首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work from our laboratory suggests that a complex interaction exists between ovarian and adrenal steroids in the regulation of preovulatory gonadotropin secretion. Ovarian estradiol serves to set the neutral trigger for the preovulatory gonadotropin surge, while progesterone from both the adrenal and the ovary serves to (1) initiate, (2) synchronize, (3) potentiate and (4) limit the preovulatory LH surge to a single day. Administration of RU486 or the progesterone synthesis inhibitor, trilostane, on proestrous morning attenuated the preovulatory LH surge. Adrenal progesterone appears to play a role in potentiating the LH surge since RU486 still effectively decreased the LH surge even in animals ovariectomized at 0800 h on proestrus. The administration of ACTH to estrogen-primed ovariectomized (ovx) immature rats caused a LH and FSH surge 6 h later, demonstrating that upon proper stimulation, the adrenal can induce gonadotropin surges. The effect was specific for ACTH, required estrogen priming, and was blocked by adrenalectomy or RU486, but not by ovariectomy. Certain corticosteroids, most notably deoxycorticosterone and triamcinolone acetonide, were found to possess "progestin-like" activity in the induction of LH and FSH surges in estrogen-primed ovx rats. In contrast, corticosterone and dexamethasone caused a preferential release of FSH, but not LH. Progesterone-induced surges of LH and FSH appear to require an intact N-methyl-D-aspartate (NMDA) neurotransmission line, since administration of the NMDA receptor antagonist, MK801, blocked the ability of progesterone to induce LH and FSH surges. Similarly, NMDA neurotransmission appears to be a critical component in the expression of the preovulatory gonadotropin surge since administration of MK801 during the critical period significantly diminished the LH and PRL surge in the cycling adult rat. FSH levels were lowered by MK801 treatment, but the effect was not statistically significant. The progesterone-induced gonadotropin surge appears to also involve mediation through NPY and catecholamine systems. Immediately preceding the onset of the LH and FSH surge in progesterone-treated estrogen-primed ovx. rats, there was a significant elevation of MBH and POA GnRH and NPY levels, which was followed by a significant fall at the onset of the LH surge. The effect of progesterone on inducing LH and FSH surges also appears to involve alpha 1 and alpha 2 adrenergic neuron activation since prazosin and yohimbine (alpha 1 and 2 blockers, respectively) but not propranolol (a beta-blocker) abolished the ability of progesterone to induce LH and FSH surges. Progesterone also caused a dose-dependent decrease in occupied nuclear estradiol receptors in the pituitary.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Earlier observations in our laboratory indicated that i.v. infusion of human/rat corticotropin-releasing hormone (hCRH) suppresses pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release in ovariectomized rhesus monkeys. Since cortisol secretion increased significantly as well, it was not possible to exclude the possibility that this inhibitory effect of hCRH on gonadotropins was related to the activation of the pituitary/adrenal axis. The purpose of the present study was to determine the role of pituitary/adrenal activation in the effect of hCRH on LH and FSH secretion. We compared the effects of 5-h i.v. infusions of hCRH (100 micrograms/h, n = 7) and of human adrenocorticotropic hormone (ACTH) (1-24) (5 micrograms/h, n = 3; 10 micrograms/h, n = 3, 20 micrograms/h, n = 3) to ovariectomized monkeys on LH, FSH, and cortisol secretion. As expected, during the 5-h ACTH infusions, cortisol levels increased by 176-215% of baseline control, an increase similar to that observed after CRH infusion (184%). However, in contrast to the inhibitory effect observed during the CRH infusion, LH and FSH continued to be released in a pulsatile fashion during the ACTH infusions, and no decreases in gonadotropin secretion were observed. The results indicated that increases in ACTH and cortisol did not affect LH and FSH secretion and allowed us to conclude that the rapid inhibitory effect of CRH on LH and FSH pulsatile release was not mediated by activation of the pituitary/adrenal axis.  相似文献   

