首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) are a cause of a familial form of amyotrophic lateral sclerosis. Wild-type SOD1 forms a highly conserved intra-molecular disulfide bond, whereas pathological SOD1 proteins are cross-linked via intermolecular disulfide bonds and form insoluble oligomers. A thiol-disulfide status in SOD1 will thus play a regulatory role in determining its folding/misfolding pathways; however, it remains unknown how pathogenic mutations in SOD1 affect the thiol-disulfide status to facilitate the protein misfolding. Here, we show that the structural destabilization of SOD1 scrambles a disulfide bond among four Cys residues in an SOD1 molecule. The disulfide scrambling produces SOD1 monomers with distinct electrophoretic mobility and also reproduces the formation of disulfide-linked oligomers. We have also found that the familial form of amyotrophic lateral sclerosis-causing mutations facilitate the disulfide scrambling in SOD1. Based upon our results, therefore, scrambling of the conserved disulfide bond will be a key event to cause the pathological changes in disease-associated mutant SOD1 proteins.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons progressively and rapidly degenerate, eventually leading to death. The first protein found to contain ALS-associated mutations was copper/zinc superoxide dismutase 1 (SOD1), which is conformationally stable when it contains its metal ligands and has formed its native intramolecular disulfide. Mutations in SOD1 reduce protein folding stability via disruption of metal binding and/or disulfide formation, resulting in misfolding, aggregation, and ultimately cellular toxicity. A great deal of effort has focused on preventing the misfolding and aggregation of SOD1 as a potential therapy for ALS; however, the results have been mixed. Here, we utilize a small-molecule polytherapy of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuATSM) and ebselen to mimic the metal delivery and disulfide bond promoting activity of the cellular chaperone of SOD1, the “copper chaperone for SOD1.” Using microscopy with automated image analysis, we find that polytherapy using CuATSM and ebselen is highly effective and acts in synergy to reduce inclusion formation in a cell model of SOD1 aggregation for multiple ALS-associated mutants. Polytherapy reduces mutant SOD1-associated cell death, as measured by live-cell microscopy. Measuring dismutase activity via zymography and immunoblotting for disulfide formation showed that polytherapy promoted more effective maturation of transfected SOD1 variants beyond either compound alone. Our data suggest that a polytherapy of CuATSM and ebselen may merit more study as an effective method of treating SOD1-associated ALS.  相似文献   

3.
Neurodegenerative diseases share a common characteristic, the presence of intracellular or extracellular deposits of protein aggregates in nervous tissues. Amyotrophic Lateral Sclerosis (ALS) is a severe and fatal neurodegenerative disorder, which affects preferentially motoneurons. Changes in the redox state of superoxide dismutase 1 (SOD1) are associated with the onset and development of familial forms of ALS. In human SOD1 (hSOD1), a conserved disulfide bond and two free cysteine residues can engage in anomalous thiol/disulfide exchange resulting in non-native disulfides, a hallmark of ALS that is related to protein misfolding and aggregation. Because of the many competing reaction pathways, traditional bulk techniques fall short at quantifying individual thiol/disulfide exchange reactions. Here, we adapt recently developed single-bond chemistry techniques to study individual disulfide isomerization reactions in hSOD1. Mechanical unfolding of hSOD1 leads to the formation of a polypeptide loop held by the disulfide. This loop behaves as a molecular jump rope that brings reactive Cys-111 close to the disulfide. Using force-clamp spectroscopy, we monitor nucleophilic attack of Cys-111 at either sulfur of the disulfide and determine the selectivity of the reaction. Disease-causing mutations G93A and A4V show greatly altered reactivity patterns, which may contribute to the progression of familial ALS.  相似文献   

