首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A novel subset of CD3(+)CD4(-)CD8(-) (double negative; DN) regulatory T cells has recently been shown to induce donor-specific skin allograft acceptance following donor lymphocyte infusion (DLI). In this study, we investigated the effect of DLI on rat to mouse cardiac xenotransplant survival and the ability of DN T cells to regulate xenoreactive T cells. B6 mice were given either DLI from Lewis rats, a short course of depleting anti-CD4 mAb, both DLI and anti-CD4 treatment together, or left untreated. DLI alone did not prolong graft survival when compared with untreated controls. Although anti-CD4-depleting mAb alone significantly prolonged graft survival, grafts were eventually rejected by all recipients. However, the combination of DLI and anti-CD4 treatment induced permanent cardiac xenograft survival. We demonstrate that recipients given both DLI and anti-CD4 treatment had a significant increase in the total number of DN T cells in their spleens when compared with all other treatment groups. Furthermore, DN T cells harvested from the spleens of DLI plus anti-CD4-treated mice could dose-dependently inhibit the proliferation of syngeneic antidonor T cells. Suppression mediated by these DN T cells was specific for antidonor T cells as T cells stimulated by third-party Ags were not suppressed. These results demonstrate for the first time that a combination of pretransplant DLI and anti-CD4-depleting mAb can induce permanent survival of rat to mouse cardiac xenografts and that DN T regulatory cells play an important role in preventing long-term concordant xenograft rejection through the specific suppression of antidonor T cells.  相似文献   

3.
Patients with autoimmune lymphoproliferative syndrome (ALPS) and lymphoproliferation (LPR) mice are deficient in Fas, and accumulate large numbers of αβ-TCR+, CD4, CD8 double negative (DN) T cells. The function of these DN T cells remains largely unknown. The common γ subunit of the activating Fc receptors, FcRγ, plays an important role in mediating innate immune responses. We have shown previously that a significant proportion of DN T cells express FcRγ, and that this molecule is required for TCR transgenic DN T cells to suppress allogeneic immune responses. Whether FcRγ plays a critical role in LPR DN T cell-mediated suppression of immune responses to auto and allo-antigens is not known. Here, we demonstrated that FcRγ+, but not FcRγ LPR DN T cells could suppress Fas+ CD4+ and CD8+ T cell proliferation in vitro and attenuated CD4+ T cell-mediated graft-versus host disease. Although FcRγ expression did not allow LPR DN T cells to inhibit the expansion of Fas-deficient cells within the LPR context, adoptive transfer of FcRγ+, but not FcRγ, DN T cells inhibited lymphoproliferation in generalized lymphoproliferative disease (GLD) mice. Furthermore, FcRγ acted in a cell-intrinsic fashion to limit DN T cell accumulation by increasing the rate of apoptosis in proliferated cells. These results indicate that FcRγ can confer Fas-dependent regulatory properties on LPR DN T cells, and suggest that FcRγ may be a novel marker for functional DN Tregs.  相似文献   

4.
Previous studies have shown that pretransplant donor lymphocyte infusion (DLI) can enhance xenograft survival. However, the mechanism by which DLI induces xenograft survival remains obscure. Using T cell subset-deficient mice as recipients we show that CD4+, but not CD8+, T cells are necessary to mediate the rejection of concordant cardiac xenografts. Adoptive transfer of naive CD4+ T cells induces rejection of accepted cardiac xenografts in CD4-/- mice. This rejection can be prevented by pretransplant DLI in the absence of any other treatment. Furthermore, we demonstrate that DLI activates alphabeta-TCR+CD3+CD4-CD8- double-negative (DN) regulatory T (Treg) cells in xenograft recipients, and that DLI-activated DN Treg cells can inhibit the proliferation of donor-specific xenoreactive CD4+ T cells in vitro. More importantly, adoptive transfer of DLI-activated DN Treg cells from xenograft recipients can suppress the proliferation of xenoreactive CD4+ T cells and their ability to produce IL-2 and IFN-gamma in vivo. Adoptive transfer of DLI-activated DN Treg cells also prevents CD4+ T cell-mediated cardiac xenograft rejection in an Ag-specific fashion. These data provide direct evidence that DLI can activate recipient DN Treg cells, which can induce donor-specific long-term cardiac xenograft survival by suppressing the proliferation and function of donor-specific CD4+ T cells in vivo.  相似文献   

