首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By using very low concentrations of cells to minimize alterations in substrate concentrations, we demonstrated that the lactate/pyruvate ratio of the incubation medium, which determines the cytosolic NADH/NAD+ ratio, affects gluconeogenic flux in suspensions of isolated hepatocytes from fasted rats. At a fixed extracellular pyruvate concentration of 1 mM and with the lactate/pyruvate ratio varied from 0.6 to 10 and to 50, glucose production rates increased from 2.5 to 5.5 and then decreased to 1.8 nmol/mg of cell protein/min. This finding paralleled the observation of Sugano et al. (Sugano, T., Shiota, M., Tanaka, T., Miyamae, Y., Shimada, M., and Oshino, N. (1980) J. Biochem. (Tokyo) 87, 153-166) who noted a similar biphasic response in the perfused liver system when lactate was held constant and pyruvate varied. The biphasic relationship can be explained by the influence of the NADH/NAD+ ratio on the near-equilibrium reactions catalyzed by glyceraldehyde-3-phosphate dehydrogenase and malate dehydrogenase in the hepatocyte cytosol. By shifting the equilibrium of the glyceraldehyde-3-phosphate dehydrogenase reaction, a rise in the NADH/NAD+ ratio decreases the concentration of 3-phosphoglycerate which, because of the linkage of 3-phosphoglycerate to phosphoenolpyruvate through two near-equilibrium reactions, reduces the concentration of phosphoenolpyruvate and therefore causes a decline in flux through pyruvate kinase. This decrease in pyruvate kinase flux results in an enhanced gluconeogenic flux. At higher NADH/NAD+ ratios, however, the oxalacetate concentration drops to such an extent that the consequent decreased flux through phosphoenolpyruvate carboxykinase exceeds the decline in flux through pyruvate kinase, producing a decrease in gluconeogenic flux. The lactate/pyruvate ratio was found to influence the actions of three hormones thought to stimulate gluconeogenesis by different mechanisms. Except for an inhibition by glucagon seen at the lowest lactate/pyruvate ratio tested, the stimulations by this hormone were relatively insensitive to lactate/pyruvate ratios, while angiotensin II produced greater stimulations of gluconeogenesis as the lactate/pyruvate ratio was increased. Dexamethasone, added in vitro, stimulated gluconeogenesis significantly only at very low and very high lactate/pyruvate ratios.  相似文献   

2.
1. The subcellular distribution of adenine nucleotides, acetyl-CoA, CoA, glutamate, 2-oxoglutarate, malate, oxaloacetate, pyruvate, phosphoenolpyruvate, 3-phosphoglycerate, glucose 6-phosphate, aspartate and citrate was studied in isolated hepatocytes in the absence and presence of glucagon by using a modified digitonin procedure for cell fractionation. 2. In the absence of glucagon, the cytosol contains about two-thirds of cellular ATP, some 40-50% of ADP, acetyl-CoA, citrate and phosphoenolpyruvate, more than 75% of total 2-oxoglutarate, glutamate, malate, oxaloacetate, pyruvate, 3-phosphoglycerate and aspartate, and all of glucose 6-phosphate. 3. In the presence of glucagon the cytosolic space shows an increase in the content of malate, phosphoenolpyruvate and 3-phosphoglycerate by more than 60%, and those of aspartate and glucose 6-phosphate rise by about 25%. Other metabolites remain unchanged. After glucagon treatment, cytosolic pyruvate is decreased by 37%, whereas glutamate and 2-oxoglutarate decrease by 70%. The [NAD(+)]/[NADH] ratios calculated from the cytosolic concentrations of the reactants of lactate dehydrogenase and malate dehydrogenase were the same. Glucagon shifts this ratio and also that of the [NADP(+)]/[NADPH] couple towards a more reduced state. 4. In the mitochondrial space glucagon causes an increase in the acetyl-CoA and ATP contents by 25%, and an increase in [phosphoenolpyruvate] by 50%. Other metabolites are not changed by glucagon. Oxaloacetate in the matrix is only slightly decreased after glucagon, yet glutamate and 2-oxoglutarate fall to about 25% of the respective control values. The [NAD(+)]/[NADH] ratios as calculated from the [3-hydroxybutyrate]/[acetoacetate] ratio and from the matrix [malate]/[oxaloacetate] couple are lowered by glucagon, yet in the latter case the values are about tenfold higher than in the former. 5. Glucagon and oleate stimulate gluconeogenesis from lactate to nearly the same extent. Oleate, however, does not produce the changes in cellular 2-oxoglutarate and glutamate as observed with glucagon. 6. The changes of the subcellular metabolite distribution after glucagon are compatible with the proposal that the stimulation of gluconeogenesis results from as yet unknown action(s) of the hormone at the mitochondrial level in concert with its established effects on proteolysis and lipolysis.  相似文献   

