首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doublecortin is expressed in articular chondrocytes   总被引:1,自引:0,他引:1  
Articular cartilage and cartilage in the embryonic cartilaginous anlagen and growth plates are both hyaline cartilages. In this study, we found that doublecortin (DCX) was expressed in articular chondrocytes but not in chondrocytes from the cartilaginous anlagen or growth plates. DCX was expressed by the cells in the chondrogenous layers but not intermediate layer of joint interzone. Furthermore, the synovium and cruciate ligaments were DCX-negative. DCX-positive chondrocytes were very rare in tissue engineered cartilage derived from in vitro pellet culture of rat chondrosarcoma, ATDC5, and C3H10T1/2 cells. However, the new hyaline cartilage formed in rabbit knee defect contained mostly DCX-positive chondrocytes. Our results demonstrate that DCX can be used as a marker to distinguish articular chondrocytes from other chondrocytes and to evaluate the quality of tissue engineered or regenerated cartilage in terms of their "articular" or "non-articular" nature.  相似文献   

2.
Summary The calcified cartilage of the dogfish vertebra has been studied by means of an undecalcified hard tissue method, including microradiography and tetracycline labelling, and electron microscopy. The transversely sectioned vertebra shows a centrum and neural and hemal arches. The mineralized area consists of a narrow but continuous band, which touches the perichondrium, and is formed by chondrocytes that participate in the mineralization of the surrounding matrix. The neural arches appear quite different; the upper parts contain an hypertrophied cartilage and, close to it, an inner zone formed by crescent shaped lamellar bone tissue containing osteoblasts and osteocytes. Tetracycline labelling of these two types of hard tissue reveals a globular calcification with calcospherites and Liesegang rings, at the level of the calcified cartilage, and a strong and linear label of the inner border of the osseous tissue. Transmission electron microscopy shows Type I collagen in the crescent shape area and Type II collagen in calcified cartilage area. The presence of osseous tissue in elasmobranch endoskeleton is discussed in relation to the evolution of the gnathostomes skeleton and the endocrinological control of calcium metabolism.  相似文献   

3.
Gratz KR  Wong BL  Bae WC  Sah RL 《Biorheology》2008,45(3-4):193-207
Focal damage to articular cartilage is commonly found in symptomatic knees and may contribute to patient discomfort and progressive cartilage degeneration. The objective of this study was to quantify changes in cartilage intra-tissue strain and sliding occurring near a focal defect. Pairs of human osteochondral blocks were compressed by 20% of the total cartilage thicknesses, and tissue deformation was recorded by video microscopy. Then, a single, full-thickness defect was created in one block from each pair, blocks were allowed to re-swell, and the pairs were retested. Stained nuclei, acting as fiducial markers, were tracked by digital image correlation and used to calculate cartilage strains and surface displacement. With intact samples, axial strain decreased with depth, as is typical of cartilage, and relatively little sliding occurred between surfaces. With defect samples, axial compression of cartilage at the defect rim rose by approximately 30%, shear in the opposing tissue increased 10-fold to approximately 0.15, and local sliding was elevated to > 50 microm. In vivo, tissue near a defect likely experiences increased overall compression, magnifying these observed in vitro effects. Excessive strains may contribute to cell death, matrix damage, or accelerated wear, and repair efficacy may depend on the ability to alleviate adverse mechanical conditions.  相似文献   

