首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that leukotriene B4 (LTB4) might be produced during endotoxemia in pigs and, if so, might play a role in the pathophysiology of acute respiratory failure. Escherichia coli endotoxin (055-B5) was infused intravenously into anesthetized pigs at 5 micrograms/kg the 1st h, followed by 2 micrograms.kg-1.h-1 for 3 h. Endotoxemic pigs were treated with dexamethasone (DEX, iv) 18 h (5 mg/kg) and 1 h (5 mg/kg) before onset of endotoxemia. During phases I (i.e., 0-2 h) and II (i.e., 2-4 h), endotoxin decreased cardiac index, caused granulocytopenia, and increased mean pulmonary arterial pressure, pulmonary vascular resistance, alveolar-arterial O2 gradient, and hematocrit. During phase II, plasma LTB4 levels were increased (as determined by radioimmunoassay, reverse-phase high-performance liquid chromatography, and ultraviolet spectroscopy). Endotoxin increased the levels of LTB4 and albumin in bronchoalveolar lavage fluid (BALF). DEX blocked or greatly attenuated the endotoxin-induced hemodynamic abnormalities and blocked the increases in plasma and BALF LTB4 levels. We conclude that LTB4 is produced during porcine endotoxemia and could possibly play a role in the pathophysiology of endotoxin-induced lung injury in anesthetized pigs.  相似文献   

2.
We studied the porcine pulmonary response to endotoxemia before and after administration of nonsteroidal antiinflammatory drugs (NSAID, i.e., indomethacin or flunixin meglumine) or dexamethasone (DEX). Escherichia coli endotoxin was infused intravenously into anesthetized 10- to 12-wk old pigs for 4.5 h. In endotoxemic pigs, the phase 1 (i.e., 0-2 h) increases in pulmonary arterial pressure, pulmonary vascular resistance (PVR), and alveolar-arterial O2 gradient and the decreases in cardiac index (CI) and lung dynamic compliance (Cdyn) were blocked by NSAID. Thus phase 1 changes were cyclooxygenase dependent. Furthermore, these effects were blocked or greatly attenuated by DEX. During phase 2 of endotoxemia (i.e., 2-4.5 h), the increased PVR and decreased CI and Cdyn were not blocked by NSAID but were attenuated by DEX, suggesting the presence of cyclooxygenase-independent metabolites. Both NSAID and DEX blocked the endotoxin-induced increases in lung water, bronchoalveolar lavage (BAL) neutrophil, and BAL albumin content. The fall in plasma proteins persisted in NSAID but not DEX-treated pigs. We conclude that endotoxemia in the pig causes severe acute respiratory failure largely mediated by cyclooxygenase and possibly lipoxygenase products of arachidonic acid metabolism.  相似文献   

3.
Effect of LY171883 on endotoxin-induced lung injury in pigs   总被引:3,自引:0,他引:3  
We evaluated the role of sulfidopeptide leukotrienes as mediators of endotoxin-induced respiratory failure in pigs. Escherichia coli endotoxin (055-B5) was infused intravenously into anesthetized 10- to 14-wk-old pigs at 5 micrograms/kg the 1st h followed by 2 micrograms.kg-1.h-1 for 3 h in the presence and absence of LY171883, a specific leukotriene D4 (LTD4)/LTE4 receptor antagonist. Endotoxin caused hemoconcentration, granulocytopenia, decreased cardiac index, systemic hypotension, pulmonary hypertension, increased pulmonary vascular resistance, bronchoconstriction, hypoxemia, increased permeability of the alveolar-capillary membrane, pulmonary edema, and increased plasma concentrations of thromboxane B2 (TxB2), prostaglandin F2 alpha (PGF2 alpha), and 6-keto-PGF1 alpha. LY171883 did not modify endotoxin-induced cardiopulmonary and hematologic abnormalities, except for a modest attenuation of pulmonary hypertension (at 1 h) and increased pulmonary vascular resistance (at 1-2 h). Ex vivo stimulation of whole blood with calcium ionophore caused large increases in plasma concentrations of TxB2, PGF2 alpha, and LTB4. These increases were not significantly modified in blood derived from pigs treated with LY171883, indicating no inhibition of cyclooxygenase or 5-lipoxygenase. We conclude that LTD4 and LTE4 are not important mediators of endotoxin-induced lung injury in anesthetized pigs, although they may contribute modestly to pulmonary vasoconstriction.  相似文献   

