首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to carcinogens such as 4-aminobiphenyl (4ABP), found in tobacco smoke and other combustion products, results in the formation of detectable levels of 4ABP-hemoglobin adducts in cord blood and 4ABP-DNA adducts in conceptal tissue. The presence of these adducts requires that the parent compound undergo biotransformation. When exposure occurs in utero, the maternal, placental and conceptal tissues are all possible sites for the formation of DNA-reactive products. One step in the activation of 4ABP is catalyzed by N-acetyltransferases (NAT). The expression of NAT was evaluated in gestational day (GD) 10-18 conceptal tissues from C57Bl/6 mice. There was a quantitative increase in NAT1 and NAT2 mRNAs with increasing gestational age that was also reflected in age-related changes in functional protein measured as 4ABP-NAT activity. The ability to acetylate 4ABP increased from GD10 to 18 and was lower in conceptal tissue than in adult liver. The potential toxicologic significance of prenatal NAT expression was assessed by formation of 4ABP-DNA adducts. At GD 15 and 18, 4ABP-DNA adducts were detected by immunohistochemistry 24 h following a single oral dose of 120 mg 4ABP/kg. Based on nuclear fluorescence, conceptual 4ABP-DNA adducts were present at similar levels at GD15 and 18. Levels of 4ABP-DNA adducts were significantly higher in maternal liver compared with the conceptus. Results from this study show that both NAT genes were expressed prenatally and that functional enzymes were present. These data support the possible in situ generation of reactive products by the conceptus. The relative contributions of maternal activation of 4ABP and that by the conceptus remain to be determined.  相似文献   

2.
Inbred BALB/c, A/J, and C57B1/6J mice were infected with Trypanosoma congolense (Trans Mara strain), clone TC13, and monitored for parasitemia, survival times, and plasma levels of complement components C3, C5, factor B, and factor H. Parasitemia was highest in BALB/c, intermediate in A/J, and lowest in C57Bl/6J mice. The mean survival times were 11.5 +/- 0.9, 23.8 +/- 2.3, and 119 +/- 26 days for BALB/c, A/J, and C57Bl/6J mice, respectively. Preinfection levels of factor H were significantly correlated with survival times (r = 0.7722, P less than 0.001). Marked differences were observed between the plasma levels of C3, factor B, and factor H in the 3 mouse strains following infection. Complement C5 levels showed the fewest changes. In the initial postinfection period, BALB/c mice had highest increases in the levels of the 4 complement proteins but also had the greatest declines toward the end of the infection. Factor H levels showed a biphasic increase in BALB/c and C57Bl/6J, but not in A/J mice, with peaks at days 3 and 9. Complement C3 levels declined in all mice toward the terminal stage of the disease. In the late stages of infection, factor B levels markedly decreased in BALB/c but significantly increased in C57Bl/6J mice. Factor B levels measured at the terminal stages in BALB/c, A/J, and C57Bl/6J were correlated positively with their respective survival times (r = 0.714, P less than 0.01). The results suggest that genetic differences in the alternative complement pathway might affect the resistance to T. congolense infections.  相似文献   

3.
Interindividual and interstrain variations in cholesterol absorption efficiency occur in humans and animals. We investigated physiological biliary and small intestinal factors that might determine variations in cholesterol absorption efficiency among inbred mouse strains. We found that there were significant differences in cholesterol absorption efficiency measured by plasma, fecal, and lymphatic methods: <25% in AKR/J, C3H/J, and A/J strains; 25-30% in SJL/J, DBA/2J, BALB/cJ, SWR/J, and SM/J strains; and 31-40% in C57L/J, C57BL/6J, FVB/J, and 129/SvJ strains. In (AKRxC57L)F1 mice, the cholesterol absorption efficiency (31 +/- 6%) mimicked that of the C57L parent (37 +/- 5%) and was significantly higher than in AKR mice (24 +/- 4%). Although biliary bile salt compositions and small intestinal transit times were similar, C57L mice displayed significantly greater bile salt secretion rates and pool sizes than AKR mice. In examining lymphatic cholesterol transport in the setting of a chronic biliary fistula, C57L mice displayed significantly higher cholesterol absorption rates compared with AKR mice. Because biliary and intestinal transit factors were accounted for, we conclude that genetic variations at the enterocyte level determine differences in murine cholesterol absorption efficiency, with high cholesterol absorption likely to be a dominant trait. This study provides baseline information for identifying candidate genes that regulate intestinal cholesterol absorption at the cellular level.  相似文献   