3.
Hepatocytes prepared from rats treated with dexamethasone for 2 or 3h and maintained in the presence of 10 microM-dexamethasone in the preparation and incubation buffers showed significantly elevated rates of gluconeogenesis compared with those prepared from control animals. Dexamethasone treatment also increased the sensitivity of the cells to glucagon and the catecholamines. Analysis of the concentrations of metabolites in the gluconeogenic pathway indicated that dexamethasone decreased the intracellular concentration of pyruvate and increased those of phosphoenolpyruvate, acetyl-CoA and citrate, suggesting a stimulation of the reaction(s) converting pyruvate into phosphoenolpyruvate. This was substantiated by analysis of the pattern of metabolites found in the mitochondrial compartment after digitonin fractionation of the cells. Inclusion of 3-mercaptopicolinate in the incubation enhanced the effect of the hormone on the distribution of metabolites. Thus, in the absence of an effect of the steroid at the level of phosphoenolpyruvate carboxykinase or pyruvate kinase, dexamethasone treatment still increased the formation of malate, aspartate and citrate from pyruvate, indicating a stimulation in the intact cell of pyruvate carboxylase. It is suggested that the stimulation of pyruvate carboxylase is a result of a general activation of mitochondrial function, with an increase in the intramitochondrial concentrations of acetyl-CoA and ATP, a decrease in glutamate and an enhanced intramitochondrial [ATP]/[ADP] ratio.  相似文献   

4.
1. To examine the role of the hepatic redox state on the rate of gluconeogenesis the effects of sodium crotonate injection (6mmol/kg body wt.) on rat liver metabolite concentrations and gluconeogenesis from lactate were studied in vivo. 2. Crotonate caused a marked oxidation of cytoplasmic and mitochondrial redox couples; decreases were observed in the ratios of [lactate]/[pyruvate], [glycerol 3-phosphate]/[dihydroxyacetone phosphate], [hydroxybutyrate]/[acetoacetate] and measured [NAD(+)]/[NADH]. 3. Increases occurred in the liver concentrations of all gluconeogenic intermediates from pyruvate through to glucose 6-phosphate, but there was no change in lactate concentration. 4. To determine whether gluconeogenesis from lactate was altered by the more-oxidized hepatic redox state l-[2-(14)C]lactic acid was infused into the inferior vena cava (50mumol/min per kg body wt.) and the incorporation of radioactivity into blood glucose was measured. 5. Administration of crotonate transiently decreased the rate of lactate incorporation into glucose but within a few minutes the rate of incorporation returned to that of the controls. 6. The results indicate that in these experiments alteration of the NAD(+)-NADH systems of cytoplasm and mitochondria to a more-oxidized state did not change the rate of gluconeogenesis.  相似文献   

