首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
Glycosaminoglycans (GAGs) are linear carbohydrate polymers containing repetitive sequences of differently sulfated uronic acid and glycosamine residues that are recognized by antibodies raised against proteoglycans. We have developed a method to demonstrate such repetitive sequence motifs in isolated GAG chains immobilized on hydrophobic membranes derivatized with cationic detergents. Six monoclonal antibodies directed against Cs (2B6, 3B3, Cs56, and 1B5), Hs (HepSS), and Ks (5D4) were used to detect native and chondroitinase-generated epitopes in the immobilized GAGs. All antibodies, except 1B5, were able to detect epitopes in both proteoglycans and isolated GAGs. Type of detergent and buffer composition affected the accessibility and the retention of immobilized GAGs. The epitope density, i.e., the number of repetitive epitopes per GAG mass, was estimated as the ratio between antibody (epitope) and Alcian blue (mass) staining measured simultaneously. The epitope profiles, using six antibodies, were different for each sample (CsA, CsC, Ds, Hs, intact cartilage, and human serum). The epitope profile may be used as a structural characteristic of a GAG population. Electrophoretic separation of GAGs based on their glucuronic/ioduronic acid content and O-sulfate/N-sulfate ratio was performed using a diethylene glycol-diaminobutanol agarose gel. The electrophoretic populations were characterized by immunoblotting to detergent-treated membranes.  相似文献   

2.
In biological systems, charged membrane surfaces are surrounded by charged molecules such as electrolyte ions and proteins. Our recent experiments in the systems of giant phospholipid vesicles indicated that some of the blood plasma proteins (macro-ions) may promote adhesion between equally charged membrane surfaces. In this work, theory was put forward to describe an IgG antibody-mediated attractive interaction between negatively charged membrane surfaces which was observed in experiments on giant phospholipid vesicles with cardiolipin-containing membranes. The attractive interactions between negatively charged membrane surfaces in the presence of negatively and positively charged spherical macro-ions are explained using functional density theory and Monte Carlo simulations. Both, the rigorous solution of the variational problem within the functional density theory and the Monte Carlo simulations show that spatial and orientational ordering of macro-ions may give rise to an attractive interaction between negatively charged membrane surfaces. It is also shown that the distinctive spatial distribution of the charge within the macro-ions (proteins) is essential in this process.  相似文献   

3.
A photolabile nitrene precursor, 3-azido-(2,7)-naphthalene disulfonate (ANDS), has been synthesized and used as a membrane-impermeable probe. The aryl azide was nonfluorescent. When activated by light, a highly reactive nitrene was generated which was capable of nonspecific covalent modifications of hydrophilic regions of cell surfaces. The products of the photolysis were highly fluorescent and modified proteins could be identified by their characteristic fluorescence after electrophoresis on sodium dodecyl sulfate polyacrylamide gels. When intact human erythrocytes were labeled with ANDS, Protein 3, the major membrane protein, and the sialoglycoproteins were modified. No proteins of apparent molecular weight greater than Protein 3 were labeled by ANDS, suggesting that none of these membrane components was exposed to the hydrophilic external surface of the red blood cell. When open erythrocyte stroma were labeled with ANDS, virtually all protein bands detectable by Coomassie blue staining could be shown to contain some fluorescence label. The significance of these findings are discussed with relation to the use of various aryl azides as surface labels of membranes.  相似文献   

4.
We applied surface-enhanced Raman spectroscopy (SERS) to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.  相似文献   

5.
The cationic dye, Alcian blue, previously used as a glycoprotein-specific stain on cellulose acetate and polyacrylamide gels, was found to be capable of staining a variety of purified proteins and each of the components of the human platelet presently identifiable with Coomassie blue R or periodic acid-Schiff (PAS) reagent in sodium alkyl sulfate-polyacrylamide gel electrophoretic preparations. Evidence was obtained to indicate that staining of detergent-protein complexes by Alcian blue occurs by virtue of the affinity of the stain for accessible sulfate groups of detergent molecules, especially sodium tetradecyl sulfate, hydrophobically associated with polypeptide chains. Thus, Alcian blue fails to stain nonglycosylated proteins when pure sodium dodecyl sulfate (C12) is used as the detergent, but does so readily when small quantities of sodium tetradecyl sulfate are also present. The advantages of using Alcian blue to determine platelet protein composition and to make quantitative comparisons between bands in sodium alkyl sulfate gels are discussed.  相似文献   