4.
The P2X(7) receptor (P2X(7)R) is a two transmembrane receptor that is highly expressed on the surface of immune cells. Loss of function polymorphisms in this receptor have been linked to increased susceptibility to intracellular pathogens. P2X(7)R gene knockout (P2X(7)R(-/-); on a C57Bl/6J background), C57Bl/6J and BALB/c mice were infected with the avirulent ME49 strain of the intracellular parasite, Toxoplasma gondii, and susceptibility determined by monitoring weight loss. P2X(7)R(-/-) mice lost significantly more weight than C57Bl/6J mice from day 8p.i. C57Bl/6J, in turn, lost significantly more weight than BALB/c mice. Thus, by day 10p.i., P2X(7)R(-/-) mice had lost 5.7 ± 0.7% of their weight versus 2.4 ± 0.6% for C57Bl/6J mice, whereas BALB/c mice had gained 1.9 ± 0.5%; by day 12p.i., P2X(7)R(-/-) mice had lost 15.1±0.6%, C57Bl/6J had lost 10.1±0.8% and BALB/c had lost 4.8 ± 0.8% of their weight. Neither parasite burden nor liver pathology was greater in the P2X(7)R(-/-) mice than in C57Bl/6J mice but BALB/c mice had significantly smaller numbers of parasites and less pathology in their livers than these strains. Absence of the P2X(7) receptor did not affect IFN-γ, IL-12, IL-1β, monocyte chemoattractant protein-1 (MCP-1) or TNF production. However, both P2X(7)R(-/-) and C57Bl/6J mice produced more IL-1β and TNF than BALB/c mice. There was one important point of differentiation between the P2X(7)R(-/-) and C57Bl/6J mice, namely the significantly enhanced and prolonged production of nitric oxide, accompanied by delayed production of IL-10 in the P2X(7)R-deficient mice.  相似文献   

5.
Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.  相似文献   

6.
We measured the combined area of posterior medial barrel subfield (PMBSF) and anterior lateral barrel subfield (ALBSF) areas in four common inbred strains (C3H/HeJ, A /J, C57BL /6J, DBA/2J), B6D2F1, and ten recombinant inbred (RI) strains generated from C57BL/6J and DBA/2J progenitors (BXD) as an initial attempt to examine the genetic influences underlying natural variation in barrel field size in adult mice. These two subfields are associated with the representation of the whisker pad and sinus hairs on the contralateral face. Using cytochrome oxidase labeling to visualize the barrel field, we measured the size of the combined subfields in each mouse strain. We also measured body weight and brain weight in each strain. We report that DBA/2J mice have a larger combined PMBSF/ALBSF area (6.15 +/- 0.10 mm(2), n = 7) than C57BL /6J (5.48 +/- 0.13 mm(2), n = 10), C3H/HeJ (5.37 +/- 0.16 mm(2), n = 10), and A/J mice (5.04 +/- 0.09 mm(2), n = 15), despite the fact that DBA/2J mice have smaller average brain and body sizes. This finding may reflect dissociation between systems that control brain size with those that regulate barrel field area. In addition, BXD strains (average n = 4) and parental strains showed considerable and continuous variation in PMBSF/ALBSF area, suggesting that this trait is polygenic. Furthermore, brain, body, and cortex weights have heritable differences between inbred strains and among BXD strains. PMBSF/ALBSF pattern appears similar among inbred and BXD strains, suggesting that somatosensory patterning reflects a common plan of organization. This data is an important first step in the quantitative genetic analysis of the parcellation of neocortex into diverse cytoarchitectonic zones that vary widely within and between species, and in identifying the genetic factors underlying barrel field size using quantitative trait locus (QTL) analyses.  相似文献   

7.
Abstract

Animal models are widely used in atherosclerosis research. The most useful, economic and valid is mouse genetic model of this pathology. Purinergic signaling is an important mechanism regulating processes involved in the vascular inflammation and atherosclerosis. The aim of this study was to measure vascular activities of nucleotide and adenosine-degrading ecto-enzymes in different strains of mice and to compare them to atherosclerotic susceptibility.