5.
Protosappanin A (PrA), an immunosuppressive ingredient of the medicinal herb Caesalpinia sappan L, prolongs heart allograft survival in rats, possibly by impairing the function of antigen-presenting cells (APCs). We examined the effects of PrA on the maturation and function of dendritic cells (DCs), a potent class of APCs, and the downstream cell–cell and intracellular signaling pathways mediating the immunosuppressive activity of PrA. PrA inhibited LPS-stimulated maturation of Wistar rat DCs in vitro as reflected by reduced expression of costimulatory molecules (CD80 and CD86) and reduced expression of TLR4 and NF-κB, two critical signaling components for antigen recognition. PrA also enhanced the release of IL-10 and decreased the release of IL-12 from DCs, but had no effect on the production of TGF-ß. In mixed cultures, Wistar DCs pretreated with PrA impaired the proliferation of Sprague Dawley (SD) rat T cells while promoting the expansion of SD rat CD4+CD25+ regulatory T cells (Tregs). Both oral PrA treatment and infusion of PrA-pretreated Wistar DCs prolonged cardiac allograft survival (Wistar donor, SD recipient) and expanded recipient CD4+CD25+Foxp3+ Tregs. Donor spleen cells, but not spleen cells from a third rat strain (DA), supported the expansion of recipient CD4+CD25+Foxp3+ Tregs and suppressed recipient T cell proliferation. We conclude that PrA triggers a tolerogenic state in DCs that allows for the induction of alloantigen-specific Tregs and the suppression of allograft rejection in vivo.  相似文献   

6.
Besides CD4+CD25+Foxp3+ regulatory T cells (Tregs), other immunosuppressive T cells also participated in the regulation of immune tolerance. Reportedly, neuropilin-1 (Nrp1) might be one of the molecules by which regulatory cells exert their suppressive effects. Indeed, CD4+CD25Nrp1+ T cells exhibit potent suppressive function in autoimmune inflammatory responses. Here we investigated the specific role of CD4+CD25Nrp1+ T cells in the setting of the transplant immune response. Through MLR assays, we found that CD4+CD25Nrp1+ T cells suppressed the proliferation of naive CD4+CD25 T cells activated by allogeneic antigen-stimulation. Adoptive transfer of CD4+CD25Nrp1+ T cells synergized with rapamycin to induce long-term graft survival in fully MHC-mismatched murine heart transplantation, which was associated with decreased IFN-γ, IL-17 and increased IL-10, TGF-β, Foxp3 and Nrp1 expression in the grafts. Importantly, our data indicated that CD4+CD25Nrp1+ T cell transfer augments the accumulation of Tregs in the recipient, and creates conditions that favored induction of hyporesponsiveness of the T effector cells. In conclusion, this translational study indicates the possible therapeutic potential of CD4+CD25Nrp1+ T cells in preventing allorejection. CD4+Nrp1+ T cells might therefore be used in bulk as a population of immunosuppressive cells with more beneficial properties concerning ex vivo isolation as compared to Foxp3+ Tregs.  相似文献   