5.
3-Mercaptopicolinic acid (3-MPA) is reportedly a specific inhibitor of phosphoenolpyruvate (PEP) carboxykinase and has hitherto been used accordingly to elucidate the metabolic role of PEP carboxykinase in vitro and in vivo. We show that 3-MPA has multiple effects on intermediary metabolism in hemidiaphragms from 40 h-starved rats. It decreases the release of lactate + pyruvate and alanine in hemidiaphragms provided with no added substrate or with valine, leucine or isoleucine. Moreover, irrespective of the substrate provided (none, valine, leucine, isoleucine, glucose, acetate, oleate), 3-MPA decreases the [lactate]/[pyruvate] ratio. 3-MPA is without effect on 14CO2 production from [U-14C]valine, [1-14C]valine, [1-14C]leucine, [U-14C]isoleucine or [1-14C]oleate, but stimulates 14CO2 production from [U-14C]glucose and [1-14C]pyruvate and inhibits 14CO2 production from [1-14C]acetate. Glycolytic flux (measured as 3H2O formation from [5-3H]glucose) is stimulated by 3-MPA. It is concluded that 3-MPA has site(s) of actions other than PEP carboxykinase and that the putative role of PEP carboxykinase in alanine synthesis de novo in skeletal muscle from tricarboxylic acid-cycle intermediates and related amino acids requires reappraisal.  相似文献   

6.
1. Adipose tissues from rats fed a balanced diet were incubated in the presence of glucose (20mm) with the following additions: insulin, anti-insulin serum, insulin+acetate, insulin+pyruvate, insulin+lactate, insulin+phenazine methosulphate, insulin+oleate+albumin, insulin+adrenaline+albumin, insulin+6-N-2'-O-dibutyryl 3':5'-cyclic AMP+albumin. 2. Measurements were made of the whole tissue concentrations of adenine nucleotides, hexose phosphates, triose phosphates, glycerol 1-phosphate, 3 phosphoglycerate, 6-phosphogluconate, long-chain fatty acyl-CoA, acid-soluble CoA, citrate, isocitrate, malate and 2-oxoglutarate, and of the release into the incubation medium of lactate, pyruvate and glycerol after 1h of incubation. 3. Fluxes of [(14)C]glucose carbon through the major pathways of glucose metabolism were calculated from the yields of (14)C in various products after 2h of incubation. Fluxes of [(14)C]acetate, [(14)C]pyruvate or [(14)C]lactate carbon in the presence of glucose were also determined. 4. Measurements were also made of the whole-tissue concentrations of metabolites in tissues taken directly from Nembutal-anaesthetized rats. 5. Whole tissue mass-action ratios for phosphofructokinase, phosphoglucose isomerase and the combined (aldolasextriose phosphate isomerase) reaction were similar in vivo and in vitro. The reactants of phosphofructokinase appeared to be far from mass-action equilibrium. In vitro, the reactants of hexokinase also appeared to be far from mass-action equilibrium. 6. Correlation of observed changes in glycolytic flux with changes in fructose 6-phosphate concentration suggested that phosphofructokinase may show regulatory behaviour. The enzyme appeared to be activated in the presence of oleate or adrenaline and to be inhibited in the presence of lactate or pyruvate. 7. Evidence is presented that the reactants of lactate dehydrogenase and glycerol 1-phosphate dehydrogenase may be near to mass-action equilibrium in the cytoplasm. 8. No satisfactory correlations could be drawn between the whole-tissue concentrations of long-chain fatty acyl-CoA, citrate and glycerol 1-phosphate and the observed rates of triglyceride and fatty acid synthesis. Under the conditions employed, the concentration of glycerol 1-phosphate appeared to depend mainly on the cytoplasmic [NAD(+)]/[NADH] ratios. 9. Calculated hexose monophosphate pathway flux rates roughly correlated with fatty acid synthesis rates and with whole tissue [6-phosphogluconate]/[glucose 6-phosphate] ratios. The relative rates of production of NADPH for fatty acid synthesis by the hexose monophosphate pathway and by the ;malic enzyme' are discussed. It is suggested that all NADH produced in the cytoplasm may be used in that compartment for reductive synthesis of fatty acids, lactate or glycerol 1-phosphate.  相似文献   

