首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The house mouse has adapted well to the cereal crops of south-eastern Australia where populations show aperiodic outbreaks over large areas. A 20-year population study has provided a wealth of information on breeding ecology, demographic changes, spatial behaviour and epidemiology. The breeding season can be as short as 4.5 months and as long as 10 months with litter size changing seasonally from high values in spring to low values in autumn. There are marked changes in litter size between years. Rates of increase of populations also vary between years. The rate of change of populations during the breeding season is independent of density effects, but if the population density is high at the commencement of breeding then the litter size is depressed throughout that breeding season. There are density-dependent effects on survival during the non-breeding season. Rates of increase of populations over spring and summer are highly correlated with accumulated rainfall from the previous winter–spring (April–October). Studies of helminths and viruses indicate that Australian mice carry only a subset of the helminths found in Europe. There have been no published studies on murine viruses in Europe. Perhaps a reduced diversity of diseases partially accounts for the ability of mice to increase rapidly to extreme population densities in cereal-growing areas of south-eastern Australia.  © 2005 CSIRO, Biological Journal of the Linnean Society , 2005, 84 , 617–627.  相似文献   

2.
Food quantity and especially food quality are thought to be key factors driving reproductive changes in the house mouse, Mus domesticus, leading to outbreaks of house mouse populations in the Australian grain-growing region. Characteristic changes during an incipient mouse plague are an early start of breeding, a high proportion of females breeding at a young age and a prolonged breeding season. We conducted a large-scale food manipulation during an incipient mouse plague, which started with early breeding and relatively high spring numbers of mice. We measured background food availability in four farms throughout the study and conducted a food manipulation experiment from November to March in two of them. After harvest in December 100-200 kg/ha spilled grain remained in the stubble. This was depleted by March. In two treatment farms we added high-protein food pellets on a weekly basis between November and March and two farms served as controls. We measured changes in mouse numbers by capture-mark-recapture trappings and changes in reproduction by scoring embryos and recent placental scars at necropsy. Mouse numbers did not differ between treatments and controls. There were no differences in the litter size or the proportion of females breeding between treatments and controls. We observed the normal pattern of high litter size in spring and decreasing litter size towards the end of summer in treatments and controls. In all farms reproduction stopped in March. Mouse numbers were high but not at plague densities. Contrary to our prediction we did not observe food constraint affecting the reproduction of female mice. Our field experiment seems to rule out food quality as the driving factor for improved reproduction and formation of an outbreak of mice. We suggest that physiological mechanisms in mice might not enable them to take advantage of food with a high protein content in arid summers in southeastern Australian grain fields because of the lack of free-standing water.  相似文献   

3.
Abstract The regulation of reproductive performance in small mammals may be determined by extrinsic or intrinsic parameters. In a large‐scale, replicated field experiment we monitored the seasonal fluctuation in food availability and tested the effects of food addition on the reproductive performance of wild house mice (Mus domesticus) in south‐eastern Australia. Ovulation rates and litter size increased during spring and peaked in October/November. Ovulation rate was consistently higher than litter size by approximately 1.2 embryos (19%). None of the extrinsic parameters measured (food quality and quantity, mouse abundance) had an impact on reproductive performance. The addition of food did not prevent the mid summer decrease in ovulation rates nor did it alter the difference between ovulation rates and litter size. While the number of previous pregnancies did not affect reproductive performance, the age of mice did: older mice tended to have higher ovulation rates than younger mice. The effect of age‐dependent changes in ovulation rates on population growth rates of house mice seemed to be of limited importance. We conclude that the reproductive output in wild house mice is determined by ovulation rates and not by litter size. The regulation of ovulation rates through an intrinsic factor (age) seems evident but the importance of food availability and house mouse abundance for ovulation rates is low.  相似文献   