4.
We investigated whether platelet-activating factor (PAF) mediates endotoxin-induced systemic and pulmonary vascular derangements by studying the effects of a selective PAF receptor antagonist, SRI 63-441, during endotoxemia in sheep. Endotoxin infusion (1.3 micrograms/kg over 0.5 h) caused a rapid, transient rise in pulmonary arterial pressure (Ppa) from 16 +/- 3 to 36 +/- 10 mmHg (P less than 0.001) and pulmonary vascular resistance (PVR) from 187 +/- 84 to 682 +/- 340 dyn.s.cm-5 (P less than 0.05) at 0.5 h, followed by a persistent elevation in Ppa to 22 +/- 3 mmHg and in PVR to 522 +/- 285 dyn.s.cm-5 at 5 h in anesthetized sheep. Arterial PO2 (PaO2) decreased from 341 +/- 79 to 198 +/- 97 (P less than 0.01) and 202 +/- 161 Torr at 0.5 and 5 h, respectively (inspired O2 fraction = 1.0). SRI 63-441, 20 mg.kg-1.h-1 infused for 5 h, blocked the early rise in Ppa and PVR and fall in PaO2, but had no effect on the late phase pulmonary hypertension or hypoxemia. Endotoxin caused a gradual decrease in mean aortic pressure, which was unaffected by SRI 63-441. Infusion of SRI 63-441 alone caused no hemodynamic alterations. In follow-up studies, endotoxin caused an increase in lung lymph flow (QL) from 3.8 +/- 1.1 to 14.1 +/- 8.0 (P less than 0.05) and 12.7 +/- 8.6 ml/h at 1 and 4 h, respectively. SRI 63-441 abolished the early and attenuated the late increase in QL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effects of endotoxemia on cardiopulmonary parameters, before and after cyclooxygenase blockade, were determined in anesthetized ponies spontaneously breathing a mixture of halothane and 100% O2. Escherichia coli endotoxin was infused intravenously at 20 micrograms/kg for 1 h followed by 10 micrograms X kg-1 X h-1 the subsequent 4 h. By 15 min endotoxin increased mean pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), and alveolar dead space ventilation (VDA/VT), and these were followed by a return to base-line values by 30 min. A second increase in PVR occurred by 5 h of endotoxemia. The early increases in Ppa, PVR, and VDA/VT were blocked by flunixin meglumine (FM), a cyclooxygenase inhibitor. Endotoxin decreased central plasma volume by 1 h and cardiac index by 3 h; hematocrit and plasma protein concentration were increased by 0.5 and 1.5 h, respectively, indicating a loss of plasma volume. These changes were also blocked or attenuated by FM. Moreover, in ponies treated with endotoxin + FM, cardiac index increased, indicating the presence of a cardiac-stimulating factor. We conclude that endotoxemia in ponies causes cardiopulmonary dysfunction that is mediated by cyclooxygenase-dependent and possibly cyclooxygenase-independent metabolites.  相似文献   

6.
We hypothesized that leukotriene B4 (LTB4) might be produced during endotoxin-induced acute respiratory failure (ARF) observed in young pigs. We used radioimmunoassay (RIA) and reverse phase-high performance liquid chromatography (RP-HPLC) to determine the presence of LTB4 in plasma and bronchoalveolar lavage fluid (BALF) of saline- and endotoxin-treated pigs. Endotoxin was infused at 5 micrograms/kg for 1 hour (hr) followed by 2 micrograms/kg/hr for an average of 3 hrs. Arterial plasma (collected at 0.5 hr intervals for 4 hrs) immunoreactive (i)-LTB4 was significantly increased from 2.5 to 4 hrs of endotoxemia with the peak value occurring at 3.5 hrs (i.e. 282% of baseline value). Analysis of plasma extracts using RP-HPLC revealed an ultraviolet (UV) absorbance peak (270 nm) that was coincident with authentic LTB4 standard. The levels of i-LTB4 were significantly increased in BALF recovered from endotoxemic pigs (337 +/- 71 vs 53 +/- 13 pg/ml for saline controls). Endotoxin also increased the postmortem wet/dry ratio of bloodless lung and BALF albumin concentration, indicating pulmonary edema and increased permeability of the alveolar-capillary membrane, respectively. We conclude that LTB4 is increased in plasma and BALF recovered from endotoxemic pigs and that this lipoxygenase metabolite could possibly be an important factor contributing to the pathophysiology of endotoxin-induced ARF.  相似文献   