7.
CD160 is a cell surface molecule expressed by most NK cells and approximately 50% of CD8+ cytotoxic T lymphocytes. Engagement of CD160 by MHC class-I directly triggers a costimulatory signal to TCR-induced proliferation, cytokine production and cytotoxic effector functions. The role of CD160 in alloimmunity is unknown. Using a newly generated CD160 fusion protein (CD160Ig) we examined the role of the novel costimulatory molecule CD160 in mediating CD4+ or CD8+ T cell driven allograft rejection. CD160Ig inhibits alloreactive CD8+ T cell proliferation and IFN-γ production in vitro, in particular in the absence of CD28 costimulation. Consequently CD160Ig prolongs fully mismatched cardiac allograft survival in CD4−/−, CD28−/− knockout and CTLA4Ig treated WT recipients, but not in WT or CD8−/− knockout recipients. The prolonged cardiac allograft survival is associated with reduced alloreactive CD8+ T cell proliferation, effector/memory responses and alloreactive IFN-γ production. Thus, CD160 signaling is particularly important in CD28-independent effector/memory CD8+ alloreactive T cell activation in vivo and therefore may serve as a novel target for prevention of allograft rejection.  相似文献   

8.
9.
Semimature dendritic cells (smDCs) can induce autoimmune tolerance by activation of host antigen-specific CD4+CD25+ regulatory T (Treg) cells. We hypothesized that donor smDCs injected into recipients would induce effector T-cell hyporesponsiveness by activating CD4+CD25+Treg cells, and promote skin allograft survival. Myeloid smDCs were derived from C57BL/6J mice (donors) in vitro. BALB/c mice (recipients) were injected with smDCs to generate antigen-specific CD4+CD25+Treg cells in vivo. Allograft survival was prolonged when BALB/c recipients received either C57BL/6J smDCs prior to grafting or C57BL/6J smDC-derived CD4+CD25+Treg cells post-grafting, and skin flaps from these grafts showed the highest IL-10 production regardless of rapamycin treatments. Our findings confirm that smDCs constitute an independent subgroup of DCs that play a key role for inducing CD4+CD25+Treg cells to express high IL-10 levels, which induce hyporesponsiveness of effector T cells. Pre-treating recipients with donor smDCs may have potential for transplant tolerance induction.  相似文献   

10.
11.

Background

Recent evidence shows that long non-coding RNA (LncRNA) play important regulatory roles in many biology process, including cell development, activation and oncogenesis. However, the roles of these LncRNAs in the development and activation of CD4+ T cells, which is an important component of immune response, remain unknown.

Results

To predict the function of LncRNA in the development and activation of CD4+ T cells, first, we examined the expression profiles of LncRNAs and mRNAs in CD4CD8 (DN), CD4+CD8+ (DP), CD4+CD8, and activated CD4+CD8 T cells in a microarray analysis and verified these results by real time PCRs (qPCR). We found that the expression of hundreds of LncRNAs significantly changed in each process of developmental transition, including DN into DP, DP into CD4+CD8, and CD4+CD8 into activated CD4+ T cells. A Kendall distance analysis suggested that the expression of LncRNAs in DN, DP, CD4+CD8 T cells and activated CD4+ T cells were correlated with the expression of mRNAs in these T cells. The Blat algorithm and GO analysis suggested that LncRNAs may exert important roles in the development and activation of CD4+ T cells. These roles included proliferation, homeostasis, maturation, activation, migration, apoptosis and calcium ion transportation.

Conclusion

The present study found that the expression profiles of LncRNAs in different stages of CD4+ T cells are distinguishable. LncRNAs are involved in the key biological process in CD4+ T cell development and activation.  相似文献   