4.
In the present study, we investigate the capability of low concentrations of Papain to stimulate cartilage mesenchymal cells proliferation and transformation to chondrocytes and evaluate the healing capability of partial thickness defects in medial condyle cartilage of 30 rabbits’ knee joints. Papain 0.1 mg/ml and Ringer saline l ml each were injected intra-articularly to rabbits of experimental and control groups (15 animals each). Healthy cartilage from lateral condyle and cartilage from medial condyle where the surgical defect was created were studied histologically and by TEM. The study revealed that 0.1 mg/ml Papain activates proliferation and spreading of mesenchymal stem cells to young forms of chondrocyte from perichondrium to the upper layers of healthy cartilage. In only 22.27% cases of the experimental group, surgical defects filled with cartilaginous tissue on the background of distinct destruction of collagenous matrix in the native cartilage. However, in 55.5% of the control group the defect was spontaneously healed by hyaline cartilaginous tissue completely or partially on the basis of slight destruction of collagenous matrix. The defect site was filled with activated chondrocyte-like cells from the subchondral plate (not perichondrium) in both groups, which acquired some cisterns of rough endoplasmic reticulum (RER) and produced matrix proteins. The results suggest that Papain did not ameliorate the recovery of cartilage defects acquired through surgically-induced injury of collagenous matrix in native cartilage. We observed that articular cartilage is the source of mesenchymal stem cells which have the ability to transform into young forms of chondrocytes. This transformation process depends on the level of destruction of native cartilage collagen matrix induced by the defect or by Papain.  相似文献   

5.
Indentation tests are commonly used to determine the mechanical behaviour of articular cartilage with varying properties, thickness, and geometry. This investigation evaluated the effect of changing geometric parameters on the properties determined from creep indentation tests. Finite element analyses simulated the indentation behaviour of two models, an excised cylindrical specimen of cartilage with either normal and repair qualities and an osteochondral defect represented as a cylindrical region of repair cartilage integrated with a surrounding layer of normal tissue. For each model, the ratios of indenter radius to cartilage height (a/h=0.5,1.5) and cartilage radius to indenter radius (r/a=2,5) were varied. The vertical displacement of the cartilage under the indenter obtained through finite element analysis was fitted to a numerical algorithm to determine the aggregate modulus, permeability, and Poisson's ratio. Indentation behaviours of cartilage specimens for either model with a/h=1.5 were not affected by r/a for values of 2 and 5. Aggregate modulus was not greatly affected by the geometric changes studied. Permeability was affected by changes in the ratio of specimen to indenter radii for a/h=0.5. These findings suggest that experimental configurations of excised cylindrical specimens, also representing osteochondral defects with no or unknown degree of integration, where the cartilage layer has a/h=0.5 should not have r/a values on the order of 2 for confidence in the mechanical properties determined. Indentation of osteochondral defects where the repair cartilage is fully integrated to the surrounding cartilage can be performed with confidence for all cases tested.  相似文献   

6.
Chondroadherin is a cell binding, leucine-rich repeat protein found in the territorial matrix of articular cartilage. Several members of the leucine-rich repeat protein family present in the extracellular matrix of e.g. cartilage have been shown to interact with collagen and influence collagen fibrillogenesis. We show that complexes of monomeric collagen type II and chondroadherin can be released under non-denaturing conditions from articular cartilage treated with p-aminophenylmercuric acetate to activate resident matrix metalloproteinases. Purified complexes as well as complexes formed in vitro between recombinant chondroadherin and collagen type II were studied by electron microscopy. Chondroadherin was shown to bind to two sites on collagen type II. The interaction was characterized by surface plasmon resonance analysis showing K(D) values in the nanomolar range. Both chondroadherin and collagen interact with chondrocytes, partly via the same receptor, but give rise to different cellular responses. By also interacting with each other, a complex system is created which may be of functional importance for the communication between the cells and its surrounding matrix and/or in the regulation of collagen fibril assembly.  相似文献   

7.
目的:探索非诱导ADSCs膜片/PRF复合植入物修复兔子下颌骨髁状突软骨缺损的可行性及效果。方法:选取36只3月龄新西兰雄性大白兔,随机分为3个组即ADSCs膜片/PRF组、PRF组、空白对照组,在3%戊巴比妥钠麻醉下解剖暴露出髁状突关节面并用裂钻分别在双侧髁状突软骨面上制备一3 mm直径、3 mm深的髁突表面软骨缺损区,按实验设计每个分组分别填入相应的植入物。分别在术后4周、8周、12周处死相应时间点的动物采集髁突标本,标本进行大体及组织学检查比较。结果:术后12周时空白对照组的下颌髁状突软骨缺损未能修复,PRF组有少量不规则、不连续的软骨形成,ADSCs膜片/PRF组的修复效果较好,表面软骨接近正常纤维软骨,与周围软骨连续性较好。组织学染色也显示ADSCs膜片/PRF组优于PRF组和空白对照组。结论:证明了ADSCs膜片/PRF复合物修复髁状突软骨缺损的可行性。  相似文献   