7.
1. Gluconeogenesis from lactate or pyruvate was studied in perfused livers from starved rats at perfusate pH7.4 or under conditions simulating uncompensated metabolic acidosis (perfusate pH6.7-6.8). 2. In 'acidotic' perfusions gluconeogenesis and uptake of lactate or pyruvate were decreased. 3. Measurement of hepatic intermediate metabolites suggested that the effect of acidosis was exerted at a stage preceding phosphoenolpyruvate. 4. Total intracellular oxaloacetate concentration was significantly decreased in the acidotic livers perfused with lactate. 5. It is suggested that decreased gluconeogenesis in acidosis is due to substrate limitation of phosphoenolypyruvate carboxykinase. 6. The possible reasons for the fall in oxaloacetate concentration in acidotic livers are discussed; two of the more likely mechanisms are inhibition of the pyruvate carboxylase system and a change in the [malate]/[oxaloacetate] ratio due to the fall in intracellular pH.  相似文献   

8.
Lipogenesis in rat and guinea-pig isolated epididymal fat-cells   总被引:14,自引:13,他引:1       下载免费PDF全文
Fat-cells were prepared from rat and guinea-pig epididymal adipose tissue and compared on the basis of the intracellular distributions and activities of enzymes and with respect to their utilization of various U-(14)C-labelled substrates for lipogenesis. 1. Compared with the rat, guinea-pig extramitochondrial enzyme activities differed in that aconitate hydratase, alanine aminotransferase, ATP-citrate lyase, lactate dehydrogenase, NAD-malate dehydrogenase, NADP-malate dehydrogenase and phosphoenolpyruvate carboxykinase activities were appreciably lower, whereas aspartate aminotransferase, glucose 6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase and 6-phosphogluconate dehydrogenase activities were appreciably higher. Mitochondrial activities of citrate synthase, NADP-isocitrate dehydrogenase and pyruvate carboxylase were appreciably lower, whereas mitochondrial activities of aspartate aminotransferase, glutamate dehydrogenase, NAD-malate dehydrogenase and phosphoenolpyruvate carboxykinase were higher in the guinea pig compared with the rat. 2. In general guinea-pig fat-cells incorporated acetate and lactate into fatty acids more readily than rat fat-cells, whereas rat fat-cells incorporated glucose and pyruvate more readily than guinea-pig fat-cells. 3. Acetate stimulated the incorporation of glucose into fatty acids in rat fat-cells, but had no appreciable effect upon this process in guinea-pig fat-cells. Acetate greatly decreased the incorporation of lactate into fatty acids in cells from both species. 4. Lactate/pyruvate ratios produced by incubation of guinea-pig cells with glucose+insulin were very low compared with those found with rat cells under the same conditions. 5. With glucose (+insulin) or with glucose+acetate (+insulin) as substrates guinea-pig cells produced enough NADPH by the hexose monophosphate pathway to satisfy the NADPH requirements of lipogenesis. In rat fat-cells under the same conditions, hexose monophosphate-pathway NADPH provision was not sufficient to meet the requirements of lipogenesis. 6. These results are discussed, particularly in relationship to the disposition of cytosolic reducing equivalents in the cells.  相似文献   

9.
The metabolic effects of sodium dichloroacetate in the starved rat   总被引:11,自引:10,他引:1       下载免费PDF全文
1. Sodium dichloroacetate (300mg/kg body wt. per h) was infused in 24h-starved rats for 4h. 2. Blood glucose decreased significantly, an effect that had previously only been noted in diabetic animals 3. Plasma insulin concentration decreased by 63%; blood lactate and pyruvate concentrations decreased by 50 and 33%, whereas concentrations of 3-hydroxybutyrate and acetoacetate increased by 81 and 73% respectively. 4. Livers were freeze-clamped at the end of the 4h infusion. There were significant decreases in hepatic [glucose], [glucose 6-phosphate], [2-phosphoglycerate], the [lactate]/[pyruvate] ratio, [citrate] and [malate], and also [alanine], [glutamate] and [glutamine], suggesting a diminished supply of gluconeogenic substrates. 5. Animals subjected to a functional hepatectomy at the end of 2h infusions showed no difference in blood-glucose disappearance but a highly significant decrease in the rate of accumulation of lactate, pyruvate, glycerol and alanine, compared with control animals. Dichloroacetate decreased ketone-body clearance. 6. After functional hepatectomy an increase in glutamine accumulation appeared to compensate for the decrease in alanine accumulation. 7. It is concluded that dichloroacetate causes hypoglycaemia by decreasing the net release of gluconeogenic precursors from extrahepatic tissues while inhibiting peripheral ketone-body uptake. 8. These findings are consistent with the activation of pyruvate dehydrogenase (EC 1.2.4.1) in rat muscle by dichloroacetate previously described by Whitehouse & Randle (1973).  相似文献   