4.
Feral house mice ( Mus musculus ) living on 217 ha Mana Island, New Zealand, with no mammalian predators, were snap-trapped and autopsied. A 7-month breeding season took the population from a spring low to extremely high density in autumn. Litters were largest in the middle of the breeding season, and significantly larger on Mana than on the New Zealand mainland. Litter size in early pregnancy was similar for young and old mice but more embryos were resorbed by old females. The breeding season ended in April when adult females stopped ovulating and young failed to mature. When the population declined over winter no animals bred, they all lost weight, and even previously mature males lost their reproductive ability. Mice continue to grow throughout life and become larger than mice in most populations on the New Zealand mainland. The regular and pronounced seasonal pulse in Mana's mouse population contrasts with longer-term fluctuations generally seen in mainland populations at lower density in indigenous forest. These differences may be explained by absence of predators, habitat features or lack of any chance to disperse on the island.  相似文献   

5.
Populations of feral house mice (Mus domesticus L.) in Australia undergo multiannual fluctuations in density, and these outbreaks may be partly driven by some change in behavioural self-regulation. In other vertebrate populations with multiannual fluctuations, changes in kin structure have been proposed as a causal mechanism for changes in spacing behaviour, which consequently result in density fluctuations. We tested the predictions of two alternative conceptual models based on kin selection in a population of house mice during such an outbreak. Both published models (Charnov & Finerty 1980; Lambin & Krebs 1991) propose that the level of relatedness between interacting individuals affects their behavioural response and that this changes with population density, though the nature of this relationship differs between the two models. Neither of the models was consistent with all observed changes in relatedness between interacting female mice; however, our results suggested that changes in kin structure still have potential for explaining why mouse outbreaks begin. Therefore, we have developed a variant of one of these conceptual models suggesting that the maintenance of female kin groups through the preceding winter significantly improves recruitment during the subsequent breeding season, and is therefore necessary for mouse outbreaks. We provide six testable predictions to falsify this hypothesis.  相似文献   

6.
Changes in body condition and body size in field populations of house mice, Mus domesticus, were examined to investigate why mouse populations do not increase rapidly in some years when favourable environmental and demographic conditions indicate they might. Mice had repeated seasonal patterns each year in breeding, growth rates and body condition that reflected the seasonal availability of food, but mean levels for each parameter varied among years. In most years mice lost body condition during summer, breeding declined and population growth slowed. Rapid population growth occurred when body condition was generally high and was maintained throughout summer. Female mice with large body length were more likely to breed than smaller mice, at all times, but changes in body condition accounted for most of the variability in female breeding activity between years and between habitats, and for the seasonal changes in the importance of body length. During rapid population growth, the recruitment rate of juveniles relative to the number of breeding females was 150–300% higher than in other years but adult survival rates were not higher. The data indicate that the ability of mice to maintain body condition, particularly when subject to moisture stress in summer, affects the proportion of females breeding, the number of juveniles weaned and their body condition at weaning, and is promoted by foraging conditions that favour maintenance of juvenile body condition after weaning. These factors, in turn, greatly affect juvenile recruitment rates and eventual population density of mice. Low juvenile survival is suggested as a reason that numbers of house mice in southern Australian cereal‐growing areas do not increase rapidly in some years when other parameters are favourable. Similar processes are likely to play a role in regulating other rodent populations.  相似文献   

7.
A plague of mice ( Mus domesticus ) in the Victorian mallee wheatlands of south-eastern Australia in autumn 1984 appeared to be generated by a sequence of rainfall events: high autumn (March), mid winter and late winter rainfall in 1983, and high summer rainfall in 1983/84. The March rainfall in 1983 ended a drought; mice began to breed and bred until the end of May. Relatively high survival of mice for 12 months after March 1983, together with early onset of breeding and high reproductive performance throughout the 1983/84 breeding season, including summer, were key demographic processes during the formation of the plague. Temporal differences in mouse abundance and breeding performance between habitats highlighted the relevance of specific habitats to the dynamics of mouse populations in the wheatlands. Fencelines were the most important habitat of mice because they were foci for breeding at the start of the breeding season, good nesting sites which were rarely disturbed, and widespread and in close proximity to crops. Cereal crops were colonized in spring 1983 and in autumn 1984; they became important habitats in 1983 when mice dispersed and bred there in early spring. Redhead's (1988) model was sufficient to explain the 1984 plague, but not the magnitude of the decline of mouse numbers in 1984, nor the absence of a further outbreak in 1985. A new model is proposed based on a sequence of rainfall events beginning at least 10 months prior to a plague.  相似文献   

