首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li YQ  Mareck A  Faleri C  Moscatelli A  Liu Q  Cresti M 《Planta》2002,214(5):734-740
Pectin methylesterases (PMEs) were detected in tobacco ( Nicotiana tabacum) pollen tubes grown in vitro. Seven PME isoforms exhibiting a wide isoelectric-point (pI) range (5.3-9.1) were found in crude extracts of pollen tubes. These isoforms were mainly retrieved in supernatants after low- and high-speed separation of the crude extract. Two isoforms, with pIs 5.5 and 7.3 and molecular weight about 158 kDa, were detected by immunoblotting with anti-flax PME antiserum. Localization of pectins and PME isoforms in pollen tubes was investigated by immunogold labelling with JIM5 monoclonal antibodies and anti-flax PME antiserum, respectively. In germinated pollen grains, two PME isoforms were mainly detected in the exine, Golgi apparatus and secretory vesicles. In pollen tubes the same two PME isoforms were distributed along the outer face of the plasma membrane in the vicinity of the inner layer of the cell wall, in the Golgi and around secretory vesicles. In pollen grains, PME isoforms were, in some cases, mixed with acidic pectins in proximity to the outer surface of the plasma membrane. In pollen tubes the presence of PMEs inside secretory vesicles carrying esterified pectins supports the hypothesis that, during pollen tube growth, PMEs could be transferred by secretory vesicles in a precursor form and be activated at the tip where exocytosis takes place.  相似文献   

2.
The distribution of cellulose and callose in the walls of pollen tubes and grains of Nicotiana tabacum L. was examined by electron microscopy using gold-labelled cellobiohydrolase for cellulose and a (1,3)-β-D-glucan-specific monoclonal antibody for callose. These probes provided the first direct evidence that cellulose co-locates with callose in the inner, electron-lucent layer of the pollen-tube wall, while both polymers are absent from the outer, fibrillar layer. Neither cellulose nor callose are present in the wall at the pollen-tube tip or in cytoplasmic vesicles. Cellulose is first detected approximately 5–15 μm behind the growing tube tip, just before a visible inner wall layer commences, whereas callose is first observed in the inner wall layer approximately 30 μm behind the tip. Callose was present throughout transverse plugs, whereas cellulose was most abundant towards the outer regions of these plugs. This same distribution of cellulose and callose was also observed in pollen-tube walls of N. alata Link et Otto, Brassica campestris L. and Lilium longiflorum Thunb. In pollen grains of N. tabacum, cellulose is present in the intine layer of the wall throughout germination, but no callose is present. Callose appears in grains by 4 h after germination, increasing in amount over at least the first 18 h, and is located at the interface between the intine and the plasma membrane. This differential distribution of cellulose and callose in both pollen tubes and grains has implications for the nature of the β-glucan biosynthetic machinery. Received: 20 February 1988 / Accepted: 25 March 1998  相似文献   

3.
Summary Fluorescence microscopy was used to visualize microtubules (Mts) and chromatin in an effort to further clarify the relationship between the generative cell (GC) and vegetative nucleus (VN) in pollen tubes of tobacco. Prominent Mt bundles are present in one or more GC extensions that can be finger-like or lamellar in form. While the VN is positioned distal to the GC in most cases, it can also straddle the cell or lie proximal to it. In all cases, however, extensions embrace, penetrate or clasp the VN. GC Mts are reorganized during the formation of the mitotic apparatus, and cell extensions are fully or partially withdrawn. By telophase in many pollen tubes, the VN shifts to a more proximal position and appears to adhere to the region of the GC containing the phragmoplast. Application of oryzalin leads to the disorganization of Mts, changes in cell shape, including the loss or alteration of cell extensions, and separation of the GC and VN in some cases. However, the position and polarity of the VN is maintained in most pollen tubes. The results indicate that GC Mts and cell extensions play a role in the association with the VN. However, the relationship appears to be controlled by other factors as well. Attention should now be directed at potential interactions involving the VN envelope, vegetative plasma membrane, GC plasma membrane and extracellular matrix.Abbreviations GC Generative cell - MGU male germ unit - Mt microtubule - VN vegetative nucleus  相似文献   