6.
The surface charge of brain endothelial cells forming the blood-brain barrier (BBB) is highly negative due to phospholipids in the plasma membrane and the glycocalyx. This negative charge is an important element of the defense systems of the BBB. Lidocaine, a cationic and lipophilic molecule which has anaesthetic and antiarrhytmic properties, exerts its actions by interacting with lipid membranes. Lidocaine when administered intravenously acts on vascular endothelial cells, but its direct effect on brain endothelial cells has not yet been studied. Our aim was to measure the effect of lidocaine on the charge of biological membranes and the barrier function of brain endothelial cells. We used the simplified membrane model, the bacteriorhodopsin (bR) containing purple membrane of Halobacterium salinarum and culture models of the BBB. We found that lidocaine turns the negative surface charge of purple membrane more positive and restores the function of the proton pump bR. Lidocaine also changed the zeta potential of brain endothelial cells in the same way. Short-term lidocaine treatment at a 10 μM therapeutically relevant concentration did not cause major BBB barrier dysfunction, substantial change in cell morphology or P-glycoprotein efflux pump inhibition. Lidocaine treatment decreased the flux of a cationic lipophilic molecule across the cell layer, but had no effect on the penetration of hydrophilic neutral or negatively charged markers. Our observations help to understand the biophysical background of the effect of lidocaine on biological membranes and draws the attention to the interaction of cationic drug molecules at the level of the BBB.  相似文献   

7.
A staining method for proteins on (positively charged) nylon and nitrocellulose membranes is described. The two-step method uses cationic cacodylate iron colloid which is substituted with Tween 20 at an OD460 nm = 0.5, followed by Perls' reaction with acid potassium ferrocyanide. It stains transferred proteins deep blue with low background. The sensitivity is intermediate between that of conventional stains and AuroDye, the colloidal gold stain. This is the first sensitive staining method for proteins transferred on (positively charged) nylon membranes. These membranes have documented advantages in immunoblotting. It will therefore be a useful tool for correlating the position of bands or spots of proteins detected with overlay assays with the complete electropherogram in a duplicate protein blot.  相似文献   

8.
The aim of this work was to study interactions between cationic carbosilane dendrimers (CBS) and lipid bilayers or monolayers. Two kinds of second generation carbosilane dendrimers were used: NN16 with Si-O bonds and BDBR0011 with Si-C bonds. The results show that cationic carbosilane dendrimers interact both with liposomes and lipid monolayers. Interactions were stronger for negatively charged membranes and high concentration of dendrimers. In liposomes interactions were studied by measuring fluorescence anisotropy changes of fluorescent labels incorporated into the bilayer. An increase in fluorescence anisotropy was observed for both fluorescent probes when dendrimers were added to lipids that means the decreased membrane fluidity. Both the hydrophobic and hydrophilic parts of liposome bilayers became more rigid. This may be due to dendrimers' incorporation into liposome bilayer. For higher concentrations of both dendrimers precipitation occurred in negatively charged liposomes. NN16 dendrimer interacted stronger with hydrophilic part of bilayers whereas BDBR0011 greatly modified the hydrophobic area. Monolayers method brought similar results. Both dendrimers influenced lipid monolayers and changed surface pressure. For negatively charged lipids the monitored parameter changed stronger than for uncharged DMPC lipids. Moreover, NN16 dendrimer interacted stronger than the BDBR0011.  相似文献   

9.
Functional reconstitution of influenza virus envelopes.   总被引:6,自引:0,他引:6       下载免费PDF全文
We have examined several procedures for the reconstitution of influenza virus envelopes, based on detergent removal from solubilized viral membranes. With octylglucoside, no functionally active virosomes are formed, irrespective of the rate of detergent removal: in the final preparation the viral spike proteins appear predominantly as rosettes. Protein incorporation in reconstituted vesicles is improved when a method based on reverse-phase evaporation of octylglucoside-solubilized viral membranes in an ether/water system is employed. However, the resulting vesicles do not fuse with biological membranes, but exhibit only a non-physiological fusion reaction with negatively charged liposomes. Functional reconstitution of viral envelopes is achieved after solubilization with octaethyleneglycol mono(n-dodecyl)ether (C12E8), and subsequent detergent removal with Bio-Beads SM-2. The spike protein molecules are quantitatively incorporated in a single population of virosomes of uniform buoyant density and appear on both sides of the membrane. The virosomes display hemagglutination activity and a strictly pH-dependent hemolytic activity. The virosomes fuse with erythrocyte ghosts, as revealed by a fluorescence resonance energy transfer assay. The rate and the pH dependence of fusion are essentially the same as those of the intact virus. The virosomes also fuse with cultured cells, either at the level of the endosomal membrane or directly with the cellular plasma membrane upon a brief exposure to low pH.  相似文献   