8.
The timing of the chick‐rearing phase is known to have a profound effect on the reproductive success of birds. However, little is known about the energetic costs faced by the parents during different periods of the breeding season. These costs may have vital consequences for both their survival and future reproduction. In most studies, daily energy expenditure (DEE) of breeding and non‐breeding birds has been compared, without controlling for the effect of season. In the present study, we examined the energy demands of breeding compared to non‐breeding Palestine sunbirds Nectarinia osea and whether there were sex‐specific differences in DEE within and between different seasons. We predicted that DEE would be elevated when birds rear chicks, especially at cooler ambient temperatures. Time‐energy budgets were constructed for pairs of sunbirds, rearing chicks, or not breeding, in spring and summer. There were significant seasonal differences in estimates of DEE in non‐breeders that were 21% higher in spring than in summer. We attributed these to increases in non‐flight metabolic rate rather than changes in time spent on different activities. Our estimates of DEE for the birds that were rearing chicks were higher than non‐breeding adults. In females the increase in DEE when breeding, compared to when not breeding, was similar in both spring and summer, while males increased their DEE much less when breeding in spring. The differences in estimated DEE, however, were not significant between male and female birds in any season. Between seasons, female breeders had 17.1% higher DEE in spring than in summer, while male breeders showed no difference in DEE when rearing chicks in different seasons. Accordingly, our initial prediction was supported, as DEE in chick‐rearing adults was higher than in non‐breeding adults. In addition, although temperatures are lower in spring, breeding in the spring is only more costly than breeding in summer for females. Apparently, males are more flexible in reallocating their time and energy spent on different activities.  相似文献   

9.
福建省莆田地区小家鼠种群繁殖的研究   总被引:2,自引:1,他引:2  
洪朝长  陈小彬 《兽类学报》1992,12(2):153-158
1987—1989年,作者在福建省蒲田地区采集小家鼠标本1616号(雌865,雄751),解剖、观察雌雄生殖器官的特征和变化,对种群中的性比、睾丸下降率、繁殖雌鼠率、怀孕率、胎仔数、繁殖指数的季节变化和年度差异作了分析。结果表明,该地区小家鼠全年均可繁殖。雄性小家鼠体重≥10克,雌性体重≥11克时,已有75%以上达性成熟,故体重可作为划分成体的标准。种群密度对种群繁殖有明显的反馈调节作用。  相似文献   

10.
Investment in reproduction is costly and frequently decreases survival or future reproductive success. However, the proximate underlying causes for this are largely unknown. Oxidative stress has been suggested as a cost of reproduction and several studies have demonstrated changes in antioxidants with reproductive investment. Here, we test whether oxidative stress is a consequence of reproduction in female house mice (Mus musculus domesticus), which have extremely high energetic demands during reproduction, particularly through lactation. Assessing oxidative damage after a long period of reproductive investment, there was no evidence of increased oxidative stress, even when females were required to defend their breeding territory. Instead, in the liver, markers of oxidative damage (malonaldehyde, protein thiols and the proportion of glutathione in the oxidized form) indicated lower oxidative stress in reproducing females when compared with non-reproductive controls. Even during peak lactation, none of the markers of oxidative damage indicated higher oxidative stress than among non-reproductive females, although a positive correlation between protein oxidation and litter mass suggested that oxidative stress may increase with fecundity. Our results indicate that changes in redox status occur during reproduction in house mice, but suggest that females use mechanisms to cope with the consequences of increased energetic demands and limit oxidative stress.  相似文献   

11.
Data on the reproductive behavior of DBA/2J Ten mice, collected from October 1970 through March 1973 and utilizing a 2-female, 1-male breeding system, with the mice remaining together throughout their reproductive life indicates: a) Litter size tends to increase through the fourth litter, the first litter being much smaller than successive litters; b) Survival rates of litters with 2--4 pups increase with successive deliveries; c) Survival rates of litters with 5--9 pups are approximately the same regardless of parity; d) There is a circannual rhythm in the number of pups available for weaning da 21, which is attributable to changes in postnatal viability. Data collected using a breeding pen system, with isolation of females pre- and post-delivery (March 1973 to March 1974) indicates: a) There is a reduction in live litter sizes in later litters with this system; b) There is a large reduction in the proportion of pups surviving to weaning with this system when compared with the other breeding system.  相似文献   