3.
In order to examine the effect of glucocorticoids on the menstrual cycle of rhesus monkeys, cortisol was injected twice daily during the follicular phase. This cortisol treatment did not alter basal gonadotropin secretion but blocked the normal follicular rise of estrogens, the gonadotropin surge and the luteal rise of progesterone, and delayed the onset of the next cycle. In a second study, estradiol benzoate (E2B) was injected on the sixth day following the start of menstrual bleeding either with or without concurrent adrenocorticotropic hormone (ACTH) treatment. E2B injection was able to stimulate surges of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) whether or not the animals had been treated with ACTH. These data suggest that, the action of cortisol, the final mediating step in the hypothalamic-pituitary-adrenal axis, occurs at the level of the gonads versus the pituitary in the rhesus monkey. While the pituitary response to endogenous gonadotropin-releasing hormone or exogenous E2B stimulation appears to remain unaffected, normal folliculogenesis is disrupted, preventing the follicular secretion of estrogens and the subsequent gonadotropin surges. The effects of corticosteroids are temporary, with normal cycling returning when plasma corticosteroids return to basal concentrations, albeit after a delay.  相似文献   

4.
D W Brann  C D Putnam  V B Mahesh 《Steroids》1991,56(2):103-111
The stimulatory and inhibitory effects of progesterone on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion were found to be dependent on the length of estrogen exposure in ovariectomized estrogen-primed rats. Progesterone suppressed LH and FSH secretion when administered 16 hours after a single injection of estradiol to ovariectomized rats. If the estradiol treatment was extended over 40 hours by two injections of estradiol 24 hours apart, progesterone administration led to a highly significant elevation of both serum LH and FSH levels 6 hours later. In addition to the direct stimulatory effect on LH and FSH release, progesterone, when injected 1 hour before, was able to antagonize the suppressive effect of a third injection of estradiol on LH and FSH release. In the immature ovariectomized estrogen-primed rat, 10 IU of ACTH brought about a release of progesterone and corticosterone 15 minutes later and LH and FSH 6 hours later. Progesterone, but not corticosterone, appeared to be responsible for the effect of ACTH on gonadotropin release. The synthetic corticosteroid triamcinolone acetonide brought about LH and FSH release in the afternoon, while cortisol, similar to corticosterone, was unable to do so. Nevertheless, triamcinolone acetonide and cortisol brought about increased secretion of FSH the following morning.  相似文献   

5.
Progesterone and certain corticosteroids, such as deoxycorticosterone (DOC) and triamcinolone acetonide (TA), can stimulate gonadotropin surges in rats. The mechanism of these steroids could involve a pituitary or hypothalamic site of action, or both. Progesterone and TA did not alter the ability of GnRH to release LH or FSH either before, during, or after the gonadotropin surge induced by these steroids in estrogen-primed ovariectomized female rats. Furthermore, progesterone, TA and DOC were unable to induce a gonadotropin surge in short-term estrogen-primed castrated male rats. These results suggested a hypothalamic rather than a pituitary site of action of progesterone and corticosteroids in the release of gonadotropins. Since progestin and corticosteroid receptors are present in catecholamine neurons, a role for catecholamine neurotransmission in progesterone and corticosteroid-induced surges of LH and FSH in estrogen-primed ovariectomized rats was examined. Catecholamine synthesis inhibitors and specific alpha 1 (prazosin), alpha 2 (yohimbine), and beta (propranolol) receptor antagonists were used to determine the role of catecholamine neurotransmission in the steroid-induced surges of LH and FSH. Both of the catecholamine synthesis inhibitors, alpha-methyl-p-tyrosine HCl (alpha-MPT), a tyrosine hydroxylase inhibitor, and sodium diethyldithiocarbamate (DDC), an inhibitor of dopamine-beta-hydroxylase, attenuated the ability of progesterone, TA, and DOC to induce LH surges when administered 3 h and 1 h, respectively, before the steroid. DDC also suppressed the ability of progesterone, TA, and DOC to induce FSH surges. Rats treated with alpha-MPT had lower mean FSH values than did steroid controls, but the effect was not significant. Both the alpha 1 and alpha 2 adrenergic antagonists, prazosin and yohimbine, significantly suppressed the ability of progesterone, TA, and DOC to induce LH and FSH surges. In contrast, the beta adrenergic receptor blocker, propranolol, had no effect upon the ability of progesterone, TA, or DOC to facilitate LH and FSH secretion. Finally, the stimulatory effect of progesterone and TA upon LH and FSH release was found to be blocked by prior treatment with a GnRH antagonist, further suggesting hypothalamic involvement. In conclusion, this study provides evidence that the stimulation of gonadotropin release by progesterone and corticosteroids is mediated through a common mechanism, and that this mechanism involves the release of GnRH, most likely through catecholaminergic stimulation. Furthermore, catecholamine neurotransmission, through alpha 1 and alpha 2 but not beta receptor sites, is required for the expression of progesterone and corticosteroid-induced surges of LH and FSH in estrogen-primed ovariectomized rats.  相似文献   