8.
The involvement of fibroblast growth factor-2 (FGF-2) during the repair process in rabbit full-thickness defects of articular cartilage was studied. Fibroblast growth factor-2 (50 pg/h) was administered for 2 weeks in a 5mm defect of articular cartilage, which is large enough not to repair spontaneously. The administration of FGF-2 resulted in the regeneration of the articular cartilage and the subchondral bone within 8 weeks. In these defects, undifferentiated mesenchymal cells initiated chondrogenic differentiation coupled with replacement by subchondral bone, resulting in the resurfacing of the defects with hyaline cartilage and the recovery of subchondral bone up to the original bone–articular cartilage junction. In rabbits, full-thickness defects are capable of regenerating articular cartilage as long as the defect size is limited to ≤3 mm in diameter. In the defects, strong immunoreactivity for FGF-2 was observed in the granulation tissue filling the defects in the early stage of repair, in association with the expression of FGF-2 mRNA shown by in situ hybridization. Once the undifferentiated mesenchymal cells had differentiated into chondrocytes, both the immunoreactivity and the in situ hybridization signal declined significantly. Upon the local administration of a monoclonal antibody against FGF-2 (bFM-1, 50ng/h), the defects were filled with fibrous tissue and no resurfacing hyaline cartilage was formed. Compared to the non-treated defects, there were marked increases in FGF-2 immunoreactivity and the overexpression of FGF-2 mRNA in the reparative tissue in the bFM-1 -treated defects. This rebound phenomenon indicates that the autocrine FGF-2 signaling is critically important for the regeneration of articular cartilage.  相似文献   

9.
Monospecific antibodies were prepared to a previously characterized chondroitin sulfate proteoglycan of brain and used in conjunction with the peroxidase-antiperoxidase technique to localize the proteoglycan by immunoelectron microscopy. The proteoglycan was found to be exclusively intracellular in adult cerebellum, cerebrum, brain stem, and spinal cord. Some neurons and astrocytes (including Golgi epithelial cells and Bergmann fibers) showed strong cytoplasmic staining. Although in the central nervous system there was heavy axoplasmic staining of many myelinated and unmyelinated fibers, not all axons stained. Staining was also seen in retinal neurons and glia (ganglion cells, horizontal cells, and Muller cells), but several central nervous tissue elements were consistently unstained, including Purkinje cells, oligodendrocytes, myelin, optic nerve axons, nerve endings, and synaptic vesicles. In sympathetic ganglion and peripheral nerve there was no staining of neuronal cell bodies, axons, myelin, or Schwann cells, but in sciatic nerve the Schwann cell basal lamina was stained, as was the extracellular matrix surrounding collagen fibrils. Staining was also observed in connective tissue surrounding the trachea and in the lacunae of tracheal hyaline cartilage. These findings are consistent with immunochemical studies demonstrating that antibodies to the chondroitin sulfate proteoglycan of brain also cross-react to various degrees with certain connective tissue proteoglycans.  相似文献   

10.
According to mechanobiologic theories, persistent intermittent mechanical stimulation is required to maintain differentiated cartilage. In a rat model for bone repair, we studied the fate of mechanically induced cartilage after unloading. In three groups of rats, regenerating mesenchymal tissue was submitted to different loading conditions in bone chambers. Two groups were immediately killed after loading periods of 3 or 6 weeks (the 3-group and the 6-group). The third group was loaded for 3 weeks and then kept unloaded for another 3 weeks (the (3 + 3)-group). Cartilage was found in all loaded groups. Without loading, cartilage does not appear in this model. In the 3-group there was no clear ongoing endochondral ossification, the 6-group showed ossification in 2 out of 5 cartilage containing specimens, and in the (3 + 3)-group all cartilage was undergoing ossification. These results suggest a tendency of the cartilage to be maintained also under unloaded conditions until it is reached by bone that can replace it through endochondral ossification.Additional measurements showed less amount of new bone in the loaded specimens. In most of the loaded specimens in the 3-group, necrotic bone fragments were seen embedded in the fibrous tissue layer close to the loading piston, indicating that bone tissue had been resorbed due to the hydrostatic compressive load. In some specimens, a continuous cartilage layer covered the end of the specimen and seemed to protect the underlying bone from pressure-induced resorption. We suggest that one of the functions of the cartilage forming in the compressive loaded parts of a bone callus is to protect the surrounding bone callus from pressure-induced fluid flow leading to resorption.  相似文献   