12.
Organisms that reproduce in temperate regions have limited time to produce offspring successfully, and this constraint is expected to be more pronounced in areas with short growing seasons. Information concerning how reproductive ecology of endotherms might be influenced by growing season length (GSL) is rare, and species that breed over a broad geographic range provide an opportunity to study the effects of time constraints on reproductive strategies. We analyzed data from a temperate‐breeding bird, the lesser scaup Aythya affinis; hereafter scaup, collected at eight sites across a broad gradient of GSL to evaluate three hypotheses related to reproductive compensation in response to varying time constraints. Clutch initiation date in scaup was unaffected by GSL and was unrelated to latitude; spring thaw dates had a marginal impact on timing of breeding. Clutch size declined during the nesting season, as is reported frequently in bird species, but was also unaffected by GSL. Scaup do not appear to compensate for shorter growing seasons by more rapidly reducing clutch size. This study demonstrates that this species is remarkably consistent in terms of timing of breeding and clutch size, regardless of growing season characteristics. Such inflexibility could make this species particularly sensitive to environmental changes that affect resource availabilities.  相似文献   

13.
The nocturnal Malagasy mouse lemurs are among the smallest primates worldwide. Several sibling species are known. Of these, the rufous and the gray mouse lemur differ with respect to morphology, genetics, and communication. They might also differ in seasonal reproduction and body weight changes. We investigated and compared reproductive activities and changes in monthly body weight in males and females of successfully breeding colonies of both species under the same photoperiodic conditions. Females of both species showed estrous cycles only during the long-day period. Rufous mouse lemur females seemed to have a shorter gestation than their sibling species (57 vs. 62 days). The number of estrous cycles (2.25 vs. 2.5/season) and their lengths (59 vs. 52 days) were similar. Litter size (2) seemed to be similar. Latency of estrous occurrence after photoperiodic stimulation was longer in Microcebus rufus than in its sibling species (71.6 and 42.3 days). The same was true for the onset of the growth of the testes. The rate of growth and size of the testes were similar, and precede the estrous onset in both species. The reproductive activity was shorter in both sexes of the rufous than of the gray mouse lemurs. In both species, body weight showed similar seasonal changes. Males lost more weight during the breeding season than females did. In rufous mouse lemurs, body weight was similar in both sexes during the nonbreeding season. In gray mouse lemurs, sexes differed throughout the year.  相似文献   

14.
The seasonal change, i.e. the marked differences between seasons of low and high productivity, in the abundance of ectosymbionts and the defence intensity of the host against pathogens is a well defined characteristic of temperate zone organisms. Here we investigate the seasonal variation in the uropygial gland size and the abundance of Proctophyllodes feather mites on the wing feathers of house sparrows Passer domesticus in two breeding populations. The size of the uropygial gland varied significantly in male and female house sparrows over the annual cycle. The gland was small during the non‐breeding and mating season, after that it started to grow sharply, reaching its maximum size during breeding. Females had larger gland volumes than males during breeding, and the increase in gland size during breeding was more pronounced in females than in males. The number of feather mites was the lowest during breeding, followed by an increase during moult, and reaching its maximum between the wintering and mating seasons. The absence of a significant relationship between the uropygial gland size and the abundance of feather mites, after controlling for potential confounding variables, supports the view that gland oils do not regulate the number of mites. To investigate further this hypothesis, through a full factorial experimental design we tested the effect of uropygial gland and photoperiod manipulation on the population size and population dynamics of feather mites. The manipulation of uropygial gland had no effect on mites, supporting our observational results. As a result of the experimentally increased day‐length, the abundance of feather mites on wing feathers decreased significantly and more sharply than in the control group, supporting the previous anecdotal evidence about the photosensitivity of these organisms. Using photoperiodic cues, feather mites may respond to seasonal changes that affect their life‐history and population dynamics.  相似文献   