4.
Neurodegeneration in protein-misfolding disease is generally assigned to toxic function of small, soluble protein aggregates. Largely, these assignments are based on observations of cultured neural cells where the suspect protein material is titrated directly into the growth medium. In the present study, we use this approach to shed light on the cytotoxic action of the metalloenzyme Cu/Zn superoxide dismutase 1 (SOD1), associated with misfolding and aggregation in amyotrophic lateral sclerosis (ALS). The results show, somewhat unexpectedly, that the toxic species of SOD1 in this type of experimental setting is not an aggregate, as typically observed for proteins implicated in other neuro-degenerative diseases, but the folded and fully soluble apo protein. Moreover, we demonstrate that the toxic action of apoSOD1 relies on the protein's ability to chelate Zn(2+) ions from the growth medium. The decreased cell viability that accompanies this extraction is presumably based on disturbed Zn(2+) homeostasis. Consistently, mutations that cause global unfolding of the apoSOD1 molecule or otherwise reduce its Zn(2+) affinity abolish completely the cytotoxic response. So does the addition of surplus Zn(2+). Taken together, these observations point at a case where the toxic response of cultured cells might not be related to human pathology but stems from the intrinsic limitations of a simplified cell model. There are several ways proteins can kill cultured neural cells but all of these need not to be relevant for neurodegenerative disease.  相似文献   

5.
Converging evidence indicates that aberrant aggregation of mutant Cu,Zn-superoxide dismutase (mutSOD1) is strongly implicated in familial amyotrophic lateral sclerosis (FALS). MutSOD1 forms high molecular weight oligomers, which disappear under reducing conditions, both in neural tissues of FALS transgenic mice and in transfected cultured cells, indicating a role for aberrant intermolecular disulfide cross-linking in the oligomerization and aggregation process. To study the contribution of specific cysteines in the mechanism of aggregation, we mutated human SOD1 in each of its four cysteine residues and, using a cell transfection assay, analyzed the solubility and aggregation of those SOD1s. Our results suggest that the formation of mutSOD1 aggregates are the consequence of covalent disulfide cross-linking and non-covalent interactions. In particular, we found that the removal of Cys-111 strongly reduces the ability of a range of different FALS-associated mutSOD1s to form aggregates and impair cell viability in cultured NSC-34 cells. Moreover, the removal of Cys-111 impairs the ability of mutSOD1s to form disulfide cross-linking. Treatments that deplete the cellular pool of GSH exacerbate mutSOD1s insolubility, whereas an overload of intracellular GSH or overexpression of glutaredoxin-1, which specifically catalyzes the reduction of protein-SSG-mixed disulfides, significantly rescues mutSOD1s solubility. These data are consistent with the view that the redox environment influences the oligomerization/aggregation pathway of mutSOD1 and point to Cys-111 as a key mediator of this process.  相似文献   

6.
Neurodegenerative diseases belong to a larger group of protein misfolding disorders, known as proteinopathies. There is increasing experimental evidence implicating prion-like mechanisms in many common neurodegenerative disorders, including Alzheimer disease, Parkinson disease, the tauopathies, and amyotrophic lateral sclerosis (ALS), all of which feature the aberrant misfolding and aggregation of specific proteins. The prion paradigm provides a mechanism by which a mutant or wild-type protein can dominate pathogenesis through the initiation of self-propagating protein misfolding. ALS, a lethal disease characterized by progressive degeneration of motor neurons is understood as a classical proteinopathy; the disease is typified by the formation of inclusions consisting of aggregated protein within and around motor neurons that can contribute to neurotoxicity. It is well established that misfolded/oxidized SOD1 protein is highly toxic to motor neurons and plays a prominent role in the pathology of ALS. Recent work has identified propagated protein misfolding properties in both mutant and wild-type SOD1, which may provide the molecular basis for the clinically observed contiguous spread of the disease through the neuroaxis. In this review we examine the current state of knowledge regarding the prion-like properties of SOD1 and comment on its proposed mechanisms of intercellular transmission.  相似文献   

7.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. A growing body of evidence suggests that fALS-causing mutations destabilize the native structure of SOD1, leading to aberrant protein interactions for aggregation. SOD1 becomes stabilized and enzymatically active after copper and zinc binding and intramolecular disulfide formation, but it remains unknown which step(s) in the SOD1 maturation process is important in the pathological aggregation. In this study we have shown that apoSOD1 without disulfide is the most facile state for formation of amyloid-like fibrillar aggregates. fALS mutations impair either zinc binding, disulfide formation, or both, leading to accumulation of the aggregation-prone, apo, and disulfide-reduced SOD1. Moreover, we have found that the copper chaperone for SOD1 (CCS) facilitates maturation of SOD1 and that CCS overexpression ameliorates intracellular aggregation of mutant SOD1 in vivo. Based on our in vivo and in vitro results, we propose that facilitation of post-translational modifications is a promising strategy to reduce SOD1 aggregation in the cell.  相似文献   