11.
A 3D porous lamellar selenium-containing nano-hydroxyapatite (SeHAN)/chitosan (CS) biocomposite was synthesized. The selenium-containing hydroxyapatite (HA) grains of 150~200 nm in length and 20~30 nm in width were observed by dynamic light scattering and transmission electron microscopy. A combination of X-ray diffraction, Fourier-transform infrared spectroscopy, and SEM indicated that HA particles were uniformly dispersed in chitosan matrix and there was a chemical interaction between chitosan and HA. Then, a standard critical size calvarial bone defect was created in Wistar rats. In group 1, no implant was made in the defect. In groups 2 and 3, HA nanoparticles (HAN)/CS biocomposite and SeHAN/CS biocomposite were implanted into the defect, respectively. After 4 weeks, the histological assessment clearly exhibited no significant changes, only found some living cells anchored in the periphery of the implants. After 8 and 12 weeks, most newly formed osteoid tissue was found in the SeHAN/CS implant group. Additionally, the newly formed osteoid tissue, both at the edge and in the center of implants, was bioactive and neovascularized. Microfocus computerized tomography measurements also confirmed the much better quality of the newly formed bone tissue in SeHAN/CS implant group than that in HAN/CS implant group (p?<?0.01). Collectively, the SeHAN/CS biocomposite, as a bioactive bone grafting substitute, significantly enhanced the repair of bone defect.  相似文献   

12.
随着组织工程学的发展,利用间充质干细胞(mesenchymal stem cells,MSCs)定向分化为软骨细胞,用于治疗骨性关节炎、关节创伤等因素造成的软骨缺损的研究方兴未艾。透明质酸(hyaluronic acid,HA) 是一种酸性多糖类生物大分子,亦是软骨基质的主要成分之一。由于其优良的生物相容性、可降解等特性,HA已成为优良的天然生物材料,其作为支架材料应用于软骨缺损修复已有一段历史。近年来又发现,HA除作为载体支架材料外,还可作为调节因子应用于MSCs向软骨细胞分化。以下将对近年来利用HA应用于MSCs向软骨细胞分化的研究进行总结,旨在为以MSCs为基础的组织工程化软骨的临床应用奠定基础。  相似文献   

13.
BACKGROUND: Mesenchymal stromal cells (MSC) have the potential to differentiate into distinct mesenchymal tissues including cartilage, suggesting that these cells are an attractive cell source for cartilage tissue engineering approaches. Various methods, such as using hyaluronan-based materials, have been employed to improve transplantation for repair. Our objective was to study the effects of autologous transplantation of rabbit MSC with hyaluronic acid gel sponges into full-thickness osteochondral defects of the knee. METHODS: Rabbit BM-derived MSC were cultured and expanded with fibroblast growth factor (FGF). Specimens were harvested at 4 and 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type II collagen and CD44. RESULTS: The regenerated area after autologous transplantation of hyaluronic acid gel sponge loaded with MSC into the osteochondral defect at 12 weeks after surgery showed well-repaired cartilage tissue, resembling the articular cartilage of the surrounding structure, of which the histologic score was significantly better than that of the untreated osteochondral defect. In the regenerated cartilage, type II collagen was found in the pericellular matrix of regenerative chondrocytes, while CD44 expression in the regenerative tissue could not be revealed. DISCUSSION: These data suggest that the autologous transplantation of MSC embedded in hyaluronan-based material may support chondrogenic differentiation and be useful for osteochondral defect repair.  相似文献   