6.
The hormonal interactions required for the generation of a secondary surge of FSH on the evening of proestrus have not been clearly defined. The role of GnRH in driving a surge of FSH has been questioned by findings in previous studies. In the current study, gonadotropin secretion was measured from pituitary fragments obtained from rats at 0900 and 2400 h on each day of the estrous cycle. Pituitary fragments were perifused in basal (unstimulated) conditions or in the presence of GnRH pulses to determine whether a selective increase in basal release of FSH and/or an increase in the responsiveness to GnRH occurs during the secondary FSH surge. Each anterior pituitary was cut into eighths and placed into a microchamber for perifusion. Seven pulses of GnRH (peak amplitude = 50 ng/ml; duration = approximately 2 min) were administered at a rate of one per hour starting at 30 min. Fractions of perfusate were collected every 5 min and frozen until RIA for LH and FSH. The mean total amount of LH or FSH secreted during the hour interval following each of the last six pulses of GnRH (or the corresponding basal hour) was calculated. Analysis of variance with repeated measures indicated that the evening secretion of LH on proestrus (2400 h) dropped significantly (p less than 0.05) from a maximum on the morning of proestrus (0900 h), whereas the FSH secretion remained elevated at this time. Therefore, the ratio of FSH to LH secreted in response to GnRH pulses was highest during the secondary FSH surge and lowest on the morning of proestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Mammalian gonadotropin-releasing hormone (GnRH) I is the neuropeptide that regulates reproduction. In recent years, a second isoform of GnRH, GnRH II, and its highly selective type II GnRH receptor were cloned and identified in monkey brain, but its physiological function remains unknown. We sought to determine whether GnRH II stimulates LH and FSH secretion by activating specific receptors in primary pituitary cultures from male monkeys. Dispersed pituitary cells were maintained in steroid-depleted media and stimulated with GnRH I and/or GnRH II for 6 h. Cells were also treated with Antide (Bachem, King of Prussia, PA), a GnRH I antagonist, to block gonadotropin secretion. In monkey as well as rat pituitary cultures, GnRH II was a less effective stimulator of LH and FSH secretion than was GnRH I. In both cell preparations, Antide completely blocked LH and FSH release provoked by GnRH II as well as GnRH I. Furthermore, the combination of GnRH I and GnRH II was no more effective than either agonist alone. These results indicate that GnRH II stimulates FSH and LH secretion, but they also imply that this action occurs through the GnRH I receptor. The GnRH II receptors may have a unique function in the monkey brain and pituitary other than regulation of gonadotropin secretion.  相似文献   

8.
This career retrospective describes how the initial work on the mechanism of hormone action provided the tools for the study of hirsutism, virilism, and polycystic ovarian disease. After excessive ovarian and or adrenal androgen secretion in polycystic ovarian disease had been established, the question whether the disease was genetic or acquired, methods to manage hirsutism and methods for the induction of ovulation were addressed. Recognizing that steroid gonadotropin feedback was an important regulatory factor, initial studies were done on the secretion of LH and FSH in the ovulatory cycle. This was followed by the study of basic mechanisms of steroid-gonadotropin feedback system, using castration and steroid replacement and the events surrounding the natural onset of puberty. Studies in ovariectomized rats showed that progesterone was a pivotal enhancer of estrogen-induced gonadotropin release, thus accounting for the preovulatory gonadotropin surge. The effects of progesterone were manifested by depletion of the occupied estrogen receptors of the anterior pituitary, release of hypothalamic LHRH, and inhibition of enzymes that degrade LHRH. Progesterone also promoted the synthesis of FSH in the pituitary. The 3α,5α-reduced metabolite of progesterone brought about selective LH release and acted using the GABA(A) receptor system. The 5α-reduced metabolite of progesterone brought about selective FSH release; the ability of progesterone to bring about FSH release was dependent on its 5α-reduction. The GnRH neuron does not have steroid receptors; the steroid effect was shown to be mediated through the excitatory amino acid glutamate, which in turn stimulated nitric oxide. These observations led to the replacement of the long-accepted belief that ovarian steroids acted directly on the GnRH neuron by the novel concept that the steroid feedback effect was exerted at the glutamatergic neuron, which in turn regulated the GnRH neuron. The neuroprotective effects of estrogens on brain neurons are of considerable interest.  相似文献   