12.
Latency-associated peptide (LAP) - expressing regulatory T cells (Tregs) are important for immunological self-tolerance and immune homeostasis. In order to investigate the role of LAP in human CD4+Foxp3+ Tregs, we designed a cross-sectional study that involved 42 colorectal cancer (CRC) patients. The phenotypes, cytokine-release patterns, and suppressive ability of Tregs isolated from peripheral blood and tumor tissues were analyzed. We found that the population of LAP-positive CD4+Foxp3+ Tregs significantly increased in peripheral blood and cancer tissues of CRC patients as compared to that in the peripheral blood and tissues of healthy subjects. Both LAP+ and LAP Tregs had a similar effector/memory phenotype. However, LAP+ Tregs expressed more effector molecules, including tumor necrosis factor receptor II, granzyme B, perforin, Ki67, and CCR5, than their LAP negative counterparts. The in vitro immunosuppressive activity of LAP+ Tregs, exerted via a transforming growth factor-β–mediated mechanism, was more potent than that of LAP Tregs. Furthermore, the enrichment of LAP+ Treg population in peripheral blood mononuclear cells (PBMCs) of CRC patients correlated with cancer metastases. In conclusion, we found that LAP+ Foxp3+ CD4+ Treg cells represented an activated subgroup of Tregs having more potent regulatory activity in CRC patients. The increased frequency of LAP+ Tregs in PBMCs of CRC patients suggests their potential role in controlling immune response to cancer and presents LAP as a marker of tumor-specific Tregs in CRC patients.  相似文献   

13.
T cells play a major role in allograft rejection, which occurs after T cell activation by the engagement of several functional molecules to form an immune synapse with alloantigen presenting cells. In this study, the immune synapse was targeted using mAbs directed to the TCR beta-chain (TCRβ) and lymphocyte function-associated antigen−1 (LFA1) to induce long-term allograft survival. Evaluation of antigen-specific T cell responses was performed by adoptively transferring CFSE labeled transgenic OT-II cells into wild-type mice and providing OVA peptide by intravenous injection. Graft survival studies were performed in mice by transplanting BALB/c ear skins onto the flanks of C57BL/6 recipients. The anti-TCRβ plus anti-LFA1 mAb combination (but not either mAb alone) abrogated antigen-specific T cell responses invitro and invivo. Transient combination therapy with these agents resulted in significantly prolonged skin allograft survival in mice (51±10 days; p<0.01) when compared to treatment with either anti-TCRβ mAb (24±5 days) or anti-LFA1 mAb (19±3 days) alone or no treatment (10±1 days). When lymphoid tissues from these mice were analyzed at different times post-transplant, only those receiving the combination of anti-TCRβ and anti-LFA1 mAbs demonstrated long-lasting reductions in total T cell numbers, cellular and humoral anti-donor responses, and expression of CD3 on the surface of T cells. These results demonstrate that transient anti-TCRβ and anti-LFA1 mAb combination therapy abrogates antigen-reactive T cell responses with long-lasting effects that significantly prolong allograft survival.  相似文献   

14.
CD4+CD25+FoxP3+ regulatory T cells (Tregs) and Th17 cells are known to be involved in the alloreactive responses in organ transplantation, but little is known about the relationship between Tregs and Th17 cells in the context of liver alloresponse. Here, we investigated whether the circulating Tregs/Th17 ratio is associated with acute allograft rejection in liver transplantation. In present study, thirty-eight patients who received liver transplant were enrolled. The patients were divided into two groups: acute allograft rejection group (Gr-AR) (n = 16) and stable allograft liver function group (Gr-SF) (n = 22). The frequencies of circulating Tregs and circulating Th17 cells, as well as Tregs/Th17 ratio were determined using flow cytometry. The association between Tregs/Th17 ratio and acute allograft rejection was then analyzed. Our results showed that the frequency of circulating Tregs was significantly decreased, whereas the frequency of circulating Th17 cells was significantly increased in liver allograft recipients who developed acute rejection. Tregs/Th17 ratio had a negative correlation with liver damage indices and the score of rejection activity index (RAI) after liver transplantation. In addition, the percentages of CTLA-4+, HLA-DR+, Ki67+, and IL-10+ Tregs were higher in Gr-SF group than in Gr-AR group. Our results suggested that the ratio of circulating Tregs/Th17 cells is associated with acute allograft rejection, thus the ratio may serve as an alternative marker for the diagnosis of acute rejection.  相似文献   