4.
 It is known that pollen tubes contain two high molecular weight polypeptides which share some biochemical and immunological properties with dynein heavy chains. This paper reports data on the subcellular localization of the two dynein heavy chain-related polypeptides during pollen tube growth. Immunofluoresence studies using a purified antibody (Dy-1) raised against a synthetic peptide reproducting the P-loop conserved sequence of dynein heavy chains showed spot-like structures, with a characteristic distribution pattern that depended on the tube length. Biochemical evidence confirmed the presence of dynein heavy chain-related bands in the pollen tube membrane fraction. The association of proteins carrying dynein heavy chain-related polypeptides to cell membranes was affected by detergent (Triton×100), whereas other stripping agents, like NaCl and Na2CO3, did not significantly influence the interaction of dynein heavy chain-related doublet with their cytoplasmic targets. These data suggest that dynein heavy chain-related polypeptides associate with membranous organelles within the vegetative cell of Nicotiana tabacum pollen tubes, implying their involvement in the cytoplasmic distribution of these organelles. Received: 22 May 1997 / Revision accepted: 11 November 1997  相似文献   

5.
6.
The regulation of pollen tube growth by the phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2) ) is not well understood. The Arabidopsis genome encodes two type A phosphatidylinositol-4-phosphate (PI4P) 5-kinases, PIP5K10 and PIP5K11, which are exclusively expressed in pollen and produce PtdIns(4,5)P(2) in vitro. Fluorescence-tagged PIP5K10 and PIP5K11 localized to lateral subapical plasma membrane microdomains in tobacco pollen tubes in a pattern closely resembling the distribution of PtdIns(4,5)P(2,) with the exception of notably weaker association at the extreme apex. Overexpression of PIP5K10 or PIP5K11 in tobacco pollen tubes resulted in severe tip swelling and altered actin fine structure similar to that reported for overexpression of tobacco Nt-Rac5, a monomeric GTPase known to regulate the actin cytoskeleton. Increased sensitivity of Arabidopsis pip5k10 pip5k11 double mutant pollen tubes to Latrunculin B (LatB) further supports a role for type A PI4P 5-kinases in controlling the actin cytoskeleton. Despite the disruption of both its type A PI4P 5-kinases, the pip5k10 pip5k11 double mutant was fertile, indicating that one of the remaining type B PI4P 5-kinase isoforms might be functionally redundant with PIP5K10 and PIP5K11. Antagonistic effects of PIP5K11 and the Nt-Rac5-specific guanine nucleotide dissociation inhibitor, Nt-RhoGDI2, on tip swelling observed in coexpression-titration experiments indicate a link between PtdIns(4,5)P(2) and Rac-signaling in pollen tubes. The data suggest that type A PI4P 5-kinases influence the actin cytoskeleton in pollen tubes in part by counteracting Nt-RhoGDI2, possibly contributing to the control of the pool of plasma membrane-associated Nt-Rac5.  相似文献   

7.
8.
In plant cells, microtubule-based motor proteins have not been characterized to the same degree as in animal cells; therefore, it is not yet clear whether the movement of organelles and vesicles is also dependent on the microtubular cytoskeleton. In this work the kinesinimmunoreactive homologue from pollen tubes of Nicotiana tabacum L. has been purified and biochemically characterized. The protein preparation mainly contained a polypeptide with a relative molecular weight of approx. 100 kDa. This polypeptide bound to animal microtubules in an ATP-dependent manner and it further copurified with an ATPase activity fourfold-stimulated by the presence of microtubules. In addition, the sedimentation coefficient (approx. 9S) was similar to those previously shown for other kinesins. Immunofluorescence analyses revealed a partial co-distribution of the protein with microtubules in the pollen tube. These data clearly indicate that several properties of the kinesin-immunoreactive homologue are similar to those of kinesin proteins, and suggest that molecular mechanisms analogous to those of animal cells may drive the microtubule-based motility of organelles and vesicles in plants.Abbreviations AE-LPLC anion-exchange low-pressure liquid chromatography - AMPPNP 5-adenylylimidodiphosphate - PKH pollen kinesin homologue - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

9.
Ungerminated pollen of Nicotiana tabacum contains a pectolytic enzyme which has its optimal activity between pH 5.5 and 6.5. Pectic lyase was not detected.  相似文献   

