 being normal feces to 4 being severe diarrhea. An aliquot of each sample was analyzed for percent dry matter and Cryptosporidium oocyst counts by using immunofluorescent microscopy. Fecal consistency scores of 1, 2, 3, and 4 had median percent dry matter of 20.9, 16.3, 9.6, and 5.8, respectively. Using percent dry matter assessed by fecal consistency scoring were significantly different from each other (P < 0.001). A higher fecal consistency score also was associated with a greater number of Cryptosporidium oocysts shed (P < 0 .0001). Scores of 1, 2, 3, and 4 had median oocyst counts of 0, 0, 1.3 × 10?, and 2.8 × 10?, respectively. These results suggest that observational scoring is a useful proxy to assess diarrhea in dairy calves.  相似文献   

7.
Centrifugation was evaluated as a method to improve infectivity assays of Cryptosporidium parvum in cell culture using the focus detection method, an immunofluorescence-based method for detecting infectious C. parvum oocysts in vitro. Human ileocecal adenocarcinoma (HCT-8) cells were grown for 48 hr on 13-mm cover slips in 24-well microtiter plates and infected with bleach-treated C. parvum oocysts. Plates were centrifuged at 228 g for 10 min and incubated at 37 C for 5, 12, 18, 24, and 48 hr. Foci of infection were stained by immunofluorescence and enumerated using epifluorescent microscopy. Results were compared to noncentrifuged controls. Foci in centrifuged samples could be enumerated after 18 hr. According to most probable number (MPN) analysis, the number of infectious oocysts estimated at 48 hr (13,326 infectious oocysts) was reached by 18 hr in centrifuged samples. After 48 hr, there was no significant difference (P < 0.05) between centrifuged and noncentrifuged samples enumerated by number of foci or the MPN of infectious oocysts. Centrifugation may expedite detection during C. parvum infectivity assays. Furthermore, multiwell plate formats are more cost effective than traditional chamber slides.  相似文献   

8.
Cryptosporidium parvum has been associated with outbreaks of human illness by consumption of contaminated water, fresh fruits, and vegetables. Free-living nematodes may play a role in pathogen transmission in the environment. Caenorhabditis elegans is a free-living soil nematode that has been extensively studied and serves as a good model to study possible transmission of C. parvum oocysts that may come into contact with produce before harvest. The objective of this study was to determine whether C. elegans could serve as a potential mechanical vector for transport of infectious C. parvum and Cyclospora cayetanensis in agricultural settings and whether C. elegans could ingest, excrete, and protect oocysts from desiccation. Seventy to 85% of worms ingested between 0 and 500 oocysts after 1 and 2 hr incubation with oocysts. Most of the nematodes ingested between 101 and 200 oocysts after 2 hr. Intact oocysts and empty shells were excreted by nematodes. Infectivity was determined by the neonatal assay with different treatments of worms (intact or homogenized) or oocysts or both. Adult C. elegans containing C. parvum kept in water were infective for mice. In conclusion, C. elegans adults can ingest and excrete C. parvum oocysts. Caenorhabditis elegans containing C. parvum oocysts can infect mice but does not seem to protect oocysts from extreme desiccation at 23 C incubation of a day or longer. Cyclospora oocysts were not ingested by C. elegans. The role of free-living nematodes in produce contamination needs to be further examined.  相似文献   

9.
We had previously shown that ileal intraepithelial lymphocytes isolated from calves with cryptosporidiosis include significantly increased numbers of CD8+ T lymphocytes and activated CD4+ cells. These increases could result from redistribution of resident mucosal lymphocytes or from homing of peripheral T cells to ileal mucosa. To determine whether resident mucosal lymphocytes can redistribute to Cryptosporidium parvum-infected epithelium, oocysts were inoculated in vitro onto ileum explants taken from 1-2-wk-old noninfected calves. After 24 hr of incubation, the explants were collected and frozen in liquid nitrogen. Immunohistochemical analysis of T-lymphocyte subpopulations was performed on sections, and labeled lymphocytes adjacent to villous epithelial cells were counted. Compared with uninoculated explants, there was a statistically significant increase in the number of CD8+ T lymphocytes per 100 epithelial cells in oocyst-inoculated tissue. In addition, there were increased numbers of CD4+ T cells and activated (CD25+) lymphocytes adjacent to C. parvum-infected epithelium. These results show that resident mucosal T lymphocytes can accumulate at the epithelium during C. parvum infection.  相似文献   