7.
磷脂酶A2在内毒素致大鼠肺损伤中的作用   总被引:3,自引:0,他引:3  
大鼠静脉注射大肠杆茵内毒素(30mg/kg)后3h肺血管外水量和支气管肺泡灌洗液中蛋白浓度明显增加,表明发生了通透性肺水肿;同时血清和支气管肺泡灌洗液中磷脂酶A2(PLA2)活性升高,且PLA,活性的升高与肺血管外水量的增加呈显著正相关。预先给予PLA2抑制剂对溴苯酰基溴可抑制内毒素引起的PLA2活性升高和通透性肺水肿。提示PLA2介导了内毒素引起的肺损伤。  相似文献   

8.
The macrophage-derived cytokine tumor necrosis factor alpha (TNF alpha) has been proposed as the major mediator of endotoxin-induced injury. To examine whether a single infusion of human recombinant TNF alpha (rTNF alpha) reproduces the pulmonary effects of endotoxemia, we infused rTNF alpha (0.01 mg/kg) over 30 min into six chronically instrumented awake sheep and assessed the ensuing changes in hemodynamics, lung lymph flow and protein concentration, and number of peripheral blood and lung lymph leukocytes. In addition, levels of thromboxane B2, 6-ketoprostaglandin F1 alpha, prostaglandin E2, and leukotriene B4 were measured in lung lymph. Pulmonary arterial pressure (Ppa) peaked within 15 min of the start of rTNF alpha infusion [base-line Ppa = 22.0 +/- 1.5 (SE) cmH2O; after 15 min of rTNF alpha infusion, Ppa = 54.2 +/- 5.4] and then fell toward base line. The pulmonary hypertension was accompanied by hypoxemia and peripheral blood and lung lymph leukopenia, both of which persisted throughout the 4 h of study. These changes were followed by an increase in protein-rich lung lymph flow (base-line lymph protein clearance = 1.8 +/- 0.4 cmH2O; 3 h after rTNF alpha infusion, clearance = 5.6 +/- 1.2), consistent with an increase in pulmonary microvascular permeability. Cardiac output and left atrial pressure did not change significantly throughout the experiment. Light-microscopic examination of lung tissue at autopsy revealed congestion, neutrophil sequestration, and patchy interstitial edema. We conclude that rTNF alpha induces a response in awake sheep remarkable similar to that of endotoxemia. Because endotoxin is a known stimulant of TNF alpha production, TNF alpha may mediate endotoxin-induced lung injury.  相似文献   

9.
We hypothesized that leukotrienes might contribute to the pathophysiology of acute lung injury induced by oleic acid. Oleic acid (2-20 mg.kg-1.h-1), LY171883 [leukotriene (LT) D4/LTE4 receptor antagonist, 10 mg/kg + 1 mg.kg-1.h-1] + oleic acid (10 mg.kg-1. h-1), or triolein (20 mg.kg-1.h-1) were infused intravenously into anesthetized pigs. Treatment with the cyclooxygenase inhibitor was designed to possibly enhance LT release. Bronchoalveolar lavage fluid concentrations of LTB4, LTC4, LTD4, and LTE4 were measured by reverse-phase high-performance liquid chromatography and radioimmunoassay. Oleic acid caused dose-related hypoxemia and pulmonary hypertension and increased pulmonary vascular resistance, lung water, and alveolar-capillary membrane permeability. Bronchoalveolar lavage fluid levels of LTB4, LTC4, LTD4, and LTE4 showed no significant changes in oleic acid- or indomethacin + oleic acid-treated pigs, compared with triolein-treated controls. Indomethacin modestly attenuated the oleic acid-induced hypoxemia and the early increases (i.e., 0-0.5 h) in mean pulmonary arterial pressure and pulmonary vascular resistance. In contrast, LY171883 provided no protection against any oleic acid-induced cardiopulmonary effect (measured or calculated). We conclude that LTs are not likely to be important mediators of oleic acid-induced lung injury in the pig.  相似文献   