10.
1. Incubation of hepatocytes from fed or starved rats with increasing glucose concentrations caused a stimulation of lactate production, which was further increased under anaerobic conditions. 2. When glycolysis was stimulated by anoxia, [fructose 2,6-bis-phosphate] was decreased, indicating that this ester could not be responsible for the onset of anaerobic glycolysis. In addition, the effect of glucose in increasing [fructose 2,6-bisphosphate] under aerobic conditions was greatly impaired in anoxic hepatocytes. [Fructose 2,6-bisphosphate] was also diminished in ischaemic liver, skeletal muscle and heart. 3. The following changes in metabolite concentration were observed in anaerobic hepatocytes: AMP, ADP, lactate and L-glycerol 3-phosphate were increased; ATP, citrate and pyruvate were decreased: phosphoenolpyruvate and hexose 6-phosphates were little affected. Concentrations of adenine nucleotides were, however, little changed by anoxia when hepatocytes from fed rats were incubated with 50 mM-glucose. 4. The activity of ATP:fructose 6-phosphate 2-phosphotransferase was not affected by anoxia but decreased by cyclic AMP. 5. The role of fructose 2,6-bisphosphate in the regulation of glycolysis is discussed.  相似文献   

11.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1-34 human parathyroid hormone fragment (0.5 micrograms/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the 'crossover' plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

12.
1. Measurements in livers of rats delivered by Caesarian section show a rapid change in the relative proportion of adenine nucleotides. By 20min the ATP/ADP ratio had increased from 1.76 to 8.7 and the value of the relationship [ATP][AMP]/[ADP](2) increased from 1.0 to 4.4. These changes are dependent on the availability of oxygen to the animal. 2. The free [NAD(+)]/[NADH] ratio in the liver cytosol increases from 180 after delivery to reach a maximum of 1010 at 2h, before falling to 540 in the 24h-old animal. 3. The mitochondrial NAD redox potential also shows a sharp increase towards a more oxidized state in livers of delivered rats. 4. These results probably indicate that the foetal liver is hypoxic, with oxygenation occurring in the first hour after delivery. 5. Measurements in livers of naturally born rats 2min after birth also suggest that this tissue is hypoxic with an ATP/ADP ratio of 1.83 and a free [NAD(+)]/[NADH] ratio of 117. 6. Concentrations of intermediates in the gluconeogenic pathway have been determined in livers of foetal, 1h-old and 1-day-old rats. These experiments imply a facilitation of lactate dehydrogenase and glucose 6-phosphatase activities by 1h after birth, and a stimulation of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase steps by 1 day after birth. 7. The appearance of gluconeogenesis in livers of newborn rats seems therefore to involve an oxygenation stage followed by an increase in phosphoenolpyruvate carboxykinase activity.  相似文献   