10.
Summary Tobacco plants (Nicotiana tabacum L.) of four varieties (Badischer Burley, White Burley, Techne, Kupchunos) were raised at different temperatures and daylengths and the effect of genotype on embryogenic pollen grain formation in situ and on pollen plant formation in anther and pollen cultures from these plants was studied. Genotype controlled embryogenic pollen grain and pollen plant formation by defining productivity under standard growth conditions (long days at 24 °C). Kupchunos was the most productive variety, followed by White Burley, Techne, and Badischer Burley. Furthermore, genotype defined which environmental factor was able to affect embryogenic pollen grain and pollen plant formation and also to which degree. In anther cultures, in addition to these effects, genotype controlled the formation of (an) inhibitory substance(s) in the anther wall in interaction with the plant growth conditions. In Badischer Burley and Techne, inhibitor action could be prevented by isolation of the pollen after one week of anther culture. Finally, direct pollen cultures in Badischer Burley and Techne produced embryos were only when the pollen was isolated from nearly mature anthers, while in White Burley and Kupchunos, embryos also produced at earlier stages and at higher yields. This indicated that genotype controls the time when the embryogenic pollen grains become ready to divide. The results are discussed in relation to strategies to overcome recalcitrance of species and genotypes.  相似文献   

11.
Nicotiana tabacum shows unilateral pollen-pistil incongruity with N. rustica. If N. tabacum is pollinated with N. rustica, growth of the pollen tube is arrested in the middle of the style, and abundant callose deposition, tube swelling and tube winding are observed. An attempt was made to clarify the genomic factors responsible for this pollen-pistil incongruity. N. tabacum was pollinated with N. paniculata or N. undulata, progenitors of amphidiploid N. rustica. When pollinated with N. undulata, growth of the pollen tube was arrested in the middle of the style and showed abnormal morphology similar to that with N. rustica, but when pollinated with N. paniculata the pollen tube reached near the base of the style and was almost normal in appearance. These observations suggest that the factors responsible for the pollen tube abnormality of N. rustica are derived from the N. undulata genome.We also used N. sylvestris, N. glutinosa and N. otophora as pistilar parents and N. rustica or its progenitors as pollen parents to examine the genomic factors of the pistilate parents. The pollen tube features of these three species in the pistils of N. sylvestris were similar to those in the pistil of N. tabacum. Received: 25 October 1999 / Revision accepted: 2 February 2000  相似文献   

12.
Ultrastructural studies of the pollen tubes of Nicotiana sylvestris grown in the pistil revealed an extensive development of plasmatubules formed by evaginations of the plasma membrane. The plasmatubules occurred as twisted tubular structures in the periplasmic space along the tube wall and, in cross section, exhibited circular profiles with an outer diameter of 28±4 nm. They were also seen in deep, pocket-like invaginations of the plasma membrane and in this case the profiles had an outer diameter of 34±8 nm. In the pocket-like invaginations they were partially branched and often closely packed to form groups with obvious patterns. The enlargement of the plasma-membrane area resulting from plasmatubules formed along the tube wall was about six-to tenfold. Pollen tubes grown in vitro exhibited poorly developed plasmatubules. It is suggested that the large extension of the plasma membrane could enhance the uptake of nutrients, and thus might be responsible for the comparatively fast growth of pollen tubes in the pistil. Moreover, it is also assumed that the turnover rate of the Golgi apparatus must be higher in pollen tubes growing in vivo than in vitro, in order to provide a sufficient amount of membrane for the formation of the plasma membrane with its tubular modifications.  相似文献   

13.
In flowers of Nicotiana tabacum L., pollination induces a transient increase in ethylene production by the pistil. The characteristic dynamics of the increase in ethylene correspond to the main steps of the pollen-tube journey into the pistil: penetration into the stigma, growth through the style, entry into the ovary and fertilization. Ethylene is synthesized de novo in the pistil, and its production is reduced in the dark. Ethylene production was monitored in tobacco flowers after pollination with incongruous pollen from three different Nicotiana species, N. rustica, N. repanda and N. trigonophylla, and with pollen from Petunia hybrida. Pollen from all of these different sources can germinate on the stigma surface but each pollen type shows a different behavior and efficiency in penetrating the pistil tissues. Thus, these different crosses provided a model with which to study the response of the pistil to pollination and fertilization. Ethylene evolution upon pollination in tobacco differed in each cross, suggesting that ethylene is correlated with the response to pollen tube growth in the tobacco flower.  相似文献   