8.
Aggregation of Cu, Zn superoxide dismutase (SOD1) is often found in amyotrophic lateral sclerosis patients. The fibrillar aggregates formed by wild type and various disease-associated mutants have recently been found to have distinct cores and morphologies. Previous computational and experimental studies of wild-type SOD1 suggest that the apo-monomer, highly aggregation prone, displays substantial local unfolding dynamics. The residual folded structure of locally unfolded apoSOD1 corresponds to peptide segments forming the aggregation core as identified by a combination of proteolysis and mass spectroscopy. Therefore, we hypothesize that the destabilization of apoSOD1 caused by various mutations leads to distinct local unfolding dynamics. The partially unfolded structure, exposing the hydrophobic core and backbone hydrogen bond donors and acceptors, is prone to aggregate. The peptide segments in the residual folded structures form the "building block" for aggregation, which in turn determines the morphology of the aggregates. To test this hypothesis, we apply a multiscale simulation approach to study the aggregation of three typical SOD1 variants: wild type, G37R, and I149T. Each of these SOD1 variants has distinct peptide segments forming the core structure and features different aggregate morphologies. We perform atomistic molecular dynamics simulations to study the conformational dynamics of apoSOD1 monomer and coarse-grained molecular dynamics simulations to study the aggregation of partially unfolded SOD1 monomers. Our computational studies of monomer local unfolding and the aggregation of different SOD1 variants are consistent with experiments, supporting the hypothesis of the formation of aggregation "building blocks" via apo-monomer local unfolding as the mechanism of SOD1 fibrillar aggregation.  相似文献   

9.
Mutations in Cu/Zn superoxide dismutase (SOD) are associated with familial amyotrophic lateral sclerosis (FALS), a neurodegenerative disease that is characterized by the selective death of motor neurons. Despite the genetic association made between the protein and the disease, the mechanism by which the mutant SOD proteins become toxic is still a mystery. Using wild-type SOD and three pathogenic mutants (A4V, G37R, and G85R), we show that the copper-induced oxidation of metal-depleted SOD causes its in vitro aggregation into pore-like structures, as determined by atomic force microscopy. Because toxic pores have been recently implicated in the pathogenic mechanism of other neurodegenerative diseases, these results raise the possibility that the aberrant self-assembly of oxidatively damaged SOD mutants into toxic oligomers or pores may have a pathological role in FALS.  相似文献   

10.
《Biophysical journal》2022,121(11):2084-2095
Accumulation of insoluble amyloid fibrils is widely studied as a critical factor in the pathology of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Misfolded Cu, Zn superoxide dismutase (SOD1) was the first protein linked to ALS, and non-native SOD1 trimeric oligomers were recently linked to cytotoxicity, while larger oligomers were protective to cells. The balance between trimers and larger aggregates in the process of SOD1 aggregation is, thus, a critical determinant of potential therapeutic approaches to treat ALS. However, it is unknown whether these trimeric oligomers are a necessary intermediate for larger aggregate formation or a distinct off-pathway species competing with fibril formation. Depending on the on- or off-pathway scenario of trimer formation, we expect drastically different therapeutic approaches. Here, we show that the toxic SOD1 trimer is an off-pathway intermediate competing with protective fibril formation. We design mutant SOD1 constructs that remain in a trimeric state (super-stable trimers) and show that stabilizing the trimeric SOD1 prevents formation of fibrils in vitro and in a motor neuron-like cell model (NSC-34). Using size exclusion chromatography, we track the aggregation kinetics of purified SOD1 and show direct competition of trimeric SOD1 with larger oligomer and fibril formation. Finally, we show the trimer is structurally independent of both larger soluble oligomers and insoluble fibrils using circular dichroism spectroscopy and limited proteolysis.  相似文献   