10.
We examined the effect of the air interface on pulmonary vascular resistance (PVR) in zones 1, 2, and 3 by comparing pressure-flow data of air- and liquid-filled isolated rabbit lungs. Lungs were perfused with Tyrode's solution osmotically balanced with 1% albumin and 4% dextran and containing the vasodilator papaverine (0.05 mg/ml). Lung volume was varied by negative pleural pressure form 0 to -25 cmH2O. Pulmonary artery (Ppa) and venous (Ppv) pressures were fixed at various levels relative to the lung base. Alveolar pressure (PA) was always zero, and perfusate flow was measured continuously. In zone 1 Ppa was -2.5 cmH2O and Ppv was -15 cmH2O. In zone 2 Ppa was 10 cmH2O and Ppv was -5 cmH2O. In zone 3 Ppa was 15 cmH2O and Ppv was 8 cmH2O. We found that in zone 1 the interface was essential for perfusion, but in zones 2 and 3 it had much lesser effects. In general, PVR depended almost uniquely (i.e., with small hysteresis) on transpulmonary pressure, whereas a large hysteresis existed between PVR and lung volume. PVR was high in collapsed and especially in atelectatic lungs, fell sharply with moderate inflation, and within the ranges of vascular pressure studied did not rise again toward total lung capacity. These results suggest that in zone 1 the interface maintains the patency of some alveolar vessels, probably in corners. The majority of alveolar septal vessels appears to be exposed directly to PA in zones 2 and 3, because at equal transpulmonary pressure the PVR is similar in the presence or absence of an interface.  相似文献   

11.
Our purpose was to determine whether lipid peroxidation of lung tissue, a reflection of O2 radical injury, occurs with endotoxin, and whether the degree of tissue change corresponds with the degree of increased protein permeability. Unanesthetized adult sheep with lung lymph fistulas were given Escherichia coli endotoxin at a dose of 2 micrograms/kg (n = 34). Tissue lipid peroxidation was measured using the thiobarbituric acid assay for malondialdehyde (MDA). The MDA content of lung tissue in nanomoles per gram increased from a control value of 48 +/- 8 to 98 +/- 18 at 5 h postendotoxin (2 micrograms/kg), whereas lung lymph protein transport (Cp), was increased 3- to 4-fold. The MDA content returned to base line with Cp by 24 h postendotoxin. Six sheep given endotoxin were pretreated with 12.5 mg/kg of ibuprofen, and six were infused with dimethylthiourea (DMTU) 0.75 g/kg. With ibuprofen, Cp was only increased 2.5- to 3-fold and MDA was increased to 69 +/- 15 nmol/g. With DMTU, the increase in Cp was comparable to that with endotoxin alone, as was the MDA of lung tissue with a value of 92 +/- 12 nmol/g. The correlation of tissue MDA with Cp in all animals was 0.83. We conclude that lipid peroxidation occurs in lung tissue after a moderately severe endotoxin injury with the degree of change corresponding to the degree of increased Cp.  相似文献   

12.
We investigated the effect of phorbol myristate acetate (PMA) in isolated guinea pig lungs perfused with phosphate-buffered Ringer solution. Pulmonary arterial pressure (Ppa), pulmonary capillary pressure (Ppc), and change in lung weight were recorded at 0, 10, 25, 40, and 70 min. The capillary filtration coefficient (Kf), an index of vascular permeability, was measured at 10 and 70 min. The perfusion of PMA (0.5 x 10(-7) M) increased Ppa, Ppc, and lung weight at 70 min. The ratio of arterial-to-venous vascular resistance (Ra/Rv) decreased and the Kf did not change with PMA. The perfusion of the lung with 4 alpha-phorbol didecanoate (inactive toward the protein kinase C analogue of PMA) did not affect the lung. The inhibition of TxA2 synthase with dazoxiben inhibited the response to PMA. The inhibition of the 5-lipoxygenase with U-60257 and the SRS-A receptor antagonist FPL 55712 also prevented the response to PMA. The addition of superoxide dismutase (SOD), catalase, or SOD plus catalase (the enzymes that remove O.2 H2O2, and OH., respectively) did not prevent the PMA effect or the release of TxA2; however, dimethylthiourea (DMTU), a scavenger of OH., did prevent the response to PMA. The data indicate that PMA causes a neutrophil-independent increase in lung weight due to increases in Ppc mediated by TxA2 and SRS-A. The protective effect of DMTU may be due to the inhibition of TxA2 generation.  相似文献   