9.
The preovulatory gonadotropin surge is induced by progesterone in the cycling female rat or in the ovariectomized estrogen-treated female rat after adequate estrogen-priming activity is present. The source of progesterone under physiological conditions could be the ovary and/or the adrenal. Since the GnRH neuron does not possess estrogen and progesterone receptors, its function is modulated by other CNS neurotransmitters and neurosecretory products. Among these, excitatory amino acids (EAAs) have now been shown to play an important role in the regulation of pulsatile gonadotropin release, induction of puberty and preovulatory and steroid-induced gonadotropin surges. Glutamate, the major endogenous EAA exerts its action through ionotropic and metabotropic receptors. The ionotropic receptors consist of two major classes, the NMDA (N-methyl-D-aspartate) and non-NMDA: kainate and AMPA ( --amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. EAA receptors are found in hypothalamic areas involved with reproduction. While both NMDA and non-NMDA receptors are involved in the regulation of LH secretion, the NMDA receptors appear to be involved with the regulation of puberty and FSH secretion as well. Steroids increase the release rates of glutamate and aspartate in the preoptic area during the gonadotropin surge. Steroids may also regulate the hypothalamic AMPA receptors.  相似文献   

10.
In the presence of a functional corpus luteum, positive estrogen feedback on the surge modes of gonadotropin secretion is blocked in rhesus monkeys. We investigated the effects of luteectomy (Lx) on the time required for recovery of pituitary responsiveness (LH/FSH surges) to positive estrogen feedback. Estradiol-17 beta-3- benzoate (EB, 50 microgram/kg sc) was given: 1) 24th prior to, 2) the day of, or 3) 24 h after luteal ablation. Daily measurements of serum follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol-17 beta (e2) and progesterone (P) were made on each monkey for 5 days. Serum P fell to undetectable levels within 24 h after Lx, whereas E2 levels in circulation peaked within 24h after injection of EB. Among early follicular phase monkeys, this EB treatment results in typical midcycle type LH/FSH surges within 48h. Lx alone was not soon followed by significant changes in pituitary gonadotropin secretion. When circulating P levels were undetectable the pituitary responded fully to EB; that is, typical midcycle type FSH/LH surges occurred. When serum P was in the midst of declining after Lx, gonadotropin surges were present, but attenuated. However, when P levels remained elevated for more than 24 h after EB injection, the surge modes of FSH/LH secretion remained fully blocked. These results demonstrate that the suppressive influence of luteal secretions (principally progesterone) on positive estrogen feedback regulation of the surge modes of pituitary gonadotropin secretion is quite transient in these primates.  相似文献   

11.
The actions of two inhibin preparations and cycloheximide on gonadotropin release were investigated in superfused pituitary cell cultures. Pituitary cells isolated from 18-day-old male rats were grown in Matrigel-coated superfusion chambers in chemically defined medium. After stationary culture for 4 days, the cell monolayers were superfused at a constant speed (0.25 ml/min) and were intermittently stimulated (6 min/h) with 10 nM gonadotropin-releasing hormone (GnRH). Groups of cultures were exposed to the test substances for varying time periods during stationary culture and/or during superfusion. Inhibitory effects of both inhibin preparations on the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in response to GnRH pulses were observed after 2 h of exposure and became maximal after about 6 h. Basal secretion of FSH between GnRH pulses was also suppressed, whereas the basal interpulse secretion of LH was not changed. When exposure to inhibin was discontinued, the secretion of both FSH and LH progressively increased and returned to control values by approximately 6 h. Cycloheximide (500 ng/ml) affected gonadotropin release with dynamics similar to those observed for the inhibin preparation. These data support the hypothesis that inhibition of gonadotropin synthesis may be an important step in the molecular mechanism of action by which inhibin regulates gonadotropin release.  相似文献   