11.
Mutant forms of Cu,Zn-superoxide dismutase (SOD1) that cause familial amyotrophic lateral sclerosis (ALS) exhibit toxicity that promotes the death of motor neurons. Proposals for the toxic properties typically involve aberrant catalytic activities or protein aggregation. The striking thermodynamic stability of mature forms of the ALS mutant SOD1 (Tm>70 degrees C) is not typical of protein aggregation models that involve unfolding. Over 44 states of the polypeptide are possible, depending upon metal occupancy, disulfide status, and oligomeric state; however, it is not clear which forms might be responsible for toxicity. Recently the intramolecular disulfide has been shown to be required for SOD1 activity, leading us to examine these states of several disease-causing SOD1 mutants. We find that ALS mutations have the greatest effect on the most immature form of SOD1, destabilizing the metal-free and disulfide-reduced polypeptide to the point that it is unfolded at physiological temperatures (Tm<37 degrees C). We also find that immature states of ALS mutant (but not wild type) proteins readily form oligomers at physiological concentrations. Furthermore, these oligomers are more susceptible to mild oxidative stress, which promotes incorrect disulfide cross-links between conserved cysteines and drives aggregation. Thus it is the earliest disulfide-reduced polypeptides in the SOD1 assembly pathway that are most destabilized with respect to unfolding and oxidative aggregation by ALS-causing mutations.  相似文献   

12.
Cu,Zn superoxide dismutase (SOD1) is a dimeric metal-binding enzyme responsible for the dismutation of toxic superoxide to hydrogen peroxide and oxygen in cells. Mutations at dozens of sites in SOD1 induce amyotrophic lateral sclerosis (ALS), a fatal gain-of-function neurodegenerative disease whose molecular basis is unknown. To obtain insights into effects of the mutations on the folded and unfolded populations of immature monomeric forms whose aggregation or self-association may be responsible for ALS, the thermodynamic and kinetic folding properties of a set of disulfide-reduced and disulfide-oxidized Zn-free and Zn-bound stable monomeric SOD1 variants were compared to properties of the wild-type (WT) protein. The most striking effect of the mutations on the monomer stability was observed for the disulfide-reduced metal-free variants. Whereas the WT and S134N monomers are > 95% folded at neutral pH and 37 °C, A4V, L38V, G93A, and L106V ranged from 50% to ∼ 90% unfolded. The reduction of the disulfide bond was also found to reduce the apparent Zn affinity of the WT monomer by 750-fold, into the nanomolar range, where it may be unable to compete for free Zn in the cell. With the exception of the S134N metal-binding variant, the Zn affinity of disulfide-oxidized SOD1 monomers showed little sensitivity to amino acid replacements. These results suggest a model for SOD1 aggregation where the constant synthesis of ALS variants of SOD1 on ribosomes provides a pool of species in which the increased population of the unfolded state may favor aggregation over productive folding to the native dimeric state.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons in the spinal cord, brain stem, and motor cortex. Mutations in superoxide dismutase (SOD1) are associated with familial ALS and lead to SOD1 protein misfolding and aggregation. Here we show that the molecular chaperone, HSJ1 (DNAJB2), mutations in which cause distal hereditary motor neuropathy, can reduce mutant SOD1 aggregation and improve motor neuron survival in mutant SOD1 models of ALS. Overexpression of human HSJ1a (hHSJ1a) in vivo in motor neurons of SOD1G93A transgenic mice ameliorated disease. In particular, there was a significant improvement in muscle force, increased motor unit number and enhanced motor neuron survival. hHSJ1a was present in a complex with SOD1G93A and led to reduced SOD1 aggregation at late stages of disease progression. We also observed altered ubiquitin immunoreactivity in the double transgenic animals, suggesting that ubiquitin modification might be important for the observed improvements. In a cell model of SOD1G93A aggregation, HSJ1a preferentially bound to mutant SOD1, enhanced SOD1 ubiquitylation and reduced SOD1 aggregation in a J-domain and ubiquitin interaction motif (UIM) dependent manner. Collectively, the data suggest that HSJ1a acts on mutant SOD1 through a combination of chaperone, co-chaperone and pro-ubiquitylation activity. These results show that targeting SOD1 protein misfolding and aggregation in vivo can be neuroprotective and suggest that manipulation of DnaJ molecular chaperones might be useful in the treatment of ALS.  相似文献   