15.
16.
It is an urgent need to induce and keep the donor-specific immune tolerance without affecting the function of normal immune defense and immune surveillance in clinical organ transplantation. Large number of studies showed that both the establishment of donor-recipient chimerism and the application of antibodies or drugs could obtain the donor-specific immune tolerance in animal transplantation model. However, the former as treatment of clinical practice has a poor feasibility, the latter has a very low success rate in clinical organ transplantation. There is a group of naturally occurring CD4+CD25+ regulatory T cells (Tregs) that mediate immune tolerance by suppressing alloreactive T cells in vivo. These cells are unable to curb the occurrence of allograft rejection owing their low content. And donor-specific Tregs amplified in vitro alone can not induce donor-specific immune tolerance for recipient. Rapamycin (RPM) as a proliferation signal inhibitor, studies have shown it can effectively inhibit allograft rejection and maybe contribute to induction of immune tolerance. But there exist still many dose-dependent adverse reactions which could prevent the establishment of immune tolerance and reduce the life quality of recipients in the clinical application of RPM. Therefore, we speculate a small amount of RPM combined with donor-specific Tregs amplified in vitro may be not only induce the achievement of donor-specific tolerance, but also reduce or eliminate the side effects of RPM in clinical organ transplantation.  相似文献   

17.

Background

Major histocompatibility complex (MHC) antigens are important for alloimmune responses as well as immune tolerance. Previous studies have shown that presentation of donor MHC antigens by donor-specific transfusion prior to or upon transplantation promotes transplant tolerance induced by other agents. However, it is unclear whether presentation of donor MHC antigens by DNA vaccination induces long-term allograft survival.

Methodology/Principal Findings

We investigated whether presentation of MHC class-II and/or class-I donor antigens by DNA vaccination suppresses alloimmune responses and promotes long-term allograft acceptance. We initially found that presentation of both MHC donor antigens by DNA vaccination itself prior to transplantation fails to significantly prolong islet allograft survival in otherwise untreated mice. However, islet allograft survival was significantly prolonged when MHC class-II DNA vaccination was accompanied with IL-2 administration (MHCII + IL-2) while MHC class-I DNA vaccination was followed by IL-2 and subsequent neutralizing anti-IL-2 treatments (MHCI + IL-2/anti-IL-2). Especially, this protocol promoted long-term allograft survival in the majority of recipients (57%) when combined with low doses of rapamycin post-transplantation. Importantly, MHCII + IL-2 induced FoxP3+ Treg cells in both spleens and grafts and suppressed graft-infiltrating CD4+ cell proliferation, whereas MHCI + IL-2/anti-IL-2 mainly inhibited graft-infiltrating CD8+ cell proliferation and donor-specific CTL activity. The combined protocol plus rapamycin treatment further reduced both CD4+ and CD8+ T cell proliferation as well as donor-specific CTL activity but spared FoxP3+ Treg cells. Depleting CD25+ Treg cells or adoptive transfer of pre-sensitized CD8+ T cells abolished this long-term allograft survival.

Conclusions/Significance

Manipulating IL-2 availability during presentation of MHC class-II and class-I donor antigens by DNA vaccination pre-transplantation induces Treg cells, suppresses alloimmune responses and promotes long-term allograft survival.  相似文献   

18.
The appearance of donor-derived lymphocytes in liver transplant patients suggests that adult livers may contain cells capable of lymphopoiesis. However, only a few published studies have addressed the lymphopoietic capacity of adult liver cells, and its kinetics and features remain unclear. Herein, we investigated the lymphopoietic capacity of adult liver mononuclear cells (MNCs) and purified liver hematopoietic progenitor cells (HPCs) in vivo. Similar to bone-marrow transplantation (BMT), transplantation of liver MNCs alone was able to rescue survival of lethally irradiated mice. In terms of kinetics, liver MNC-derived myeloid lineage cells reconstituted more slowly than those from BMT. Liver MNC-derived lymphocyte lineage cells in the blood, spleen and BM also reconstituted more slowly than BMT, but lymphocytes in the liver recovered at a similar rate. Interestingly, liver MNCs predominantly gave rise to CD3+CD19 T cells in both irradiated WT and non-irradiated lymphocyte-deficient Rag-1−/−Il2rg−/− recipients. To define the lymphopoietic potential of various cell populations within liver MNCs, we transplanted purified lineage-negative (Lin) liver HPCs into recipient mice. Unlike total liver MNCs, liver HPCs reconstituted T and B cells in similar frequencies to BMT. We further determined that the predominance of T cells observed after transplanting total liver MNCs likely originated from mature T cells, as purified donor liver T cells proliferated in the recipients and gave rise to CD8+ T cells. Thus, the capacity of donor adult liver cells to reconstitute lymphocytes in recipients derives from both HPCs and mature T cells contained in the liver MNC population.  相似文献   