10.
Denny PW  Field MC  Smith DF 《FEBS letters》2001,491(1-2):148-153
The plasma membranes of the divergent eukaryotic parasites, Leishmania and Trypanosoma, are highly specialised, with a thick coat of glycoconjugates and glycoproteins playing a central role in virulence. Unusually, the majority of these surface macro-molecules are attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In mammalian cells and yeast, many GPI-anchored molecules associate with sphingolipid and cholesterol-rich detergent-resistant membranes, known as lipid rafts. Here we show that GPI-anchored parasite macro-molecules (but not the dual acylated Leishmania surface protein (hydrophilic acylated surface protein) or a subset of the GPI-anchored glycoinositol phospholipid glycolipids) are enriched in a sphingolipid/sterol-rich fraction resistant to cold detergent extraction. This observation is consistent with the presence of functional lipid rafts in these ancient, highly polarised organisms.  相似文献   

11.
The present study explores intermediate stages in detergent solubilization of liposomes and Ca2+-ATPase membranes by sodium dodecyl sulfate (SDS) and medium-sized ( approximately C12) nonionic detergents. In all cases detergent partitioning in the membranes precedes cooperative binding and solubilization, which is facilitated by exposure to detergent micelles. Nonionic detergents predominantly interact with the lipid component of Ca2+-ATPase membranes below the CMC (critical micellar concentration), whereas SDS extracts Ca2+-ATPase before solubilization of lipid. At the transition to cooperative binding, n-dodecyl octaethylene glycol monoether (C12E8), Triton X-100, and dodecyldimethylamine oxide induce fusion of small unilamellar liposomes to larger vesicles before solubilization. Solubilization of Ca2+-ATPase membranes is accompanied by membrane fragmentation and aggregation rather than vesicle fusion. Detergents with strongly hydrophilic heads (SDS and beta-D-dodecylmaltoside) only very slowly solubilize liposomal membranes and do not cause liposome fusion. These properties are correlated with a slow bilayer flip-flop. Our data suggest that detergent solubilization proceeds by a combination of 1) a transbilayer attack, following flip-flop of detergent molecules across the lipid bilayer, and 2) extraction of membrane components directly by detergent micelles. The present study should help in the design of efficient solubilization protocols, accomplishing the often delicate balance between preserving functional properties of detergent sensitive membrane proteins and minimizing secondary aggregation and lipid content.  相似文献   

12.
Glycosaminoglycans (GAGs) are a group of negatively charged molecules present in many tissues as components of the extracellular matrix, basement and cellular membranes. This work analysed the ability of this group of substances to interact with human interferon gamma and the effect of those interactions on its biologic activity. A variety of GAGs (heparin, heparan sulfate, chondroitin sulfate and hyaluronic acid), and a related sulfated polysaccharide (dextran sulfate), were found to interact with IFN-gamma as determined by inhibition of the binding of [125I]IFN-gamma to COLO-205 cells and binding to wells coated with GAGs. These interactions were inhibited by synthetic peptides mimicking the sequences of the basic amino acid cluster located at the C-terminal end of mouse and human IFN-gamma, or by poly-L-lysine, suggesting that ionic interactions between the positively-charged C-terminus and negatively charged groups in GAGs were involved. IFN-gamma molecules bound to plate-immobilized or endothelial cell surface GAGs retained biological activity, since they could induce major histocompatibility complex (MHC) class II expression on COLO-205 cells, suggesting that cell surface GAGs might be able to present IFN-gamma to its receptors. These results suggest important regulatory roles for GAGs on the activity of IFN-gamma in vivo.  相似文献   