12.
13.
The preovulatory gonadotropin surge in the sheep was recently characterized by a divergent pattern of LH beta and FSH beta mRNAs immediately preceding this event. It is not clear whether this pattern is due to estradiol (E2), inhibin or other effectors. In this study, to determine if E2 may be involved in the divergent beta mRNA patterns seen during the surge, gonadotropin surges were induced in anestrous ewes (An) by E2 (An + E2) and several parameters were then measured. These included the amounts of alpha, LH beta, and FSH beta mRNAs, as assessed by solution hybridization assays, plus pituitary and serum gonadotropin concentrations. The values were compared with those observed in control, An ewes, to assess the effect of E2. The E2 treatment resulted in LH and FSH surges that appeared to be similar to the normal surges seen during the breeding season. Concomitantly, the E2 treatment lowered pituitary concentrations of FSH (P less than 0.05), while LH amounts did not change. Although the effect of E2 on gonadotropin subunit mRNA amounts varied depending upon the individual subunit, the changes that were observed paralleled changes reported during the preovulatory surge of the cycle. Specifically, alpha mRNA amounts increased significantly (P less than 0.001) while FSH beta mRNA amounts fell dramatically (P less than 0.001). Moreover, LH beta mRNA amounts were slightly increased, although not significantly by E2. These results demonstrate that E2 effects changes in the amounts of the gonadotropin subunit mRNAs during an induced gonadotropin surge in An ewes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The present experiments were performed to study the effects of preovulatory levels of estrogen on GnRH-induced gonadotropin release. Twelve female volunteers in various phases of the menstrual cycle received estradiol infusion for 66 h at a constant rate of 500 micrograms/24 h which is grossly equivalent to its production rate during the preovulatory follicular phase. In 8 of the women, GnRH was administered concomitantly from 6 h after the initiation of estradiol infusion. The administered doses of GnRH were 2.5 and 5 micrograms/h. Blood samples obtained throughout the infusion were analysed for LH, FSH, estradiol and progesterone. The sole administration of estradiol failed to induce the positive feedback effect on gonadotropin release within the experimental period in the early follicular phase (days 3-7) in 4 women. In 5 women treated during the follicular phase, remarkable LH releases were induced after a lag period by the infusion of both GnRH and estradiol. The induced LH surge formed a prolonged biphasic pattern. Although a similar pattern of FSH was observed in some cases, its response was minimal compared with that of LH. In 3 women during the luteal phase, however, a combined administration of estradiol and GnRH induced only a short term release of LH which was terminated in only 12 h. The present data indicate that 1) Preovulatory levels of estrogen affect the late part of the LH surge which is induced by constant administration of low doses of GnRH resulting in a prolonged biphasic release of LH, and 2) These effects of both hormones are not manifest in the presence of high levels of progesterone. These results indicate the possibility of a role of GnRH and estrogen in the mechanism of the prolonged elevation of a gonadotropin surge at mid-cycle.  相似文献   

15.
Neuroendocrine effects of progesterone   总被引:1,自引:0,他引:1  
  相似文献   

16.
The effects of 5 alpha-dihydroprogesterone (5 alpha-DHP) and 3 alpha, 5 alpha-tetrahydroprogesterone (3 alpha, 5 alpha-THP) on follicle-stimulating hormone (FSH) and luteinizing hormone (LH) release were examined in the pregnant mare's serum gonadotropin (PMSG)-primed immature female rat (8 IU PMSG at 28 days of age) maintained in constant light. Control rats kept in 14L:10D conditions exhibited proestrous-like surges of LH and FSH release with peak levels attained at 1800 h on the second day after PMSG treatment. In rats exposed to constant light, the PMSG-induced surges of LH and FSH were not only delayed until 1000 h on the third day after PMSG, resulting in a delay in ovulation, but were also significantly attenuated when compared to the gonadotropin surges that occurred on Day 2 in rats kept under normal light-dark conditions. The administration of 5 alpha-DHP significantly enhanced the release of FSH at 1000 h on Day 3 when compared to constant light-exposed controls, but had no effect on LH. Treatment with 3 alpha, 5 alpha-THP selectively potentiated the release of LH at 1000 h on Day 3 and had an attenuating effect on FSH release on Days 2 and 3. These observations confirm earlier findings in the immature ovariectomized estrogen-primed rat and suggest that 5 alpha-DHP and 3 alpha, 5 alpha-THP may have significant roles in the regulation of FSH and LH secretion.  相似文献   