The vascular extracellular nucleotide catabolism pathway was analyzed in 6-month-old male genetically unmodified mouse strains: FVB/NJ, DBA/2J, BALB/c, C57Bl/6J and mouse knock-outs on C57Bl/6J background for LDLR (LDLR-/-) and for ApoE and LDLR (ApoE-/-LDLR-/-). LDLR-/- mice were a model of moderate hypercholesterolemia, while ApoE-/-LDLR-/- mice, a model of severe hypercholesterolemia with advanced atherosclerosis.

FVB/NJ, DBA/2J and BALB/c mice showed high rates of vascular extracellular AMP hydrolysis and low activity of adenosine deamination. In turn, all mice with the C57Bl/6J background expressed diminished activity of vascular AMP hydrolysis. Mice with genetically-induced hyperlipidemia and atherosclerosis on the C57Bl/6J background revealed increased ecto-adenosine deaminase activity.

Mouse strains that were resistant to atherosclerosis (FVB/NJ, DBA/2J, BALB/c) exhibited a protective extracellular vascular ecto-enzyme pattern directed toward the production of anti-inflammatory and anti-atherosclerotic adenosine. In turn, mice with genetically induced hypercholesterolemia and atherosclerosis expressed disturbed activities of ecto-5’nucleotidase and ecto-adenosine deaminase related to decreased production and increased degradation of extracellular adenosine.  相似文献   

8.
Primary infection with Heligmosomoides polygyrus in some strains of mice is chronic although fast responder mouse strains eliminate the parasite in a short period of time. The reason for the differences is unknown. In this study apoptosis, proliferation, IL-2 and IL-6 production of mesenteric lymph node (MLN) and spleen cells in vitro from fast (FVB) and slow (C57Bl/6) responder mice were compared during H. polygyrus infection. FVB cells showed decreased apoptosis, more proliferation and more cytokine production than cells from C57Bl/6 mice during infection. At the beginning of infection in C57Bl/6 mice the apoptosis of CD4(+) but not CD8(+) cells significantly increased in MLN and spleen cell cultures. Apoptosis, when the first immune signal is given by infective larvae, might play an important role in the modulation of the response in slow responder mice.  相似文献   

9.
Consumption of a high-fat diet decreases hypothalamic neuropeptide Y (NPY) and increases proopiomelanocortin (POMC) and brown adipose uncoupling protein (UCP)-1 mRNA in obesity-resistant SWR/J but not obesity-prone C57Bl/6J mice. Although leptin was elevated in both strains in response to a high-fat diet, its role in the development of diet-induced obesity has remained unclear since insulin and other factors that affect similar tissue targets are altered. Thus, we administered recombinant leptin by subcutaneous infusion to chow-fed mice to mimic the changes in plasma leptin across its broad physiologic range. We observed strain differences in responsiveness to reduced and elevated leptin levels. A reduction in leptin during fasting evoked a greater response in C57Bl/6J mice by decreasing energy expenditure and thyroxin, increasing corticosterone and stimulating food intake and weight gain during refeeding. However, C57Bl/6J mice were less responsive to an increase in leptin in the fed state. Conversely, the leptin-mediated response to fasting was blunted in SWR/J mice, whereas an increase in leptin profoundly reduced food intake and body weight in SWR/J mice fed ad libitum. Sensitivity to fasting in C57Bl/6J mice was associated with higher hypothalamic NPY mRNA and reduced POMC and UCP-1 mRNA expression, while the robust response to high leptin levels in SWR/J mice was associated with suppression of NPY mRNA. These results indicate that differences in leptin responsiveness between strains might occur centrally or peripherally, leading to alteration in the patterns of food intake, thermogenesis and energy storage.  相似文献   