13.
1. Increasing concentrations of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a mild respiratory-chain inhibitor [Halestrap (1987) Biochim. Biophys. Acta 927, 280-290], caused progressive inhibition of glucose production from lactate + pyruvate by hepatocytes from starved rats incubated in the presence or absence of oleate and gluconeogenic hormones. 2. No significant changes in tissue ATP content were observed, but there were concomitant decreases in ketone-body output and cytochrome c reduction and increases in NADH fluorescence and the ratios of [lactate]/[pyruvate] and [beta-hydroxybutyrate]/[acetoacetate]. 3. The inhibition by DCMU of palmitoylcarnitine oxidation by isolated liver mitochondria was used to calculate a flux control coefficient of the respiratory chain towards gluconeogenesis. In the presence of 1 mM-oleate, the calculated values were 0.61, 0.39 and 0.25 in the absence of hormone and in the presence of glucagon or phenylephrine respectively, consistent with activation of the respiratory chain in situ as previously suggested [Quinlan & Halestrap (1986) Biochem. J. 236, 789-800]. 4. Cytoplasmic oxaloacetate concentrations were shown to decrease under these conditions, implying inhibition of pyruvate carboxylase. 5. Inhibition of gluconeogenesis from fructose and dihydroxyacetone was also observed with DCMU and was accompanied by an increased output of lactate + pyruvate, suggesting that activation of pyruvate kinase was occurring. With the latter substrate, measurements of tissue ADP and ATP contents showed that DCMU caused a small fall in [ATP]/[ADP] ratio. 6. Two inhibitors of fatty acid oxidation, pent-4-enoate and 2-tetradecylglycidate, were shown to abolish and to decrease respectively the effects of hormones, but not valinomycin, on gluconeogenesis from lactate + pyruvate, without changing tissue ATP content. 7. It is concluded that the hormonal increase in mitochondrial matrix volume stimulates fatty acid oxidation and respiratory-chain activity, allowing stimulation of pyruvate carboxylation and thus gluconeogenesis to occur without major changes in [ATP]/[ADP] or [NADH]/[NAD+] ratios. 8. The high flux control coefficient of the respiratory chain towards gluconeogenesis may account for the hypoglycaemic effect of mild respiratory-chain inhibitors.  相似文献   

14.
The presence of high phosphoenolpyruvate carboxykinase (EC 4.1.1.32) activity in mouse islet cytosol has been demonstrated. The enzyme was activated by Mn2+ with a Ka of 100 X 10(-6) mol/l. The mean total activity of the Mn2+-stimulated phosphoenolpyruvate carboxykinase in islet cytosol estimated at 22 degrees C with saturating concentrations of the substrates oxaloacetate and ITP was 146 pmol/min per micrograms DNA. Km was calculated to be 6 X 10(-6) mol/l for oxaloacetate and 140 X 10(-6) mol/l for ITP. The islet phosphoenolpyruvate carboxykinase activity was not increased after starvation of the animals for 48 h. Preincubation of the cytosol at 4 degrees C with Fe2+, quinolinate, ATP, Pi, glucose 6-phosphate, fructose 1,6-bisphosphate, NAD+, NADH, oxaloacetate, ITP, cyclic AMP and Ca2+ had no effect on the enzyme activity. However, preincubation of the cytosol at 37 degrees C with ATP-Mg inhibited the Mn2+-stimulated phosphoenolpyruvate carboxykinase activity progressively with time and in a concentration-dependent manner. A similar but weaker inhibitory effect was observed with p[NH]ppA, whereas p[CH2]ppA, ADP, AMP, adenosine and Pi had no effect. It is tentatively suggested that ATP and p[NH]ppA either by adenylation or otherwise affect the interaction between islet phosphoenolpyruvate carboxykinase and the recently discovered Mr = 29000 protein modulator of the enzyme in such a way - perhaps by causing a dissociation between them - that phosphoenolpyruvate carboxykinase loses its sensitivity to Mn2+ activation.  相似文献   

15.
Control properties of the gluconeogenic pathway in hepatocytes isolated from starved rats were studied in the presence of glucose. The following observations were made. (1) Glucose stimulated the rate of glucose production from 20 mM-glycerol, from a mixture of 20 mM-lactate and 2 mM-pyruvate, or from pyruvate alone; no stimulation was observed with 20 mM-alanine or 20 mM-dihydroxyacetone. Maximal stimulation was obtained between 2 and 5 mM-glucose, depending on the conditions. At concentrations above 6 mM, gluconeogenesis declined again, so that at 10 mM-glucose the glucose production rate became equal to that in its absence. (2) With glycerol, stimulation of gluconeogenesis by glucose was accompanied by oxidation of cytosolic NADH and reduction of mitochondrial NAD+ and was insensitive to the transaminase inhibitor amino-oxyacetate; this indicated that glucose accelerated the rate of transport of cytosolic reducing equivalents to the mitochondria via the glycerol 1-phosphate shuttle. (3) With lactate plus pyruvate (10:1) as substrates, stimulation of gluconeogenesis by glucose was almost additive to that obtained with glucagon. From an analysis of the effect of glucose on the curves relating gluconeogenic flux and the steady-state intracellular concentrations of gluconeogenic intermediates under various conditions, in the absence and presence of glucagon, it was concluded that addition of glucose stimulated both phosphoenolpyruvate carboxykinase and pyruvate carboxylase activity.  相似文献   