14.
A major question in pollen tube growth in planta remains: do the pollen tube walls form a barrier to interaction with the environment? Using cryo‐FESEM, we directly assessed the 3D construction and porosity of tobacco pollen tube walls. Fractured mature primary walls showed a 40–50 nm spaced lattice of continuous fibers interconnected by short rods in the primary wall. These observations agree with TEM observations of sectioned walls. In the secondary callose wall, for which no structure is visible using TEM, cryo‐FESEM also revealed a 50 nm lattice consisting of longer fibers, approximately 10–15 nm wide, with rod‐like, thinner interconnections at angles of approximately 90° with the longer fibers. Such architecture may reflect functional needs with respect to porosity and mechanical strength. The wall does not form a mechanical barrier to interaction with the environment and is gained at low cost. Cryo‐FESEM additionally revealed another special feature of the wall: the tubes were tiled with scales or rings that were highly conspicuous after pectin extraction with EDTA. These rings cause the typical banding patterns of pectin that are commonly seen in pollen tubes during oscillatory growth, as confirmed by staining with toluidine blue as well as by DIC microscopy. Growth analysis by VEC‐LM showed that the ring‐ or scale‐like structures of the primary wall consist of material deposited prior to the growth pulses. The alternating band pattern seen in the callose wall is probably imposed by constrictions resulting from the rings of the primary wall.  相似文献   

15.
Proteins and peroxidases produced by the ovules and placenta of tobacco (Nicotiana tabacum L.) in response to compatible pollination were analyzed by two-dimensional polyacrylamide gel electrophoresis and by enzyme staining in flat-bed native isoelectric focusing gels. For two-dimensional gels, ovaries were sampled at 36 h after pollination, at which time pollen tubes have penetrated much of the length of the style but have not yet entered the ovary. At least 11 major proteins from pollinated ovaries had no detectable counterparts in unpollinated ovaries. These showed a range of molecular mass and pI. For peroxidase isozyme assays, ovaries were sampled at 0, 12, 24, 36 and 48 h after pollination. At 45–50 h, pollen tubes were beginning to enter the top of the ovary but could still be separated from the ovules and placenta during sampling. Ovules and placentae from unpollinated pistils showed only one form of peroxidase, whereas those from pollinated pistils showed additional isozymes at pH 5.4 and pH 10.0. Both new isozymes increased in staining intensity over the first 36 h after pollination. At 48 h, however, the acidic peroxidase had continued to increase, while the basic component had declined so as to be barely detectable. The observations are discussed in relation to accumulating evidence that some form of pollination-induced signal reaches the ovary ahead of the advancing pollen tubes. The nature of this signal and possible involvement of peroxidases are also briefly discussed.  相似文献   

16.
Electron-microscopic analysis of cytomictic channels formation in the pollen mother cells in tobacco at the stage of meiosis prophase I of anthers has been conducted. The cytomictic channels in the pollen mother cells in tobacco have been established to be formed under the basis of both single plasmodesmata and de novo with the involvement of specific electron-dense bodies. The role of cytomictic channels in microsporogenesis regulation is discussed.  相似文献   

17.
Pollen-tube cell walls are unusual in that they are composed almost entirely of callose, a (1,3)--linked glucan with a few 6-linked branches. Regulation of callose synthesis in pollen tubes is under developmental control, and this contrasts with the deposition of callose in the walls of somatic plant cells which generally occurs only in response to wounding or stress. The callose synthase (uridine-diphosphate glucose: 1,3--d-glucan 3--d-glucosyl transferase, EC 2.4.1.34) activities of membrane preparations from cultured pollen tubes and suspension-cultured cells of Nicotiana alata Link et Otto (ornamental tobacco) exhibited different kinetic and regulatory properties. Callose synthesis by membrane preparations from pollen tubes was not stimulated by Ca2+ or other divalent cations, and exhibited Michaelis-Menten kinetics only between 0.25 mM and 6 mM uridine-diphosphate glucose (K m 1.5–2.5 mM); it was activated by -glucosides and compatible detergents. In contrast, callose synthesis by membrane preparations from suspension-cultured cells was dependent on Ca2+, and in the presence of 2 mM Ca2+ exhibited Michaelis-Menten kinetics above 0.1 mM uridine-diphosphate glucose (K m 0.45 mM); it also required a -glucoside and low levels of compatible detergent for full activity, but was rapidly inactivated at higher levels of detergent. Callose synthase activity in pollen-tube membranes increased ten fold after treatment of the membranes with trypsin in the presence of detergent, with no changes in cofactor requirements. No increase in callose synthase activity, however, was observed when membranes from suspension-cultured cells were treated with trypsin. The insoluble polymeric product of the pollen-tube enzyme was characterised as a linear (1,3)--d-glucan with no 6-linked glucosyl branches, and the same product was synthesised irrespective of the assay conditions employed.Abbreviations Ara l-arabinose - CHAPS 3-[(3-cholamidopropyl)dimethylammonia]-1-propane sulphonic acid - DAP diphenylamine-aniline-phosphoric acid stain - Gal d-galactose - Glc d-glucose - Man d-mannose - Mes 2-(N-morpholino)ethane sulphonic acid - Rha d-rhamnose - Rib d-ribose - TFA trifluoroacetic acid - UDPGlc uridine-diphosphate glucose - Xyl d-xylose This research was supported by funds from a Special Research Centre of the Australian Research Council. H.S. was funded by a Melbourne University Postgraduate Scholarship and an Overseas Postgraduate Research Studentship; S.M.R. was supported by a Queen Elizabeth II Research Fellowship. We thank Bruce McGinness and Susan Mau for greenhouse assistance, and Deborah Delmer and Adrienne Clarke for advice and encouragement throughout this project.  相似文献   