14.
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative disease attributable to the death of motor neurons. Associated with ALS are mutations in the genes encoding SOD1 (superoxide dismutase 1), FUS (fused in Sarcoma) protein and TDP-43 (TAR DNA-binding protein-43) each of which leads to aggregation of the respective protein. For example, the ALS-associated mutations in the hSOD1 (human SOD1) gene typically destabilize the native SOD homodimer, leading to misfolding, aggregation and degradation of SOD1. The ALS-associated pathology is not a consequence of the functional inactivation of SOD1 itself, but is rather due to a toxic gain-of-function triggered by mutant SOD1. Recently, the molecular basis of a number of human neurodegenerative diseases resulting from protein misfolding and aggregation, including fALS (familial ALS), was probed by using the baker's yeast, Saccharomyces cerevisiae, as a highly tractable model. Such studies have, for example, identified novel mutant SOD1-specific interactions and demonstrated that mutant SOD1 disrupts mitochondrial homoeostasis. Features of ALS associated with TDP-43 aggregation have also been recapitulated in S. cerevisiae including the identification of modulators of the toxicity of TDP-43. In this paper, we review recent studies of ALS pathogenesis using S. cerevisiae as a model organism and summarize the potential mechanisms involved in ALS progression.  相似文献   

15.
Misfolding of mutant Cu/Zn‐superoxide dismutase (SOD1) is a pathological hallmark in a familial form of amyotrophic lateral sclerosis. Pathogenic mutations have been proposed to monomerize SOD1 normally adopting a homodimeric configuration and then trigger abnormal oligomerization of SOD1 proteins. Despite this, a misfolded conformation of SOD1 leading to the oligomerization at physiological conditions still remains ambiguous. Here, we show that, around the body temperature (~37°C), mutant SOD1 maintains a dimeric configuration but lacks most of its secondary structures. Also, such an abnormal SOD1 dimer with significant structural disorder was prone to irreversibly forming the oligomers crosslinked via disulfide bonds. The disulfide‐crosslinked oligomers of SOD1 were detected in the spinal cords of the diseased mice expressing mutant SOD1. We hence propose an alternative pathway of mutant SOD1 misfolding that is responsible for oligomerization in the pathologies of the disease.  相似文献   

16.
Converging evidence indicates that SOD1 aggregation is a common feature of mutant SOD1-linked fALS, and seems to be directly related to the gain-of-function toxic property. However, the mechanism inducing the aggregation is not understood. To study the contribution of oxidative modification of cysteine residues in SOD1 aggregation, we systematically examined the redox state of SOD1 cysteine residues in the G37R transgenic mouse model at different stages of the disease and under oxidative stress induced by H2O2. Our data suggest that under normal circumstance, cysteine 111 residue in SOD1 is free; however, under oxidative stress, it is prone to oxidative modification by providing the thiolate anion (S−). With the progression of the disease, increased levels of oxidative insults facilitated the oxidation of thiol groups of cysteine residues; human mutant SOD1 could generate an upper shift band in reducing SDS-PAGE, which turned out to be a Cys111-peroxidized SOD1 species. We also detected the formation of SOD1 multimers at different stages of the disease, and found that accumulated oxidative stress facilitated the formation of aggregates, which were not mediated by disulfide bond. This oxidative modification of cysteine 111 therefore promotes the formation of disulfide bond-independent aggregation of SOD1.  相似文献   

17.

Background

Amyotrophic lateral sclerosis (ALS), partly caused by the mutations and aggregation of human copper, zinc superoxide dismutase (SOD1), is a fatal degenerative disease of motor neurons. Because SOD1 is a major copper-binding protein present at relatively high concentration in motor neurons and copper can be a harmful pro-oxidant, we want to know whether aberrant copper biochemistry could underlie ALS pathogenesis. In this study, we have investigated and compared the effects of cupric ions on the aggregation of ALS-associated SOD1 mutant A4V and oxidized wild-type SOD1.

Methodology/Principal Findings

As revealed by 90° light scattering, dynamic light scattering, SDS-PAGE, and atomic force microscopy, free cupric ions in solution not only induce the oxidation of either apo A4V or Zn2-A4V and trigger the oligomerization and aggregation of oxidized A4V under copper-mediated oxidative conditions, but also trigger the aggregation of non-oxidized form of such a pathogenic mutant. As evidenced by mass spectrometry and SDS-PAGE, Cys-111 is a primary target for oxidative modification of pathological human SOD1 mutant A4V by either excess Cu2+ or hydrogen peroxide. The results from isothermal titration calorimetry show that A4V possesses two sets of independent binding sites for Cu2+: a moderate-affinity site (106 M-1) and a high-affinity site (108 M-1). Furthermore, Cu2+ binds to wild-type SOD1 oxidized by hydrogen peroxide in a way similar to A4V, triggering the aggregation of such an oxidized form.