15.
Feral house mice on sub-Antarctic Marion Island become reproductively active (males scrotal, females with perforate vaginas or pregnant) at an age >60 days and breed until death, which may occur at more than 13 months. Breeding is strongly seasonal; pregnant or lactating females were found only from October to May. A substantial proportion of mice old enough to breed in one summer overwinters to form a significant component of the breeding population the following summer but it is unlikely that any survive a second winter. The onset of breeding is closely synchronized with increasing day length but occurs about 2 months before mean temperature at the ground surface starts to increase significantly. Cessation of breeding is more closely associated with declining temperatures in late summer. For both males and females, the best correlation between reproductive activity and any of the temperature parameters measured was with average maximum temperature 1 cm above the ground. Competition for macroinvertebrate prey increases sharply in early winter due to high mouse numbers. The breeding season in 1991/1992 and 1992/1993 was at least 2 months longer than in 1979/1980, because the mice started breeding earlier, and stopped breeding later, in 1991/1993. The later cessation of breeding in 1991/1993 was despite the fact that there was a greater competition for macroinvertebrate prey, and that mean air temperatures during the early winter months were lower, than in 1979/1980.  相似文献   

16.
Abstract We tested the hypothesis that providing high‐quality food and water would increase reproduction, survival and population size in house mice living in a semi‐arid cropping environment in the mallee region of western Victoria, Australia, where outbreaks of house mice (Mus domesticus) occur irregularly. We employed a factorial design and applied treatments along internal fencelines (16 sites), adjacent to cropping areas, from November 2003 to July 2004. Population abundance was low during the experiment (0–26 mice per site), and the summer rainfall was below average. We confirmed that mice used the supplementary food and water through a reduction in weight of food containers over time and for water through the presence of Rhodamine B in blood samples and positive bands in whiskers. Abundant food was also available through grain spilt on the ground after harvest of the wheat and barley crops. There was some evidence of increased breeding on sites where water was added, but no effect of food or food and water in combination. Sites where free water was available had marginally higher populations over summer (~2 more mice on average; P = 0.07). This difference was well below any biologically meaningful effect. Mice were 0.9 g heavier on sites where water was added (P = 0.04), and were in better condition (P = 0.03). The addition of high‐quality food did not affect mouse population dynamics, and the addition of water resulted in only marginal responses for some demographic characteristics. We conclude that other factors appear to be important for limiting mouse population growth in summer and autumn.  相似文献   

17.
1. Reproductive success of individual females may be determined by density-dependent effects, especially in species where territory provides the resources for a reproducing female and territory size is inversely density-dependent.
2. We manipulated simultaneously the reproductive effort (litter size manipulation: ± 0 and + 2 pups) and breeding density (low and high) of nursing female bank voles Clethrionomys glareolus in outdoor enclosures. We studied whether the reproductive success (number and quality of offspring) of individual females is density-dependent, and whether females can compensate for increased reproductive effort when not limited by saturated breeding density.
3. The females nursing their young in the low density weaned significantly more offspring than females in the high density, independent of litter manipulation.
4. Litter enlargements did not increase the number of weanlings per female, but offspring from enlarged litters had lower weight than control litters.
5. In the reduced density females increased the size of their home range, but litter manipulation had no significant effect on spacing behaviour of females. Increased home range size did not result in heavier weanlings.
6. Mother's failure to successfully wean any offspring was more common in the high density treatment, whereas litter manipulation or mother's weight did not affect weaning success.
7. We conclude that reproductive success of bank vole females is negatively density-dependent in terms of number, but not in the quality of weanlings.
8. The nursing effort of females (i.e. the ability to provide enough food for pups) seems not to be limited by density-dependent factors.  相似文献   