10.
Our primary goal was to generate an accurate estimate of the daily environmental loading rate of Cryptosporidium parvum oocysts for adult beef cattle, using immunomagnetic separation coupled with direct immunofluorescence microscopy for a highly sensitive diagnostic assay. An additional goal was to measure the prevalence and intensity of fecal shedding of C. parvum oocysts in pre- and postparturient cows as an indicator of their potential to infect young calves. This diagnostic method could detect with a > or = 90% probability oocyst concentrations as low as 3.2 oocysts g of feces(-1), with a 54% probability of detecting just one oocyst g of feces(-1). Using this diagnostic method, the overall apparent prevalence of adult beef cattle testing positive for C. parvum was 7.1% (17 of 240), with 8.3 and 5.8% of cattle shedding oocysts during the pre- and postcalving periods, respectively. The mean intensity of oocyst shedding for test-positive cattle was 3.38 oocysts g of feces(-1). The estimated environmental loading rate of C. parvum ranged from 3,900 to 9,200 oocysts cow(-1) day(-1), which is substantially less than a previous estimate of 1.7 x 10(5) oocysts cow(-1) day(-1) (range of 7.7 x 10(4) to 2.3 x 10(5) oocysts cow(-1) day(-1)) (B. Hoar, E. R. Atwill, and T. B. Farver, Quant. Microbiol. 2:21-36, 2000). Use of this highly sensitive assay functioned to detect a greater proportion of low-intensity shedders in our population of cattle, which reduced the estimated mean intensity of shedding and thereby reduced the associated environmental loading rate compared to those of previous studies.  相似文献   

11.
Scarce information is available about Neospora caninum oocysts and sporozoites, in part because only small numbers of oocysts have typically been produced by experimentally infected dogs. We hypothesized that I reason for low experimental production of oocysts is that dogs have been fed tissues from experimentally infected mice instead of tissues from cattle (which are natural intermediate hosts of N. caninum). In this study, 9 dogs were fed tissues from N. caninum-infected calves, and oocyst production was compared with 6 dogs that were fed infected mouse carcasses. The number of oocysts produced by dogs that ingested infected calf tissues (mean = 160,700) was significantly greater (P = 0.03) than the number of oocysts shed by dogs that ingested infected mice (mean = 5,400). The second goal of our experiment was to demonstrate cyclical oral transmission of N. caninum between dogs and cattle. As few as 300 oocysts were used to successfully infect calves, and tissues from these calves induced patent infections in 2 of 3 dogs; oocysts from I of these dogs were administered to another calf, and tissues from this calf subsequently induced a third dog to shed oocysts. Oocysts were confirmed to be N. caninum using a species-specific polymerase chain reaction technique. In addition, sporulated oocysts were used to recover N. caninum in vitro after digestion in an acid-pepsin solution and inoculation of cell monolayers.  相似文献   

12.
Rectal fecal samples were taken once a week from 49 calves on the same farm. In addition, the dams of the calves were sampled at the time of calf birth and at the end of the study. Strains of verocytotoxin-producing Escherichia coli (VTEC) were isolated from these samples by using PCR and DNA probe hybridization tests and were characterized with respect to serotype, verocytotoxin gene (vtx) type, and the presence of the intimin (eae) and hemolysin (ehxA) genes. A total of 170 VTEC strains were isolated during 21 weeks from 130 (20%) of 664 samples from calves and from 40 (47%) of 86 samples from their dams. The characteristics of the calf strains differed from those strains isolated from the dams with respect to verocytotoxin 2 and the presence of the eae gene. In addition, no calf shed the same VTEC serogroup (excluding O?) as its dam at birth or at the end of the study. The most frequently detected serogroups in calves were serogroup O26 and provisional serogroup E40874 (VTEC O26 was found in 25 calves), whereas in dams serogroup O91 and provisional serogroup E54071 were the most common serogroups. VTEC O26 shedding appeared to be associated with very young calves and declined as the calves aged, whereas VTEC O2 shedding was associated with housing of the animals. VTEC O26 strains from calves were characterized by the presence of the vtx1, eae, and ehxA genes, whereas vtx2 was associated with VTEC O2 and provisional serogroup E40874. The high prevalence of VTEC O26 and of VTEC strains harboring the eae gene in this calf cohort is notable because of the association of the O26 serogroup and the presence of the eae gene with human disease. No association between calf diarrhea and any of the VTEC serogroups was identified.  相似文献   