16.
Metabolic control of hepatic gluconeogenesis during exercise.   总被引:2,自引:0,他引:2       下载免费PDF全文
Prolonged exercise increased the concentrations of the hexose phosphates and phosphoenolpyruvate and depressed those of fructose 1,6-bisphosphate, triose phosphates and pyruvate in the liver of the rat. Since exercise increases gluconeogenic flux, these changes in metabolite concentrations suggest that metabolic control is exerted, at least, at the fructose 6-phosphate/fructose 1,6-bisphosphate and phosphoenolpyruvate/pyruvate substrate cycles. Exercise increased the maximal activities of glucose 6-phosphatase, fructose 1,6-bisphosphatase, pyruvate kinase and pyruvate carboxylase in the liver, but there were no changes in those of glucokinase, 6-phosphofructokinase and phosphoenolpyruvate carboxykinase. Exercise changed the concentrations of several allosteric effectors of the glycolytic or gluconeogenic enzymes in liver; the concentrations of acetyl-CoA, ADP and AMP were increased, whereas those of ATP, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate were decreased. The effect of exercise on the phosphorylation-dephosphorylation state of pyruvate kinase was investigated by measuring the activities under conditions of saturating and subsaturating concentrations of substrate. The submaximal activity of pyruvate kinase (0.5 mM-phosphoenolpyruvate), expressed as percentage of Vmax., decreased in the exercised animals to less than half that found in the controls. These changes suggest that hepatic pyruvate kinase is less active during exercise, possibly owing to phosphorylation of the enzyme, and this may play a role in increasing the rate of gluconeogenesis.  相似文献   

17.
In renal tubules isolated from fed rabbits glycerol is not utilized as a glucose precursor, probably due to the rate-limiting transfer of reducing equivalents from cytosol to mitochondria. Pyruvate and glutamate stimulated an incorporation of [14C]glycerol to glucose by 50- and 10-fold, respectively, indicating that glycerol is utilized as a gluconeogenic substrate under these conditions. Glycerol at concentration of 1.5 mM resulted in an acceleration of both glucose formation and incorporation of [14C]pyruvate and [14C]glutamate into glucose by 2- and 9-fold, respectively, while it decreased the rates of these processes from lactate as a substrate. In the presence of fructose, glycerol decreased the ATP level, limiting the rate of fructose phosphorylation and glucose synthesis. As concluded from the 'cross-over' plots, the ratios of both 3-hydroxybutyrate/acetoacetate and glycerol 3-phosphate/dihydroxyacetone phosphate, as well as from experiments performed with methylene blue and acetoacetate, the stimulatory effect of glycerol on glucose formation from pyruvate and glutamate may result from an acceleration of fluxes through the first steps of gluconeogenesis as well as glyceraldehyde-3-phosphate dehydrogenase. As inhibition by glycerol of gluconeogenesis from lactate is probably due to a marked elevation of the cytosolic NADH/NAD+ ratio resulting in a decline of flux through lactate dehydrogenase.  相似文献   