13.
We recently showed that we can selectively and safely deplete most (average 85%) of the pulmonary intravascular macrophages in sheep by intravenously infusing liposomes containing dichloromethylene bisphosphonate. After a 1-h stable baseline, we made a 6-h comparison after a 30-min intravenous endotoxin infusion (1 microg/kg) between six anesthetized control lambs and six anesthetized lambs in which the intravascular macrophages had been depleted 24 h previously. Three of the control lambs had been macrophage depleted and allowed to recover their intravascular macrophage population for >/=2 wk. After depletion, both the early and late pulmonary arterial pressure rises were dramatically attenuated. Our main interest, however, was in the acute lung microvascular injury response. The early and late rises in lung lymph flow and the increase in lung lymph protein clearance (lymph flow x lymph-to-plasma protein concentration ratio) were >90% attenuated. We conclude the pulmonary intravascular macrophages are responsible for most of the endotoxin-induced pulmonary hypertension and increased lung microvascular leakiness in sheep, although the unavoidable injury of other intravascular macrophages by the depletion regime may also contribute something.  相似文献   

14.
We determined the effect of H2O2 on both the physiological and biochemical lung changes seen in the adult sheep after endotoxin. Fourteen unanesthetized adult sheep with chronic lung lymph fistula were given Escherichia coli endotoxin (1 microgram/kg) over 30 min. Seven sheep were given catalase (32,500 U/kg body wt) as an intravenous bolus 30 min before endotoxin. Four sheep were given catalase alone. Oxidant lung changes were measured using arterial plasma conjugated dienes and lung tissue malondialdehyde (MDA) content, both reflecting the lipid peroxidation process. Animals were killed 5 h after endotoxin. We found that endotoxin alone caused an early increase in pulmonary arterial pressure lung lymph flow (QL), plasma thromboxane B2, 6-keto-prostaglandin F1 alpha, and plasma conjugated dienes. A decrease in cardiac output and arterial PO2 was also seen. A three- to four-fold increase in protein-rich QL was noted at 3-4 h as well as a continued increase in arterial conjugated dienes. Lung MDA and water content were also significantly increased from base line. Catalase pretreatment significantly attenuated both the physiological changes and the prostanoid and conjugated diene release. Lung MDA and water content also remained at base line. We conclude that H2O2 plays a major role in endotoxin-induced lung injury as well as the resulting lipid peroxidation process.  相似文献   

15.
The influence of endogenous and exogenous atrial natriuretic factor (ANF) on pulmonary hemodynamics was investigated in anesthetized pigs during both normoxia and hypoxia. Continuous hypoxic ventilation with 11% O2 was associated with a uniform but transient increase of plasma immunoreactive (ir) ANF that peaked at 15 min. Plasma irANF was inversely related to pulmonary arterial pressure (Ppa; r = -0.66, P less than 0.01) and pulmonary vascular resistance (PVR; r = -0.56, P less than 0.05) at 30 min of hypoxia in 14 animals; no such relationship was found during normoxia. ANF infusion after 60 min of hypoxia in seven pigs reduced the 156 +/- 20% increase in PVR to 124 +/- 18% (P less than 0.01) at 0.01 microgram.kg-1.min-1 and to 101 +/- 15% (P less than 0.001) at 0.05 microgram.kg-1.min-1. Cardiac output (CO) and systemic arterial pressure (Psa) remained unchanged, whereas mean Ppa decreased from 25.5 +/- 1.5 to 20.5 +/- 15 mmHg (P less than 0.001) and plasma irANF increased two- to nine-fold. ANF infused at 0.1 microgram.kg-1.min-1 (resulting in a 50-fold plasma irANF increase) decreased Psa (-14%) and reduced CO (-10%); systemic vascular resistance (SVR) was not changed, nor was a further decrease in PVR induced. No change in PVR or SVR occurred in normoxic animals at any ANF infusion rate. These results suggest that ANF may act as an endogenous pulmonary vasodilator that could modulate the pulmonary pressor response to hypoxia.  相似文献   