Conclusions/Significance

We demonstrate that excess cupric ions induce the oxidation and trigger the aggregation of A4V SOD1, and suggest that Cu2+ plays a key role in the mechanism of aggregation of both A4V and oxidized wild-type SOD1. A plausible model for how pathological SOD1 mutants aggregate in ALS-affected motor neurons with the disruption of copper homeostasis has been provided.  相似文献   

18.
Cu, Zn superoxide dismutase (SOD1) has been implicated in the familial form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has been suggested that mutant mediated SOD1 misfolding/aggregation is an integral part of the pathology of ALS. We study the folding thermodynamics and kinetics of SOD1 using a hybrid molecular dynamics approach. We reproduce the experimentally observed SOD1 folding thermodynamics and find that the residues which contribute the most to SOD1 thermal stability are also crucial for apparent two-state folding kinetics. Surprisingly, we find that these residues are located on the surface of the protein and not in the hydrophobic core. Mutations in some of the identified residues are found in patients with the disease. We argue that the identified residues may play an important role in aggregation. To further characterize the folding of SOD1, we study the role of cysteine residues in folding and find that non-native disulfide bond formation may significantly alter SOD1 folding dynamics and aggregation propensity.  相似文献   

19.
The protein chaperoning and ubiquitin-proteasome systems perform many homeostatic functions within cells involving protein folding, transport and degradation. Of paramount importance is ridding cells of mutant or post-translationally modified proteins that otherwise tend to aggregate into insoluble complexes and form inclusions. Such inclusions are characteristic of many neurodegenerative diseases and implicate protein misfolding and aggregation as common aspects of pathogenesis. In the most common familial form of ALS, mutations in SOD1 promote misfolding of the protein and target it for degradation by proteasomes. Although proteasomes can degrade the mutant proteins efficiently, altered solubility and aggregation of mutant SOD1 are features of the disease and occur most prominently in the most vulnerable cells and tissues. Indeed, lumbar spinal cord of mutant SOD1 transgenic mice show early reduction in their capacity for protein chaperoning and proteasome-mediated hydrolysis of substrates, and motor neurons are particularly vulnerable to aggregation of mutant SOD1. A high threshold for upregulating key pathways in response to the stress of added substrate load may contribute to this vulnerability. The broad spectrum neuroprotective capability and efficacy of some chaperone-based therapies in preclinical models makes these pathways attractive as targets for therapy in ALS, as well as other neurodegenerative diseases. A better understanding of the mechanisms governing the regulation of protein chaperones and UPS components would facilitate development of treatments that upregulate these pathways in a coordinated manner in neural tissue without long term toxicity.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neuromuscular degenerative disorder with a poorly defined etiology. ALS patients experience motor weakness, which starts focally and spreads throughout the nervous system, culminating in paralysis and death within a few years of diagnosis. While the vast majority of clinical ALS is sporadic with no known cause, mutations in human copper-zinc superoxide dismutase 1 (SOD1) cause about 20 % of inherited cases of ALS. ALS with SOD1 mutations is caused by a toxic gain of function associated with the propensity of mutant SOD1 to misfold, presenting a non-native structure. The mechanisms responsible for the progressive spreading of ALS pathology have been the focus of intense study. We have shown that misfolded SOD1 protein can seed misfolding and aggregation of endogenous wild-type SOD1 similar to amyloid-β and prion protein seeding. Our recent observations demonstrate a transfer of the misfolded SOD1 species from cell to cell, modeling the intercellular transmission of disease through the neuroaxis. We have shown that both mutant and misfolded wild-type SOD1 can traverse cell-to-cell, either as protein aggregates that are released from dying cells and taken up by neighboring cells via macropinocytosis, or in association with vesicles which are released into the extracellular environment. Furthermore, once misfolding of wild-type SOD1 has been initiated in a human cell culture, it can induce misfolding in naïve cell cultures over multiple passages of media transfer long after the initial misfolding template is degraded. Herein we review the data on mechanisms of intercellular transmission of misfolded SOD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号