13.
14.
Six Cryptosporidium-free Peking ducks (Anas platyrhynchos) were each orally inoculated with 2.0 x 10(6) Cryptosporidium parvum oocysts infectious to neonatal BALB/c mice. Histological examination of the stomachs jejunums, ilea, ceca, cloacae, larynges, tracheae, and lungs of the ducks euthanized on day 7 postinoculation (p.i.) revealed no life-cycle stages of C. parvum. However, inoculum-derived oocysts extracted from duck feces established severe infection in eight neonatal BALB/c mice (inoculum dose, 2.5 x 10(5) per mouse). On the basis of acid-fast stained direct wet smears, 73% of the oocysts in duck feces were intact (27% were oocyst shells), and their morphological features conformed to those of viable and infectious oocysts of the original inoculum. The fluorescence scores of the inoculated oocysts, obtained by use of the MERIFLUOR test, were identical to those obtained for the feces-recovered oocysts (the majority were 3+ to 4+). The dynamics of oocyst shedding showed that the birds released a significantly higher number of intact oocysts than the oocyst shells (P < 0.01). The number of intact oocysts shed (87%) during the first 2 days p.i. was significantly higher than the number shed during the remaining 5 days p.i. (P < 0.01) and significantly decreased from day 1 to day 2 p.i. (P < 0.01). The number of oocyst shells shed during 7 days p.i. did not vary significantly (P > 0.05). The retention of infectivity of C. parvum oocysts after intestinal passage through an aquatic bird has serious epidemiological and epizootiological implications. Waterfowl may serve as mechanical vectors for the waterborne oocysts and may enhance contamination of surface waters with C. parvum. As the concentration of Cryptosporidium oocysts in source waters is attributable to watershed management practices, the watershed protection program should consider waterfowl as a potential factor enhancing contamination of the source water with C. parvum.  相似文献   

15.
Mortality of newborn red deer (Cervus elaphus) calves is a major concern on New Zealand farms, as perinatal losses average approximately 10% of calves born. Primiparous red deer (calving as yearlings) lose more calves than multiparous hinds (adults). We performed a study on yearling and adult red deer hinds in order to improve knowledge of their calving behaviour and determine any apparent reasons for calf mortality. Pacing along fence lines was observed frequently during the 24 h period before birth (individuals were pacing in 43% of observations during this period). Adult hinds had a significantly earlier onset and longer duration of pacing (P<0.05). Hinds were often observed isolated (>20 m) from the rest of the herd during the 2 days prior to parturition, and this behaviour was also observed earlier in the adults than in the yearlings (P<0.05). Forty-four percent of adult hinds and 60% of yearlings experienced some form of interference from other hinds during parturition. Among hinds that were interfered with, yearlings had a higher average number of interferences from other hinds during parturition than adults (P<0.05). Calves born to yearling hinds took significantly longer to suckle for the first time (mean=44 min) from their dams than calves born to adult hinds (33 min; P<0.05). We concluded that an inability of hinds to express natural isolation behaviour was likely to contribute to calf mortality due to increased anxiety (indicated by fence line pacing) and encroachment on the birth areas of others, and that calves of yearlings were at an increased risk of mortality due to the higher number of interferences taking place during parturition and the longer time interval between birth and suckling.  相似文献   

16.
Three experiments examined the impact of breed, time spent with dam (TWD), gender, and late pregnancy induction of parturition and caesarean on the behavioural and heart rate responses of dairy calves at 2 and 6 weeks of age to Open field, Novel object and Startle tests and a Learning task. In Experiment 1 with male Jersey, Friesian and Friesian × Angus calves, there were some significant breed effects on responses to the Open field and the Novel object tests; Jersey calves appeared more curious and less fearful than Friesian × Angus calves. In Experiment 2, in which male and female Friesian calves were removed from their dams either between 0 and 12 h or 12 and 24 h after birth, there were no significant effects of gender or TWD. In Experiment 3, which studied the effect of induction of parturition using a long-acting glucocorticoid combined with short-acting progesterone 10 days prior to due calving date, there were no significant effects of late pregnancy induction of parturition. Across all three experiments, age at testing was the main factor influencing the responses of the calves. However, a number of interactions suggest that gender, time spent with dam and late pregnancy induction of parturition modified some of the responses to the tests as the calves developed.  相似文献   