16.
Prostaglandin E2 attenuation of sheep lung responses to endotoxin   总被引:1,自引:0,他引:1  
Prostaglandin (PG) E2 can inhibit inflammatory responses of neutrophils and lymphocytes, including eicosanoid release. Diffuse lung injury after endotoxemia in sheep is accompanied by sequestration of neutrophils and lymphocytes in the lungs, and eicosanoids mediate some of the pathophysiology of the response. To determine whether exogenous PGE2 could prevent the endotoxin response, we measured pulmonary hemodynamics, gas exchange, and lung lymph responses to infusion of Escherichia coli endotoxin (0.5 micrograms/kg iv over 30 min) in unanesthetized sheep in the presence and absence of PGE2 (0.5 micrograms.kg-1.min-1) infused intravenously for 4 h beginning 0.5 h before endotoxin infusion. We also measured lung lymph concentrations of thromboxane B2 (TxB2) and prostacyclin metabolite, 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), by radioimmunoassay and leukotriene B4 (LTB4) by gas chromatography-mass spectrometry. PGE2 decreased endotoxin-induced pulmonary hypertension and hypoxemia and markedly attenuated the lymph flow and lymph protein clearance responses. PGE2 also attenuated endotoxin-induced increases in lung lymph TxB2 and 6-keto-PGF1 alpha and decreased lymph LTB4 flow after endotoxin without decreasing lymph LTB4 concentrations. We conclude that PGE2 infusion attenuates lung dysfunction caused by endotoxemia, possibly by preventing endogenous release of other eicosanoids.  相似文献   

17.
We examined the effects of thromboxane synthetase inhibition with OKY-1581 and OKY-046 on pulmonary hemodynamics and lung fluid balance after thrombin-induced intravascular coagulation. Studies were made in anesthetized sheep prepared with lung lymph fistulas. Pulmonary intravascular coagulation was induced by i.v. infusion of alpha-thrombin over a 15 min period. Thrombin infusion in control sheep resulted in immediate increases in pulmonary artery pressure (Ppa) and pulmonary vascular resistance (PVR), which were associated with rapid 3-fold increase in pulmonary lymph flow (Qlym) and a delayed increase in lymph-to-plasma protein concentration (L/P) ratio, indicating an increase in the pulmonary microvascular permeability to proteins. Thrombin-induced intravascular coagulation also increased arterial thromboxane B2 (a metabolite of thromboxane A2) and 6-keto-PGF1 alpha concentrations (a metabolite of prostacyclin). Both OKY-1581 and OKY-046 prevented thromboxane B2 and 6-keto-PGF1 alpha generation. The initial increments in Ppa and PVR were attenuated in both treated groups. The increases in Qlym were gradual in the treated groups but attained the same levels as in control group. However, the increases in Qlym were associated with decreases in L/P ratio. In both treated groups, the leukocyte count decreased after thrombin infusion but then increased steadily above the baseline value, whereas the leukocyte count remained depressed in the control group after thrombin. These studies indicate that a part of the initial pulmonary vasoconstrictor response to thrombin-induced intravascular coagulation is mediated by thromboxane generation. In addition, thromboxane may also contribute to the increase in lung vascular permeability to proteins that occurs after intravascular coagulation and this effect may be mediated by a thromboxane-neutrophil interaction.  相似文献   