13.
Ursodeoxycholic acid is widely used as a therapeutic agent for the treatment of cholestatic liver diseases. In these hepatopathies, the bile secretory failure produces accumulation of endogenous, tensioactive bile salts, leading to plasma membrane damage and, eventually, hepatocellular lysis. In the present study, we analyzed the capacity of the ursodeoxycholic acid endogenous metabolite, tauroursodeoxycholate (TUDC), to stabilize the hepatocellular plasma membrane against its transition to the micellar phase induced by the tensioactive bile salt taurochenodeoxycholate (TCDC), the main endogenous bile salt accumulated in cholestasis. The disruption of the plasma membrane was evaluated (i) in isolated hepatocytes, through the release of the enzyme lactate dehydrogenase to the incubation medium and (ii) in isolated plasma membranes, through the self-quenching assay of the membranotropic probe octadecylrhodamine B; this assay allows for detergent-induced transition from membrane bilayer to micelle to be monitored. Our results showed that isolated hepatocytes treated with TUDC are more resistant to TCDC-induced cell lysis. When this effect was evaluated in isolated plasma membranes, the TCDC concentration necessary to reach half of the transition from bilayer to micelle was increased by 22% (p < 0.05). This difference remained even when TUDC was removed from the incubation medium before adding TCDC, thus indicating that TUDC exerted its effect directly on the plasma membrane. When the same experiments were carried out using the non-ionic detergent TX-100 or the cholesterol-complexing detergent digitonin, no protective effect was observed. In conclusion, TUDC prevents selectively the bilayer to micelle transition of the hepatocellular plasma membrane induced by hydrophobic bile salts that typically build up and accumulate in cholestatic processes. Our results suggest that formation of a complex between negatively charged TUDC and cholesterol in the membrane favours repulsion of negatively charged detergent bile salts, thus providing a basis for the understanding of the TUDC protective effects.  相似文献   

14.
Penetratin is a short, basic cell-penetrating peptide able to induce cellular uptake of a vast variety of large, hydrophilic cargos. We have reassessed the highly controversial issue of direct permeation of the strongly cationic peptide across negatively charged lipid membranes. Confocal laser scanning microscopy on rhodamine-labeled giant vesicles incubated with carboxyfluorescein-labeled penetratin yielded no evidence of transbilayer movement, in contradiction to previously reported results. Confocal fluorescence spectroscopy on black lipid membranes confirmed this finding, which was also not affected by application of a transmembrane electric potential difference. A novel dialysis assay based on tryptophan absorbance and fluorescence spectroscopy demonstrated that the permeability of small and large unilamellar vesicles to penetratin is <10(-13) m/s. Taken together, the results show that penetratin is not capable of overcoming model membrane systems irrespective of the bilayer curvature or the presence of a transmembrane voltage. Thus, direct translocation across the hydrophobic core of the plasma membrane cannot account for the efficient uptake of penetratin into live cells, which is in accord with recent in vitro studies underlining the importance of endocytosis in the internalization process of cationic cell-penetrating peptides.  相似文献   

15.
Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides-in particular a CAMP with Lysine-Leucine-Lysine repeats (termed KLK)-affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents.  相似文献   

16.
A method was developed for direct assessment of changes in cytoplasmic volume and permeability of plasma membranes of intact cells to divalent cations. This technique, which ultilized an amphipathic spin label partitioning between intracellular aqueous and hydrophobic environments, allowed estimates of the proportion of cells in a homogenous population sustaining membrane damage associated with Ni+2 and water permeability and the rate at which such damage was induced. Several specific effects of cationic and anionic surfactants on the macroconidial plasma membranes of Fusarium sulphureum Schlect (isolate 1) were distinguished on the basis of detergent concentration and charge. The induction of water uptake by the cells was found to be an effect of dodecylguanidine acetate (Dodine), a cationic fungicide, at low concentration. At higher concentrations (greater than 5 X 10(-5) M) both the impermeability of the plasma membrane to divalent cations and the ability to accumulate actively L-phenylalanine were lost irreversibly and cell lysis occurred above 5 X 10(-4) M. Sodium dodecyl sulfate eliminated divalent cation impermeability more rapidly than Dodine but was less effective in inhibiting active transport function. An antagonistic effect between cationic and anionic detergents was observed.  相似文献   