18.
Regulation of expression of a 69-kDa glycoprotein which occurs abundantly in tobacco (Nicotiana tabacum L.) pollen tubes but is absent in ungerminated pollen has been studied in vitro by means of a coupled translation/glycosylation system with RNA isolated from various stages of pollen development. Pollen mRNA could be translated in a rabbit reticulocyte lysate and the products glycosylated with canine pancreatic microsomal membranes. The electrophoretic pattern of translation products obtained with pollen-tube RNA showed a prominent polypeptide with an apparent molecular mass of 58 kDa. In the presence of the canine pancreatic microsomal membranes this polypeptide was glycosylated, producing the 69-kDa glycoprotein. The presence of mRNA encoding the 58-kDa precursor polypeptide was also demonstrated in ungerminated pollen and in young mid-binucleate pollen isolated from anthers. Initiation of synthesis of the 69-kDa glycoprotein at the onset of pollen germination thus occurs through unmasking of the mRNA transcribed during pollen differentiation and stored during pollen maturation and dormancy in an inactive state.Abbreviation pI isoelectric point  相似文献   

19.
S-RNases are implicated in both inter- and intra-specific pollen rejection in Nicotiana. At least two mechanisms contribute to S-RNase dependent rejection of pollen from self compatilble species such as Nicotiana plumbaginifolia and N. tabacum. Cloned S-RNases from self incompatible N. alata expressed in styles of self compatible N. tabacum cause rejection of N. tabacum pollen through a factor-independent mechanism. However, rejection of N. plumbaginifolia pollen occurs only when S-RNases are expressed in conjunction with non-S-RNase factors from N. alata (factor-dependent pollen rejection). Here, we compared the pollen rejection activity of four RNases in these two systems. Recombinant RNase expression levels in the factor-dependent N. plumbaginifolia system were insufficient to cause pollen rejection. However, three S-RNases were active in the factor-independent N. tabacum pollen rejection system. This system shows the broadest specificity of any system so far examined. However, RNaseI from E. coli could not cause N. tabacum pollen rejection. Thus, RNase activity alone is not sufficient for pollen rejection. Our results suggest that S-RNases are specially adapted to function in pollen rejection. Received: 15 December 2000 / Accepted: 1 May 2001  相似文献   

20.
Chen D  Zhao J 《Physiologia plantarum》2008,134(1):202-215
Although many studies have emphasized the importance of auxin in plant growth and development, the thorough understanding of its effect on pollen–pistil interactions is largely unknown. In this study, we investigated the role of free IAA in pollen–pistil interactions during pollen germination and tube growth in Nicotiana tabacum L. through using histo and subcellular immunolocalization with auxin monoclonal antibodies, quantification by HPLC and ELISA together with GUS staining in DR5::GUS -transformed plants. The results showed that free IAA in unpollinated styles was higher in the apical part and basal part than in the middle part, and it was more abundant in the transmitting tissue (TT). At the stage of pollen germination, IAA reached its highest content in the stigma and was mainly distributed in TT. After the pollen tubes entered the styles, the signal increased in the part where pollen tubes would enter and then rapidly declined in the part where pollen tubes had penetrated. Subcellular localization confirmed the presence of IAA in TT cells of stigmas and styles. Accordingly, a schematic diagram summarizes the changing pattern of free IAA level during flowering, pollination and pollen tube growth. Furthermore, we presented evidence that low concentration of exogenous IAA could, to a certain extent, facilitate in vitro pollen tube growth. These results suggest that IAA may be directly or indirectly involved in the pollen–pistil interactions. Additionally, some improvements of the IAA immunolocalization technique were made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号