10.
The arylamine N-acetyltransferases (NATs) are a unique family of enzymes that catalyse the transfer of an acetyl group from acetyl-CoA to the terminal nitrogen of hydrazine and arylamine drugs and carcinogens. Human arylamine NATs are known to exist as two isoenzymes, NAT1 and NAT2. The objective of this study was to identify whether the genetic polymorphism of NAT2 plays a role in susceptibility to Diabetes Mellitus (DM). Ninety-seven patients with DM and 104 healthy controls were enrolled in the study. NAT2*5A, NAT2*6A, NAT2*7A/B and NAT2*14A polymorphisms were detected by using real time PCR with LightCycler (Roche Diagnostics GmbH, Mannheim, Germany). According to our data, the NAT2*5A and NAT2*6A mutant genotypes and NAT2*14A heterozygous genotype were associated with an increased risk of development of DM (OR = 47.06; 95%CI: 10.55-209.77 for NAT 2*5A, OR = 18.48; 95%CI: 3.83-89.11 for NAT2*6A and OR = 18.22; 95%CI: 6.29-52.76 for NAT2*14A). However, the NAT2*7A/B gene polymorphism carried no increased risk for developing DM disease. After grouping according to phenotypes as either slow or fast acetylators, NAT2*6A slow acetylator was found to be a significant risk factor for DM (OR = 6.09; 95%CI: 1.99-18.6, p = 0.02). The results indicate that NAT2 slow acetylator genotypes may be an important genetic determinant for DM in the Turkish population.  相似文献   

11.
We compared the behavior of 14 inbred mouse strains and an F1 hybrid commonly used in transgenic and knockout production. These strains were 129P3/J, 129S1/SvImJ, 129S6/SvEvTac, 129T2/SvEmsJ, 129X1/SvJ (formerly 129/J, 129/Sv-p+Tyr+Kitl+/J, 129/SvEvTac, 129SvEmsJ, and 129/SvJ, respectively), A/JCrTac, BALB/cAnNTac, C3H/HeNTac, C57BL/6J, C57BL/6NTac, DBA/2NTac, FVB/NTac, NOD/MrkTac, SJL/JCrNTac, and the hybrid B6129S6F1Tac. Performance in three behavioral tests (rotorod, open-field activity-habituation, and contextual and cued fear conditioning) was determined. On the rotorod assay, SJL/JCrNTac mice had the shortest latencies to fall on the first day of testing, and DBA/2NTac mice showed impaired motor learning. Open-field behavior was analyzed using the parameters total distance, center distance, velocity, and vertical activity. 129T2/EvEmsJ and A/JCrTac were least active in the open field, whereas NOD/MrkTac mice were most active. Contrary to earlier studies, we found that all strains habituated to the open field in at least one of these parameters. In contextual and cued fear conditioning, all strains displayed activity suppression. However, FVB/NTac mice reacted less strongly to both context and cue than did most of the other strains. There were no significant behavioral differences between C57BL/6J and C57BL/6NTac, except for higher open-field activity in C57BL/6J female mice. These findings illustrate the importance of the appropriate selection of background strain for transgenic, gene targeting, or drug research.  相似文献   

12.
C57Bl/6J, DBA/2 and ICR mouse strains are known to possess different susceptibilities to developing emphysema after exposure to cigarette smoke with DBA/2 and C57Bl/6J strains being significantly more susceptible to pulmonary damage than the ICR strain. This study was aimed at analysing the occurrence of systemic oxidative stress in the blood of these different mouse strains after exposure to cigarette smoke. This study did not observe a significant decrease in glutathione in erythrocytes or in plasma cysteine, cysteinylglycine, homocysteine and glutathione in C57Bl/6J or DBA/2 mice, whereas a significant increase in the corresponding oxidized forms was observed in plasma. However, the ICR strain showed a significant increase in glutathione in erythrocytes and a significant decrease in most of the oxidized forms of cysteine, cysteinylglycine, homocysteine and glutathione in plasma after the same exposition. These experiments demonstrate that exposure to cigarette smoking induces systemic oxidative stress only in some mouse strains which are susceptible to developing emphysema.  相似文献   