17.
The binding of penetratin, a peptide that has been found useful for cellular delivery of large hydrophilic molecules, to negatively charged vesicles was investigated. The surface charge density of the vesicles was varied by mixing zwitterionic dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylglycerol (DOPG) at various molar ratios. The extent of membrane association was quantified from tryptophan emission spectra recorded during titration of peptide solution with liposomes. A singular value decomposition of the spectral data demonstrated unambiguously that two species, assigned as peptide free in solution and membrane-bound peptide, respectively, account for the spectral data of the titration series. Binding isotherms were then constructed by least-squares projection of the titration spectra on reference spectra of free and membrane-bound peptide. A model based on the Gouy-Chapman theory in combination with a two-state surface partition equilibrium, separating the electrostatic and the hydrophobic contributions to the binding free energy, was found to be in excellent agreement with the experimental data. Using this model, a surface partition constant of approximately 80 M(-)(1) was obtained for the nonelectrostatic contribution to the binding of penetratin irrespective of the fraction of negatively charged lipids in the membrane, indicating that the hydrophobic interactions are independent of the surface charge density. In accordance with this, circular dichroism measurements showed that the secondary structure of membrane-associated penetratin is independent of the DOPC/DOPG ratio. Experiments using vesicles with entrapped carboxyfluorescein showed that penetratin does not form membrane pores. Studies of the cationic peptide penetratin are complicated by extensive adsorption to surfaces of quartz and plastics. By modification of the quartz cell walls with the cationic polymer poly(ethylenimine), the peptide adsorption was reduced to a tolerable level. The data analysis method used for construction of the binding isotherms eliminated errors emanating from the remaining peptide adsorption, which otherwise would prevent a proper quantification of the binding.  相似文献   

18.
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.  相似文献   

19.
As a consequence of their poor solubility during isoelectric focusing, integral membrane proteins are generally absent from two-dimensional gel proteome maps. In order to analyze the yeast plasma membrane proteome, a plasma membrane purification protocol was optimized in order to reduce contaminating membranes and cytosolic proteins. Specifically, the new fractionation scheme largely depleted the plasma membrane fraction of cytosolic proteins by deoxycholate stripping and ribosomal proteins by sucrose gradient flotation. The plasma membrane complement was resolved by two-dimensional electrophoresis using the cationic detergent cetyl trimethyl ammonium bromide in the first, and sodium dodecyl sulfate in the second dimension, and fifty spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectometry. In spite of the presence of still contaminating ribosomal proteins, major proteins corresponded to known plasma membrane residents, the ABC transporters Pdr5p and Snq2p, the P-type H(+)-ATPase Pma1p, the glucose transporter Hxt7p, the seven transmembrane-span Mrh1p, the low affinity Fe(++) transporter Fet4p, the twelve-span Ptr2p, and the plasma membrane anchored casein kinase Yck2p. The four transmembrane-span proteins Sur7p and Nce102p were also present in the isolated plasma membranes, as well as the unknown protein Ygr266wp that probably contains a single transmembrane span. Thus, combining subcellular fractionation with adapted two-dimensional electrophoresis resulted in the identification of intrinsic plasma membrane proteins.  相似文献   

20.
Structural organization of (Na+ + K+)-ATPase in purified membranes   总被引:2,自引:2,他引:2       下载免费PDF全文
The structural organization of crystalline, membrane-bound (Na+ + K+)-ATPase was studied by negative staining and thin sectioning. The enzyme molecules were induced to form crystalline arrays within fragments of membrane by incubation in defined ionic conditions. The enzyme remained fully active after crystallization. Negative staining and computer processing of images of the crystalline specimens identified two discrete crystalline arrays. The dimensions of the unit cell of one of the arrays were large enough to accommodate an alpha beta protomer; those of the other array, an (alpha beta)2 diprotomer . Thin sections of the crystalline fraction contained a unique membrane complex that was formed from two apposed plasma membranes. The paired membranes in this complex were separated by a center-to-center space of 15 nm containing evenly spaced septa that connected the membrane surfaces; the overall thickness of the entire structure was 22-25 nm. The agglutinin from Ricinus communis, a lectin that binds to the carbohydrate moiety of the beta-subunit of (Na+ + K+)-ATPase, decorated the free surfaces of the complex. Therefore, this complex of paired membranes is the result of interactions between the cytoplasmic domains of the enzyme. From measurements of the dimensions of these structures, we estimate the overall length of the enzyme to be approximately 11.5 nm along the axis perpendicular to the plane of the membrane, and the molecular protrudes more (approximately 5 nm) on the cytoplasmic surface than on the extracytoplasmic surface (approximately 2 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号