19.
CD8+ T cells play important roles in anti-tumor immunity but distribution profile or functional characteristics of effector memory subsets during tumor progression are unclear. We found that, in oral squamous carcinoma patients, circulating CD8+ T cell pools skewed toward effector memory subsets with the distribution frequency of CCR7CD45RACD8+ T cells and CCR7 CD45RA+CD8+ T cells negatively correlated with each other. A significantly higher frequency of CD127lo CCR7CD45RACD8+ T cells or CCR7CD45RA+CD8+ T cells among total CD8+ T cells was found in peripheral blood or tumor infiltrating lymphocytes, but not in regional lymph nodes. The CD127hi CCR7CD45RACD8+ T cells or CCR7CD45RA+CD8+ T cells maintained significantly higher IFN-γ, IL-2 productivity and ex vivo proliferative capacity, while the CD127lo CCR7CD45RACD8+ T cells or CCR7CD45RA+CD8+ T cells exhibited higher granzyme B productivity and susceptibility to activation induced cell death. A higher ratio of CCR7CD45RA+CD8+ T cells to CCR7CD45RACD8+ T cells was associated with advanced cancer staging and poor differentiation of tumor cells. Therefore, the CD127lo CCR7CD45RACD8+ T cells and CCR7CD45RA+CD8+ T cells are functionally similar CD8+ T cell subsets which exhibit late differentiated effector phenotypes and the shift of peripheral CD8+ effector memory balance toward CCR7CD45RA+CD8+ T cells is associated with OSCC progression.  相似文献   

20.
In a previous study, we identified TRIB1, a serine-threonine kinase-like molecule, as a biomarker of chronic antibody-mediated rejection of human kidneys when measured in peripheral blood mononuclear cells. Here, we focused our analysis on a specific subset of peripheral blood mononuclear cells that play a dominant role in regulating immune responses in health and disease, so-called CD4+CD25+Foxp3+ regulatory T cells (Tregs). We isolated both human and murine Treg and non-Treg counterparts and analyzed TRIB1 and Foxp3 mRNA expression by quantitative PCR on the freshly isolated cells or following 24 h of activation. Physical interaction between the human TRIB1 and Foxp3 proteins was analyzed in live cell lines by protein complementation assay using both flow cytometry and microscopy and confirmed in primary freshly isolated human CD4+CD25hiCD127 Tregs by co-immunoprecipitation. Both TRIB1 and Foxp3 were expressed at significantly higher levels in Tregs than in their CD4+CD25 counterparts (p < 0.001). Moreover, TRIB1 and Foxp3 mRNA levels correlated tightly in Tregs (Spearman r = 1.0; p < 0.001, n = 7), but not in CD4+CD25 T cells. The protein complementation assay revealed a direct physical interaction between TRIB1 and Foxp3 in live cells. This interaction was impaired upon deletion of the TRIB1 N-terminal but not the C-terminal domain, suggesting an interaction in the nucleus. This direct interaction within the nucleus was confirmed in primary human Tregs by co-immunoprecipitation. These data show a direct relationship between TRIB1 and Foxp3 in terms of their expression and physical interaction and highlight Tribbles-1 as a novel binding partner of Foxp3 in Tregs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号