18.
Experiments were performed in which the effects of inhibiting gluconeogenesis on ketone-body formation were examined in vivo in starved and severely streptozotocin-diabetic rats. The infusion of 3-mercaptopicolinate, an inhibitor of gluconeogenesis (DiTullio et al., 1974), caused decreases in blood [glucose] and increases in blood [lactate] and [pyruvate] in both normal and ketoacidotic rats. Patterns of liver gluconeogenic intermediates after 3-mercaptopicolinate infusion suggested inhibition at the level of phosphoenolpyruvate carboxykinase. This was confirmed by measurement of hepatic oxaloacetate concentrations which were increased 5-fold after 3-mercaptopicolinate administration. The infusion of 3-mercaptopicolinate caused a decrease in total ketone-body concentrations of 30% in starved rats and 73% in the diabetic animals. Blood glycerol and hepatic triglyceride concentrations remained unchanged. The decreases in ketone-body concentrations were associated with increases in the calculated hepatic cytosolic and mitochondrial [NADH]/[NAD+] ratios. The decrease in ketogenesis seen after inhibition of gluconeogenesis may have resulted from an inhibition of hepatic fatty acid oxidation by the more reduced mitochondrial redox state. It was concluded that gluconeogenesis may stimulate ketogenesis by as much as 30% in severe diabetic ketoacidosis.  相似文献   

19.
The capacity for gluconeogenesis in the isolated amphibian retina was found to be approx. 70-fold greater with lactate than with glutamate as the gluconeogenic precursor, 1426 versus 21 pmol of glucose incorporated into glycogen/h per mg of protein. It was also found that 11-15% of the glucosyl units in glycogen are derived from C3 metabolites of the glycolytic pathway, suggesting that lactate is recycled within the retina. In concert with these metabolic observations, a full complement of the gluconeogenic enzymes was detected in retinal homogenates. These included: glucose-6-phosphatase, fructose-1,6-bisphosphatase, acetyl-CoA-dependent pyruvate carboxylase and phosphoenolpyruvate carboxykinase. Agents that regulate the rate of gluconeogenesis in hepatic tissue were tested on the retina. At concentrations of glutamate and lactate that are presumed to be relevant physiologically, it was found that vasoactive intestinal peptide, ionophore A23187 and elevated [K+] each enhanced the rate of gluconeogenesis in Ringer containing 50 microM-glutamate, whereas in Ringer containing 8.5 mM-lactate these agents inhibited the rate of gluconeogenesis. Further, it was found that the classic gluconeogenic hormone glucagon inhibited gluconeogenesis in both glutamate- and lactate-containing Ringer. Retinal energy metabolism was found to be altered in lactate-containing Ringer, in that lactate production was suppressed completely. In addition, glycogen metabolism appeared to be dependent on increased cytosolic Ca2+ and was insensitive to increased retinal cyclic AMP.  相似文献   

20.
The effects of glucagon and the alpha-adrenergic agonist, phenylephrine, on the rate of 14CO2 production and gluconeogenesis from [1-14C]lactate and [1-14C]pyruvate were investigated in isolated perfused livers of 24-h-fasted rats. Both glucagon and phenylephrine stimulated the rate of 14CO2 production from [1-14C]lactate but not from [1-14C]pyruvate. Neither glucagon nor phenylephrine affected the activation state of the pyruvate dehydrogenase complex in perfused livers derived from 24-h-fasted rats. 3-Mercaptopicolinate, an inhibitor of the phosphoenolpyruvate carboxykinase reaction, inhibited the rates of 14CO2 production and glucose production from [1-14C]lactate by 50% and 100%, respectively. Furthermore, 3-mercaptopicolinate blocked the glucagon- and phenylephrine-stimulated 14CO2 production from [1-14C]lactate. Additionally, measurements of the specific radioactivity of glucose synthesized from [1-14C]lactate, [1-14C]pyruvate and [2-14C]pyruvate indicated that the 14C-labeled carboxyl groups of oxaloacetate synthesized from 1-14C-labeled precursors were completely randomized and pyruvate----oxaloacetate----pyruvate substrate cycle activity was minimal. The present study also demonstrates that glucagon and phenylephrine stimulation of the rate of 14CO2 production from [1-14C]lactate is a result of increased metabolic flux through the phosphoenolpyruvate carboxykinase reaction, and phenylephrine-stimulated gluconeogenesis from pyruvate is regulated at step(s) between phosphoenolpyruvate and glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号