13.
Recently, we examined normal human pancreas tissue for DNA adducts derived from either exogenous chemical exposure and/or endogenous agents. In an effort to explain the different types and levels of DNA adducts formed in the context of individual susceptibility to cancer, we have focused on gene-environment interactions. Here, we report on the levels of hydrophobic aromatic amines (AAs), specifically those derived from 4-aminobiphenyl (ABP), and DNA adducts associated with oxidative stress in human pancreas. Although these adducts have been reported in several human tissues by different laboratories, a comparison of the levels of these adducts in the same tissue samples has not been performed. Using the same DNA, the genotypes were determined for N-acetyltransferase 1 (NAT1), the glutathione S-transferase (GST) M1, GSTP1, GSTT1, and NAD(P)H quinone reductase-1 (NQO1) as possible modulators of adduct levels because their gene products are involved in the detoxification of AAs, lipid peroxidation products and in redox cycling. These results indicate that ABP-DNA adducts, malondialdehyde-DNA adducts, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) adducts are present at similar levels. Of the metabolic genotypes examined, the presence of ABP-DNA adducts was strongly associated with the putative slow NAT1*4/*4 genotype, suggesting a role for this pathway in ABP detoxification.  相似文献   

14.
Behavior of male mice of C57Bl/6J and CBA/Lac strains was tested in the elevated plus-maze and open field in order to estimate state anxiety in novel conditions. The cube and partition tests were used to reveal trait anxiety in the familiar conditions of the home cage. It is concluded that genetically defined state anxiety is more pronounced in CBA/Lac mice and trait anxiety in C57Bl/6J strain.  相似文献   

15.
Previous studies have indicated that androgen regulation of certain gene products in murine kidney is genetically controlled. In the present work, the expression of renal ornithine decarboxylase (ODC) gene(s) was used as a biological marker to study androgen responsiveness of eight inbred strains of mice (A/J, C57BR/cdJ, 129/J, C57L/J, BALB/cJ, SM/J, RF/J, and C57BL/6J). Kidneys of untreated females from these strains did not have significantly different basal ODC activities or ODC mRNA concentrations. However, renal enzyme concentrations in intact male mice exhibited marked strain-dependent variation; three strains (RF/J, SM/J, and C57BR/cdJ) had 5- to 20-fold higher activities than the other five strains. Renal ODC mRNA content showed similar genetic variability in the male mice; animals with highest enzyme activity had higher mRNA levels than those with low activity. These results could not be explained by differences in either serum testosterone levels or renal nuclear androgen receptor content, suggesting that the animals were differentially sensitive to endogenous androgens. To evaluate further the androgen regulation of ODC gene expression, female mice were treated with testosterone-releasing implants for 5-7 days. The two strains (A/J and C57BL/6J) that had low enzyme activity in response to endogenous testosterone in male mice also showed blunted responses to exogenous androgen administration, as measured by the induction of ODC and its mRNA. The relative distribution of the two mRNA species coding for ODC (2.2 and 2.7 kb in size) exhibited strain-dependent variation that did not, however, correlate with the androgen responsiveness. Studies of the mRNA levels in reciprocal F1 hybrids of C57BR/cdJ and C57BL/6J mice suggested that androgen sensitivity of ODC gene expression, at least in these crosses, was inherited in an autosomal dominant manner.  相似文献   