18.
《新西兰生态学杂志》2011,20(2):253-269
Over five years from November 1982 to November 1987, we examined 395 mice collected from unlogged and logged native forest and from exotic forest at Pureora Forest Park, in the central North Island of New Zealand. Sex ratio, litter size, and breeding effort (pregnancy rate in females, proportion of males with visible tubules) were similar in all samples. By contrast, both density (captures per 100 trap-nights = C/ 100TN) and recruitment (proportion of young mice of age classes 1-3) were higher in densely vegetated habitats (along the road edge or in a young exotic plantation) than in the forest interior, whether logged or not. The age structures of the road edge and interior forest samples were significantly different (road edge, 33-35% young; interior, 10-11% young, means adjusted for sex, season and year by GLM). Mice of a given age caught in summer were larger, especially the females, implying that young mice grew faster in summer than at other seasons, and that older mice, especially females, also put on extra weight in summer. Most pregnant mice were found in spring and summer, but there was no winter quiescence in mature mice of either sex, and three of 29 pregnant females were collected in August. In five of 29 litters of embryos, at least one embryo was resorbing, totalling 12 of 161 embryos (7.4%). Litter size (viable embryos only) ranged from 5 to 8 (average 6) in 23 spring and summer pregnancies, but only 1-5 in four autumn and winter pregnancies. At high densities during 1984 in the young plantation (41.1 C/100TN in May) mice were significantly smaller in autumn, though somewhat larger in spring, and fewer young were recruited in 1984 and 1985. In these years we found significantly fewer males fertile, litters smaller and pregnancy rates lower, both in the plantation and in other habitats. The population Peak was much higher than most apparently similar post-seedfall Peaks in beech forest documented by the same methods, but it was different because (1) it developed very suddenly in autumn rather than building up slowly over winter and spring and Peaking in summer; (2) it was not preceded by winter breeding; and (3) it was made up mostly of mice born in the previous summer, whereas Peak populations in beech forests are usually made up of mice born during the previous winter and spring.  相似文献   

19.
In many species, females produce fewer offspring than they are capable of rearing, possibly because increases in current reproductive effort come at the expense of a female's own survival and future reproduction. To test this, we induced female house wrens (Troglodytes aedon) to lay more eggs than they normally would and assessed the potential costs of increasing cumulative investment in the three main components of the avian breeding cycle – egg laying, incubation and nestling provisioning. Females with increased clutch sizes reared more offspring in the first brood than controls, but fledged a lower proportion of nestlings. Moreover, nestlings of experimental females were lighter than those of control females as brood size and prefledging mass were negatively correlated. In second broods of the season, when females were not manipulated, experimental females laid the same number of eggs as controls, but experienced an intraseasonal cost through reduced hatchling survival and a lower number of young fledged. Offspring of control and experimental females were equally likely to recruit to the breeding population, although control females produced more recruits per egg laid. The reproductive success of recruits from broods of experimental and control females did not differ. The manipulation also induced interseasonal costs to future reproduction, as experimental females had lower fecundity than controls when breeding at least 2 years after having their reproductive effort experimentally increased. Finally, females producing the modal clutch size of seven eggs in their first broods had the highest lifetime number of fledglings.  相似文献   

20.
Specialist individuals within animal populations have shown to be more efficient foragers and/or to have higher reproductive success than generalist individuals, but interspecific reproductive consequences of the degree of diet specialisation in vertebrate predators have remained unstudied. Eurasian pygmy owls (hereafter POs) have less vole-specialised diets than Tengmalm's owls (TOs), both of which mainly subsist on temporally fluctuating food resources (voles). To test whether the specialist TO is more limited by the main prey abundance than the generalist PO, we studied breeding densities and reproductive traits of co-existing POs and TOs in central-western Finland during 2002–2019. Breeding densities of POs increased with augmenting densities of voles in the previous autumn, whereas breeding densities of TOs increased with higher vole densities in both the previous autumn and the current spring. In years of vole scarcity, PO females started egg-laying earlier than TOs, whereas in years of vole abundance TO females laid eggs substantially earlier than PO females. The yearly mean clutch size and number of fledglings produced of both POs and TOs increased with abundance of voles in the current spring. POs laid large clutches and produced large broods in years of both high and low vole abundance, whereas TOs were able to do so only in years of high vole abundance. POs were able to raise on average 73% of the eggs to fledglings whereas TOs only 44%. The generalist foraging strategy of POs including flexible switching from main prey to alternative prey (small birds) appeared to be more productive than the strictly vole-specialized foraging strategy of TOs. In contrast to earlier studies at the individual-level, specialist predators at the species level (in this case TOs) appear to be less effective than generalists (POs), but diet specialisation was particularly costly under conditions when scarcity of main foods limited offspring production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号