14.
Chondrocytes isolated enzymatically from rabbit ear cartilage, were cultivated in vitro in the presence of 2% agarose or 0.1 mumol/l dexamethasone. Freshly-isolated chondrocytes suspended in either Eagle's medium or 2% agarose were auto-transplanted intramuscularly. Samples were then examined by light microscopy and transmission electron microscopy. The cells cultivated in vitro rapidly formed confluent multiple overlapping layers filled with a loose matrix consisting of single collagen fibres, proteoglycans and scarce elastic fibres. The number and maturity of the elastic fibres increased substantially after dexamethasone was added. The chondrocytes in intramuscular transplants produced a larger amount of intercellular matrix with many elastic fibres than those cultured in vitro. Addition of agarose to in vitro and in vivo systems selectively suppressed the elastin production but did not diminish the production of elastic fibre microfibrils and other matrix components. This made cultures and transplants of elastic chondrocytes resemble rather hyaline cartilage than the original tissue. It seems that the lack of elastin in the matrix does not result simply from inhibition of elastin secretion or increased elastolysis. It may be related to a reversible change of genetic expression of elastic cartilage chondrocytes under the influence of agarose.  相似文献   

15.

Introduction

Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model.

Methods

Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material.

Results

Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures. Although TGF-β1 stimulation showed protective effects on matrix integrity, effects on other parameters were limited.

Conclusions

The present bovine cartilage punch model represents a robust, reproducible and highly suitable tool for the long-term culture of cartilage, maintaining matrix integrity and homoeostasis. As an alternative to animal studies, this model may closely reflect early stages of cartilage regeneration, allowing the evaluation of promising biomaterials with/without chondrogenic factors.  相似文献   

16.
Mammalians have a low potency for limb regeneration compared to that of amphibians. One explanation for the low potency is the deficiency of cells for regenerating amputated limbs in mammals. Amphibians can form a blastema with dedifferentiated cells, but mammals have few such cells. In this paper, we report limb formation, especially bone/cartilage formation in amputated limbs, because bone/cartilage formation is a basic step in limb pattern regeneration. After the amputation of limbs of a neonatal mouse, hypertrophy of the stump bone was observed at the amputation site, which was preceded by cell proliferation and cartilage formation. However, no new elements of bone/cartilage were formed. Thus, we grafted limb buds of mouse embryo into amputated limbs of neonatal mice. When the intact limb bud of a transgenic green fluorescent protein (GFP) mouse was grafted to the limb stump after amputation at the digit joint level, the grafted limb bud grew and differentiated into bone, cartilage and soft tissues, and it formed a segmented pattern that was constituted by bone and cartilage. The skeletal pattern was more complicated when limb buds at advanced stages were used. To examine if the grafted limb bud autonomously develops a limb or interacts with stump tissue to form a limb, the limb bud was dissociated into single cells and reaggregated before grafting. The reaggregated limb bud cells formed similar digit-like bone/cartilage structures. The reaggregated grafts also formed segmented cartilage. When the reaggregates of bone marrow mesenchymal cells were grafted into the stump, these cells formed cartilage, as do limb bud cells. Finally, to examine the potency of new bone formation in the stump tissue without exogenously supplied cells, we grafted gelatin gel containing BMP-7. BMP induced formation of several new bone elements, which was preceded by cartilage formation. The results suggest that the environmental tissues of the stump allow the formation of cartilage and bone at least partially, and that limb formation will be possible by supplying competent cells endogenously or exogenously in the future.  相似文献   