18.
We hypothesized that lipoxygenase metabolites of arachidonic acid might be produced during endotoxin-induced acute respiratory failure (ARF) observed in young pigs. We used radioimmunoassay (RIA) to determine the presence of 5-hydroxyeicosatetraenoic acid (5-HETE), 12-HETE, and 15-HETE in bronchoalveolar lavage fluid (BALF) of saline (n = 12)- and endotoxin (n = 18)-treated pigs. Endotoxin, infused at 5 micrograms/kg for 1 hr followed by 2 micrograms/kg/hr for an average of 3 hrs, caused pulmonary hypertension, a biphasic increase in pulmonary vascular resistance, hypoxemia, bronchoconstriction, leukopenia, and thrombocytopenia. Relative to saline controls, the levels of immunoreactive (i)-5-HETE (816 +/- 209 pg/ml), i-12-HETE (1589 +/- 517 pg/ml), and i-15-HETE (448 +/- 78 pg/ml) were significantly (P less than 0.05) increased in BALF recovered from endotoxemic pigs at postmortem. Relative to control BALF i-HETE concentrations, the endotoxin values were 3.5x, 5.1x, and 2.8x higher for i-5-HETE, i-12-HETE, and i-15-HETE, respectively. We conclude that during porcine endotoxemia, the 5-, 12-, and 15-lipoxygenase pathways are activated and that HETES might be involved in the pathophysiology of endotoxin-induced ARF.  相似文献   

19.
We hypothesized that lipoxygenase metabolites of arachidonic acid might be produced during endotoxin-induced acute respiratory failure (ARF) observed in young pigs. We used radioimmunoassay (RIA) to determine the presence of 5-hydroxyeicosatetraenoic acid (5-HETE), 12-HETE, and 15-HETE in bronchoalveolar lavage fluid (BALF) of saline (n=12)- and endotoxin (n=18)- treated pigs. Endotoxin, infused at 5 μg/kg for 1 hr followed by 2 μg/kg/hr for an average of 3 hrs, caused pulmonary hypertension, a biphasic increase in pulmonary vascular resistance, hypoxemia, bronchoconstriction, leukopenia, and thrombocytopenia. Relative to saline controls, the levels of immunoreactive (i)-5-HETE (816 ± 209 pg/ml), i-12-HETE (1589 ± 517 pg/ml), and i-15-HETE (448 ± 78 pg/ml) were significantly ) increased in BALF recovered from endotoxemic pigs at postmortem. Relative to control BALF i-HETE concentrations, the endotoxin values were 3.5x, 5.1x, and 2.8x higher for i-5-HETE, i-12-HETE, and i-15-HETE, respectively. We conclude that during porcine endotoxemia, the 5-, 12-, and 15-lipoxygenase pathways are activated and that HETES might be involved in the pathophysiology of endotoxin-induced ARF.  相似文献   

20.
Thromboxane (Tx) has been suggested to mediate the pulmonary hypertension of phorbol myristate acetate- (PMA) induced acute lung injury. To test this hypothesis, the relationship between Tx and pulmonary arterial pressure was evaluated in a model of acute lung injury induced with PMA in pentobarbital sodium-anesthetized male mongrel dogs. Sixty minutes after administration of PMA (20 micrograms/kg iv, n = 10), TxB2 increased 10-fold from control in both systemic and pulmonary arterial blood and 8-fold in bronchoalveolar lavage (BAL) fluid. Concomitantly, pulmonary arterial pressure (Ppa) increased from 14.5 +/- 1.0 to 36.2 +/- 3.5 mmHg, and pulmonary vascular resistance (PVR) increased from 5.1 +/- 0.4 to 25.9 +/- 2.9 mmHg.l-1.min. Inhibition of Tx synthase with OKY-046 (10 mg/kg iv, n = 6) prevented the PMA-induced increase in Tx concentrations in blood and BAL fluid but did not prevent or attenuate the increase in Ppa. OKY-046 pretreatment did, however, attenuate but not prevent the increase in PVR 60 min after PMA administration. Pretreatment with the TxA2/prostaglandin H2 receptor antagonist ONO-3708 (10 micrograms.kg-1.min-1 iv, n = 7) prevented the pressor response to bolus injections of 1-10 micrograms U-46619, a Tx receptor agonist, but did not prevent or attenuate the PMA-induced increase in Ppa. ONO-3708 also attenuated but did not prevent the increase in PVR. These results suggest that Tx does not mediate the PMA-induced pulmonary hypertension but may augment the increases in PVR in this model of acute lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号