16.
17.
18.
Coxsackievirus B3 infections of C57BL/6 mice, which express the MHC class II IA but not IE Ag, results in virus replication in the heart but minimal myocarditis. In contrast, Bl.Tg.Ealpha mice, which are C57BL/6 mice transgenically induced to express IE Ag, develop significant myocarditis upon Coxsackievirus B3 infection. Despite this difference in inflammatory damage, cardiac virus titers are similar between C57BL/6 and Bl.Tg.Ealpha mice. Removing gammadelta T cells from either strain by genetic manipulation (gammadelta knockout(ko)) changes the disease phenotype. C57BL/6 gammadelta ko mice show increased myocarditis. In contrast, Bl.Tg.Ealpha gammadelta ko mice show decreased cardiac inflammation. Flow cytometry revealed a difference in the gammadelta cell subsets in the two strains, with Vgamma1 dominating in C57BL/6 mice, and Vgamma4 predominating Bl.Tg.Ealpha mice. This suggests that these two Vgamma-defined subsets might have different functions. To test this possibility, we used mAb injection to deplete each subset. Mice depleted of Vgamma1 cells showed enhanced myocarditis, whereas those depleted of Vgamma4 cells suppressed myocarditis. Adoptively transfusing enriched Vgamma4(+) cells to the C57BL/6 and Bl.Tg. Ealpha gammadelta ko strains confirmed that the Vgamma4 subset promoted myocarditis. Th subset analysis suggests that Vgamma1(+) cells biased the CD4(+) T cells to a dominant Th2 cell response, whereas Vgamma4(+) cells biased CD4(+) T cells toward a dominant Th1 cell response.  相似文献   

19.
The sensitivity to the fibrosis-inducing effect of bleomycin varies considerably from species to species, the reasons for which are unknown. The variability of the response in different strains of mice is well documented. Recent evidence indicates that the upregulated expression of cytokines and cytokine receptors may be involved. We evaluated the expression pattern of some cytokines and their receptors in C57Bl/6J bleomycin-sensitive and Balb/C bleomycin-resistant mice. Animals from both strains received, under ether anesthesia, either saline (50 microl) or bleomycin (0.1 U/50 microl) intratracheally. At various times after the treatment, the lungs were analyzed for cytokines and cytokine receptors by histochemistry and their mRNA by RNase protection assay. A significantly increased expression of TNF-alpha and IL-1beta was observed in both strains. However, an upregulated lung expression for TNF-alpha and IL-1 receptors was observed in C57Bl/6J-sensitive animals only. This profile is evident from 63 h onward. In addition to TNF-alpha, bleomycin administration also resulted in the upregulated expression of TGF-beta in the lungs of both strains at 8 h and in an enhanced expression of TGF-beta receptors I and II in C57Bl/6J mice only. The upregulation of TGF-beta receptor expression was preceded in this strain by an increased expression of IL-4, IL-13, and IL-13 receptor-alpha (at 8 h after bleomycin) and followed by an upregulation of gp130 and IL-6. The difference we observed in the cytokine receptor profile may offer an additional explanation for the different fibrogenic response of the two mouse strains to bleomycin.  相似文献   

20.
The heterocyclic amine, batracylin (BAT), is genotoxic and several lines of evidence suggest that acetylation is one step in the formation of a DNA-damaging product. The variation in susceptibility to BAT toxicity observed between rats and mice has also been linked to the acetylated product. BAT N-acetyltransferase (NAT) activity was determined in rat and mouse hepatic cytosols. Formation of acetylbatracylin (ABAT) was 6 times greater in F-344 hepatic samples compared to either mouse strain, while hepatic BAT NAT activities were similar in C57B1/6 and A/J mice. No deacetylation of ABAT was detected. In contrast, 2-aminofluorene NAT activity in C57B1/6 hepatic cytosol was twice that of the A/J strain and activities in both strains of mice were greater than in rat. Deacetylation of 2-acetylaminofluorene was detected in both species with enzyme activities in C57B1/6>A/J>F-344. Hepatocytes from the F-344 rats, the species most sensitive to BAT toxicity, were used to investigate the contribution of other biotransformation reactions to BAT cytotoxicity. Leakage of cellular lactate dehydrogenase was greater in hepatocytes from male rats than from females, increased on in vivo exposure to dexamethasone, and decreased in the presence of troleandomycin, suggesting that CYP3A-mediated biotransformation of BAT is involved in the formation of a cytotoxic product. When phenol red, a substrate for UDP-glucuronsyltransferase (UDPGT), was absent from the medium, BAT cytotoxicity was reduced. These data are consistent with a role for NAT, CYP, and UDPGT in the biotransformation of BAT. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号