17.
Pegg DE  Wang L  Vaughan D  Hunt CJ 《Cryobiology》2006,52(3):347-359
Although isolated chondrocytes can be cryopreserved by standard methods, at the present time there is no satisfactory method that will preserve living chondrocytes in situ in surgical grafts, between the time of procurement or manufacture and actual use; survival of living chondrocytes in situ is inadequate at best and is also very variable. The first step in identifying the cause of this discrepancy was to establish that the cryoprotectants we had chosen to use, dimethyl sulphoxide and propylene glycol, do actually penetrate into the tissue rapidly. They do. Moreover, chondrocytes were shown to tolerate 10 or 20% Me2SO and were not unusually susceptible to osmotic stress. An experiment in which the effects of freezing with 10% Me2SO to -50 degrees C were separated from the effects of the concomitant rise in solute concentration showed that injury was associated with the formation of ice as such. Freeze substitution microscopy showed that large ice crystals were formed within the chondron, some at least within chondrocytes, even when the cooling rate was optimal for isolated chondrocytes. It is proposed that the nucleation and preferential growth of ice within the chondron (rather than the surrounding acellular matrix) is responsible for the very poor survival of chondrocytes in situ when current methods of cartilage cryopreservation are used.  相似文献   

18.
Adult rabbit articular cartilage was labelled in vivo over 48 h with [35S]sulphate and was then incubated in organ culture at pH 7.2. Approx. 65% of the tissue content of [35S]proteoglycan was released into the culture medium during the first 48 h of incubation. The average molecular size of the released proteoglycans, as assessed by fractionation on Sepharose 2B/CL and 4B/Cl, was only slightly smaller than that of the proteoglycans extracted from non-cultured cartilage with 4 M guanidine HCl. The percentage of released proteoglycans and extracted proteoglycans which formed aggregates with hyaluronic acid was approx. 25% and 75%, respectively. The results indicate that proteoglycan degradation in adult articular cartilage is initiated by a limited proteolysis of subunit core protein, with the production of non-aggregating species which diffuse readily from the tissue.  相似文献   

19.
M Kuroiwa  T Kodaka  M Abe  S Higashi 《Acta anatomica》1992,143(2):130-138
The structure, distribution and formation of accessory canals in the developing and mature molar teeth of rat mandibular jaws were investigated with scanning electron microscopy and with three-dimensional image analysis using serial light-microscopic sections. In the initial stage of the accessory canal formation, most of the canals appeared in the gaps of the epithelial root sheaths formed by their approaching each other in the initial stage of the root formation. However, some of the canals appeared in the slits which may be formed by the destruction of the epithelial root sheath in the root apex regions. When the gaps and slits were invaded by blood vessels, the regions surrounding the vessels did not mineralize but became accessory canals. Usually, an accessory canal with one blood vessel connected the periodontal ligament to the dental pulp; however, in some cases, the canals were broken off midway following the destruction of the vessels.  相似文献   

20.
The ability to treat osteochondral defects is a major clinical need. Existing polymer systems cannot address the simultaneous requirements of regenerating bone and cartilage tissues together. The challenge still lies on how to improve the integration of newly formed tissue with the surrounding tissues and the cartilage-bone interface. This study investigated the potential use of different silk fibroin scaffolds: mulberry (Bombyx mori) and non-mulberry (Antheraea mylitta) for osteochondral regeneration in vitro and in vivo. After 4 to 8 weeks of in vitro culture in chondro- or osteo-inductive media, non-mulberry constructs pre-seeded with human bone marrow stromal cells exhibited prominent areas of the neo tissue containing chondrocyte-like cells, whereas mulberry constructs pre-seeded with human bone marrow stromal cells formed bone-like nodules. In vivo investigation demonstrated neo-osteochondral tissue formed on cell-free multi-layer silk scaffolds absorbed with transforming growth factor beta 3 or recombinant human bone morphogenetic protein-2. Good bio-integration was observed between native and neo-tissue within the osteochondrol defect in patellar grooves of Wistar rats. The in vivo neo-matrix formed comprised of a mixture of collagen and glycosaminoglycans except in mulberry silk without growth factors, where a predominantly collagenous matrix was observed. Immunohistochemical assay showed stronger staining of type I and type II collagen in the constructs of mulberry and non-mulberry scaffolds with growth factors. The study opens up a new avenue of using inter-species silk fibroin blended or multi-layered scaffolds of a combination of mulberry and non-mulberry origin for the regeneration of osteochondral defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号