17.
The transfer of Cryptosporidium oocysts from the surface water to the sediment beds of streams and rivers influences their migration in surface waters. We used controlled laboratory flume experiments to investigate the deposition of suspended Cryptosporidium parvum oocysts in streambeds. The experimental results demonstrate that hydrodynamic interactions between an overlying flow and a sediment bed cause oocysts to accumulate in the sediments and reduce their concentrations in the surface water. The association of C. parvum with other suspended sediments increased both the oocysts' effective settling velocity and the rate at which oocysts were transferred to the sediment bed. A model for the stream-subsurface exchange of colloidal particles, including physical transport and physicochemical interactions with sediment grains, accurately represented the deposition of both free C. parvum oocysts and oocysts that were attached to suspended sediments. We believe that these pathogen-sediment interactions play an important role in regulating the concentrations of Cryptosporidium in streams and rivers and should be taken into consideration when predicting the fate of pathogens in the environment.  相似文献   

18.
Cryptosporidium parvum is 1 of the major causative organisms in waterborne diarrheal illness. Not only does C. parvum spread ubiquitously in our environment, it is also highly resistant to harsh environmental conditions and disinfectants. Therefore, a control measure for this protozoon is urgently required. This study investigated the effect of gamma-irradiation, in the range of 1,000-50,000 Gy, on the viability of C. parvum oocysts. Oocyst viability was determined by a combined indirect immunofluorescence and nucleic acid staining and animal infectivity study. The proportion of viable oocysts estimated by nucleic acid staining ranged from 94.2 to 89.4% in the 0- to 10,000-Gy groups, whereas it was reduced significantly to 58.6 or 45.7% in the 25,000- or 50,000-Gy group, respectively, at 24 hr postirradiation. In an animal infectivity study, oocysts irradiated with less than 10,000 Gy induced infections in mice wherein there were low numbers of oocysts per gram of feces amounting to 8-10.8% of the values in control mice, whereas with 50,000 Gy-irradiated oocysts, no oocysts were produced in the mice. This study suggests that at least 50,000 Gy of gamma-irradiation is necessary for the complete elimination of oocyst infectivity in mice.  相似文献   

19.
Cryptosporidium parvum oocysts were isolated from a child suffering from acute gastroenteritis and successfully passaged in a calf and mice (designated hereafter SNU-H1) in the Republic of Korea; its molecular genotype has been analyzed. The GAG microsatellite region was amplified by a polymerase chain reaction (PCR), with a 238 base pair product, which is commonly displayed in C. parvum. The isolate was shown to be a mixture of the genotypes 1 (anthroponotic) and 2 (zoonotic). To study its infectivity in animals, 2 calves and 3 strains of mice were infected with the SNU-H1; in these animals, the propagation of both genotypes was successful. In immunosuppressed (ImSP) BALB/c and C57BL/6 mice the number of oocysts decreased after day 10 post-infection (PI); but in ImSP ICR mice, they remained constant until day 27 PI. The results show that both the C. parvum genotypes 1 and 2 can be propagated in calves and ImSP mice.  相似文献   

20.
Faecal specimens from 287 diarrhoeic calves younger than 21 days, collected over a 2-year period (2006-2007) from 82 dairy cattle farms in 14 provinces across the north of Spain, were examined for the presence of Cryptosporidium oocysts. Overall, 63 farms (76.8%) and 166 calves (57.8%) tested positive by microscopy. In order to elucidate the genetic diversity, selected positive specimens from 149 calves originating from 61 farms in the 14 provinces were examined by genotyping and subtyping techniques. Cryptosporidium parvum was the only species identified by PCR-RFLP of SSU rDNA from all 149 isolates and sequencing of a subset of 50 isolates, except for 2 specimens that were identified as C. bovis. Sequence analyses of the glycoprotein (GP60) gene revealed that most C. parvum isolates (98%) belonged to the subtype family IIa and 2 isolates were identified as the novel subtype IIdA23G1. Subtype IIaA15G2R1 was the most common and widely distributed (80.3% of the 61 farms), followed by subtype IIaA16G3R1 (14.7%), whereas the remaining IIa subtypes (IIaA16G2R1, IIaA17G2R1, IIaA18G3R1, IIaA19G3R1) were restricted to 1-3 farms. All these C. parvum IIa subtypes have previously been described in human patients, indicating that most isolates from diarrhoeic calves in northern Spain have zoonotic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号