17.
The effect of T3 upon gonadotropin secretion was examined in ovariectomized (Ovarx), Ovarx thyro-parathyroidectomized (Ovarx-TxPx), or proestrus rats. T3 (50 microgram/-100 gBW), administered late diestrus-2, abolished the LH surge during the critical period of proestrus in 7 out of 9 rats; the rise in sera FSH was not inhibited, although a distinct peak was absent. Administration of 5 or 50 microgram T3/100gBW 2.5h before the critical period resulted in either a suppression or an alteration of the timing of LH release. In the 5 microgram T3/100gBW treated animals the sera FSH peak was delayed in timing, whereas in the 50 microgram T3/100gBW treated rats sera FSH demonstrated two separate peaks during the critical period. Treatment with various dosages of T3 of Ovarx-TxPx rats resulted in significant suppressions (p less than 0.05) of sera LH and FSH. Despite depressed concentrations of sera LH and FSH in T3-treated rats pituitary sensitivity to a challenge of 3LHRH was enhanced. Hence, the pituitary was not the site of T3 inhibition of gonadotropin secretion. Additionally, T3 did not modify pituitary LH content or hypothalamic LH3 releasing activity (LHRH). Since T3 did not inhibit gonadotropin secretion at the pituitary level, a neural site of T3 action is suggested.  相似文献   

18.
In order to determine the mechanism by which stress may affect the secretion and function of luteinizing hormone (LH) in primates, the response of the adrenal and gonadal axes was followed in male rhesus monkeys during brief restraint in primate chairs and during various hormone treatments. To further assess the responsiveness of the gonadal axis, gonadotropin releasing hormone (GnRH) was administered during the experiments. Corticosteroid levels were elevated throughout the first restraint trial as compared to those in subsequent trials. LH was elevated in the first sample of the first trial as compared to that in the following trials. The responses of LH to GnRH were equivalent in all trials, while the testosterone response to GnRH was attenuated in the first trial. A single injection of adrenocorti-cotropin (ACTH, 40 IU), while increasing circulating corticosteroids similarly to that observed during the first restraint trial, failed to cause an acute initial release of LH. However, ACTH did lower the testosterone response to GnRH. Following 5 days of ACTH treatment (40 IU twice daily), basal LH was suppressed, and the testosterone response to GnRH was decreased. Following 5 days of cortisol injections (100 mg twice daily), basal LH and testosterone were suppressed, but again only the testosterone response to GnRH was attenuated. Acute restraint stress, acting by some mechanism other than the activation of adrenal axis, stimulates a transient release of LH. While the stress-stimulated release of corticosteroids failed to affect the LH response following GnRH administration, it did act directly on the testes to prevent the normal release of testosterone. Finally, chronic elevation of corticosteroids, produced by ACTH or cortisol administration, suppressed basal serum LH and attenuated the response of testosterone to GnRH.  相似文献   

19.
为了解虎纹蛙促性腺激素分泌的调节机理,用离体静态培育系统和放射免疫测定法,研究了多巴胺(DA)、雌二醇(E2)和睾酮(T)对雌性虎纹蛙离体脑垂体薄片促黄体激素(LH)和促卵泡激素(FSH)分泌活动的影响。结果表明:0.1~10μmol/L的DA对成熟前期和冬眠期虎纹蛙离体脑垂体型薄片的LH及FSH的释放都有抑制作用,并且随着DA浓度的增加,抑制作用逐渐增强。1和10μmol/L的E2显著刺激成熟前  相似文献   

20.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号